메뉴 건너뛰기




Volumn 22, Issue 7, 2007, Pages 1034-1052

HydroTest: A web-based toolbox of evaluation metrics for the standardised assessment of hydrological forecasts

Author keywords

Evaluation metrics; Hydrological models; Performance testing

Indexed keywords

FORECASTING; MATHEMATICAL MODELS; TIME SERIES ANALYSIS; WORLD WIDE WEB;

EID: 33846798345     PISSN: 13648152     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.envsoft.2006.06.008     Document Type: Article
Times cited : (408)

References (97)
  • 1
    • 0034254196 scopus 로고    scopus 로고
    • Comparing neural network and autoregressive moving average techniques for the provision of continuous river flow forecasts in two contrasting catchments
    • Abrahart R.J., and See L.M. Comparing neural network and autoregressive moving average techniques for the provision of continuous river flow forecasts in two contrasting catchments. Hydrological Processes 14 11-12 (2000) 2157-2172
    • (2000) Hydrological Processes , vol.14 , Issue.11-12 , pp. 2157-2172
    • Abrahart, R.J.1    See, L.M.2
  • 2
    • 0016355478 scopus 로고
    • A new look at the statistical model identification
    • Akaike H. A new look at the statistical model identification. IEEE Transactions on Automatic Control 19 (1974) 716-723
    • (1974) IEEE Transactions on Automatic Control , vol.19 , pp. 716-723
    • Akaike, H.1
  • 4
    • 1142294041 scopus 로고    scopus 로고
    • A soil moisture index as an auxiliary ANN input for stream flow forecasting
    • Anctil F., Michel C., Perrin C., and Vazken Andréassian V. A soil moisture index as an auxiliary ANN input for stream flow forecasting. Journal of Hydrology 286 1-4 (2004) 155-167
    • (2004) Journal of Hydrology , vol.286 , Issue.1-4 , pp. 155-167
    • Anctil, F.1    Michel, C.2    Perrin, C.3    Vazken Andréassian, V.4
  • 6
    • 0002006114 scopus 로고
    • Error measures for generalizing about forecasting methods: Empirical comparisons
    • Armstrong J.S., and Collopy F. Error measures for generalizing about forecasting methods: Empirical comparisons. International Journal of Forecasting 8 1 (1992) 69-80
    • (1992) International Journal of Forecasting , vol.8 , Issue.1 , pp. 69-80
    • Armstrong, J.S.1    Collopy, F.2
  • 7
  • 8
    • 0027594152 scopus 로고
    • Criteria for evaluation of watershed models
    • ASCE. Criteria for evaluation of watershed models. Journal of Irrigation and Drainage Engineering 119 3 (1993) 429-442
    • (1993) Journal of Irrigation and Drainage Engineering , vol.119 , Issue.3 , pp. 429-442
    • ASCE1
  • 9
    • 0034174396 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology. II: hydrologic applications
    • ASCE. Artificial neural networks in hydrology. II: hydrologic applications. Journal of Hydrological Engineering 5 2 (2000) 124-137
    • (2000) Journal of Hydrological Engineering , vol.5 , Issue.2 , pp. 124-137
    • ASCE1
  • 11
    • 0032821643 scopus 로고    scopus 로고
    • Hydrograph prediction-how much skill?
    • Beran M. Hydrograph prediction-how much skill?. Hydrology and Earth System Sciences 3 2 (1999) 305-307
    • (1999) Hydrology and Earth System Sciences , vol.3 , Issue.2 , pp. 305-307
    • Beran, M.1
  • 12
    • 0022219031 scopus 로고
    • Lumped catchment models
    • Anderson M.G., and Burt T.P. (Eds), Wiley, Chichester, UK
    • Blackie J.R., and Eeles C.W.O. Lumped catchment models. In: Anderson M.G., and Burt T.P. (Eds). Hydrological Forecasting (1985), Wiley, Chichester, UK 311-345
    • (1985) Hydrological Forecasting , pp. 311-345
    • Blackie, J.R.1    Eeles, C.W.O.2
  • 13
    • 33646367151 scopus 로고    scopus 로고
    • Calibrations of a daily rainfall-runoff model with poor quality data
    • Boughton W. Calibrations of a daily rainfall-runoff model with poor quality data. Environmental Modelling and Software 21 (2006) 1114-1128
    • (2006) Environmental Modelling and Software , vol.21 , pp. 1114-1128
    • Boughton, W.1
  • 14
    • 0036221122 scopus 로고    scopus 로고
    • Optimal division of data for neural network models in water resources applications
    • 10.1029/2001WR000266
    • Bowden G.J., Maier H.R., and Dandy G.C. Optimal division of data for neural network models in water resources applications. Water Resources Research 38 2 (2002) 1010 10.1029/2001WR000266
    • (2002) Water Resources Research , vol.38 , Issue.2 , pp. 1010
    • Bowden, G.J.1    Maier, H.R.2    Dandy, G.C.3
  • 15
    • 0038240745 scopus 로고    scopus 로고
    • Artificial neural network approach to flood forecasting in the River Arno
    • Campolo M., Soldati A., and Andreussi P. Artificial neural network approach to flood forecasting in the River Arno. Hydrological Sciences Journal 48 3 (2003) 381-398
    • (2003) Hydrological Sciences Journal , vol.48 , Issue.3 , pp. 381-398
    • Campolo, M.1    Soldati, A.2    Andreussi, P.3
  • 16
    • 33846832680 scopus 로고    scopus 로고
    • Cannas, B., Fanni, A., See, L.M., Sias, G. The role of data preprocessing for river flow forecasting using neural networks. Physics and Chemistry of the Earth, in press.
  • 17
    • 0035864789 scopus 로고    scopus 로고
    • Counterpropagation fuzzy-neural network for streamflow reconstruction
    • Chang F.-J., Hu H.-F., and Chen Y.-C. Counterpropagation fuzzy-neural network for streamflow reconstruction. Hydrological Processes 15 2 (2001) 219-232
    • (2001) Hydrological Processes , vol.15 , Issue.2 , pp. 219-232
    • Chang, F.-J.1    Hu, H.-F.2    Chen, Y.-C.3
  • 18
    • 0036719845 scopus 로고    scopus 로고
    • Real-time recurrent learning neural network for stream-flow forecasting
    • Chang F.-J., Chang L.-C., and Huang H.-L. Real-time recurrent learning neural network for stream-flow forecasting. Hydrological Processes 16 13 (2002) 2577-2588
    • (2002) Hydrological Processes , vol.16 , Issue.13 , pp. 2577-2588
    • Chang, F.-J.1    Chang, L.-C.2    Huang, H.-L.3
  • 19
    • 0842349306 scopus 로고    scopus 로고
    • A two-step-ahead recurrent neural network for stream-flow forecasting
    • Chang L.-C., Chang F.-J., and Chiang Y.-M. A two-step-ahead recurrent neural network for stream-flow forecasting. Hydrological Processes 18 1 (2004) 81-92
    • (2004) Hydrological Processes , vol.18 , Issue.1 , pp. 81-92
    • Chang, L.-C.1    Chang, F.-J.2    Chiang, Y.-M.3
  • 20
    • 33646075449 scopus 로고    scopus 로고
    • The strategy of building a flood forecast model by neuro-fuzzy network
    • Chen S.-H., Lin Y.-H., Chang L.-C., and Chang F.-J. The strategy of building a flood forecast model by neuro-fuzzy network. Hydrological Processes 20 7 (2006) 1525-1540
    • (2006) Hydrological Processes , vol.20 , Issue.7 , pp. 1525-1540
    • Chen, S.-H.1    Lin, Y.-H.2    Chang, L.-C.3    Chang, F.-J.4
  • 21
    • 0037903280 scopus 로고    scopus 로고
    • Modelling and forecasting of hydrological variables using artificial neural networks: the Kafue River sub-basin
    • Chibanga R., Berlamont J., and Vandewalle J. Modelling and forecasting of hydrological variables using artificial neural networks: the Kafue River sub-basin. Hydrological Sciences Journal 48 3 (2003) 363-379
    • (2003) Hydrological Sciences Journal , vol.48 , Issue.3 , pp. 363-379
    • Chibanga, R.1    Berlamont, J.2    Vandewalle, J.3
  • 22
    • 0027838188 scopus 로고
    • Assessing the adequacy of catchment streamflow yield estimates
    • Chiew F.H.S., and McMahon T.A. Assessing the adequacy of catchment streamflow yield estimates. Australian Journal of Soil Research 31 5 (1993) 665-680
    • (1993) Australian Journal of Soil Research , vol.31 , Issue.5 , pp. 665-680
    • Chiew, F.H.S.1    McMahon, T.A.2
  • 23
    • 0015630543 scopus 로고
    • A review of some mathematical models used in hydrology, with observations on their calibration and use
    • Clarke R.T. A review of some mathematical models used in hydrology, with observations on their calibration and use. Journal of Hydrology 19 1 (1973) 1-20
    • (1973) Journal of Hydrology , vol.19 , Issue.1 , pp. 1-20
    • Clarke, R.T.1
  • 24
    • 34248625602 scopus 로고
    • On the limitations of comparing mean square forecast errors
    • Clements M.P., and Hendry D.F. On the limitations of comparing mean square forecast errors. Journal of Forecasting 12 8 (1993) 617-637
    • (1993) Journal of Forecasting , vol.12 , Issue.8 , pp. 617-637
    • Clements, M.P.1    Hendry, D.F.2
  • 25
    • 17444403520 scopus 로고    scopus 로고
    • An application of pruning in the design of neural networks for real time flood forecasting
    • Corani G., and Guariso G. An application of pruning in the design of neural networks for real time flood forecasting. Neural Computing and Applications 14 1 (2005) 66-77
    • (2005) Neural Computing and Applications , vol.14 , Issue.1 , pp. 66-77
    • Corani, G.1    Guariso, G.2
  • 26
    • 0034621379 scopus 로고    scopus 로고
    • Daily reservoir inflow forecasting using artificial neural networks with stopped training approach
    • Coulibaly P., Anctil F., and Bobée B. Daily reservoir inflow forecasting using artificial neural networks with stopped training approach. Journal of Hydrology 230 3-4 (2000) 244-257
    • (2000) Journal of Hydrology , vol.230 , Issue.3-4 , pp. 244-257
    • Coulibaly, P.1    Anctil, F.2    Bobée, B.3
  • 27
    • 0034749335 scopus 로고    scopus 로고
    • Hydrological modelling using artificial neural networks
    • Dawson C.W., and Wilby R.L. Hydrological modelling using artificial neural networks. Progress in Physical Geography 25 1 (2001) 80-108
    • (2001) Progress in Physical Geography , vol.25 , Issue.1 , pp. 80-108
    • Dawson, C.W.1    Wilby, R.L.2
  • 28
    • 0036698154 scopus 로고    scopus 로고
    • An evaluation of artificial neural network techniques for flow forecasting in the River Yangtze, China
    • Dawson C.W., Harpham C., Wilby R.L., and Chen Y. An evaluation of artificial neural network techniques for flow forecasting in the River Yangtze, China. Hydrology and Earth System Sciences 6 4 (2002) 619-626
    • (2002) Hydrology and Earth System Sciences , vol.6 , Issue.4 , pp. 619-626
    • Dawson, C.W.1    Harpham, C.2    Wilby, R.L.3    Chen, Y.4
  • 30
    • 33645996016 scopus 로고    scopus 로고
    • Symbiotic adaptive neuro-evolution applied to rainfall-runoff modelling in northern England
    • Dawson C.W., See L.M., Abrahart R.J., and Heppenstall A.J. Symbiotic adaptive neuro-evolution applied to rainfall-runoff modelling in northern England. Neural Networks 19 2 (2006) 236-247
    • (2006) Neural Networks , vol.19 , Issue.2 , pp. 236-247
    • Dawson, C.W.1    See, L.M.2    Abrahart, R.J.3    Heppenstall, A.J.4
  • 31
    • 23744444467 scopus 로고    scopus 로고
    • Constraints of artificial neural networks for rainfall-runoff modelling: trade-offs in hydrological state representation and model evaluation
    • DeVos N.J., and Rientjes T.H.M. Constraints of artificial neural networks for rainfall-runoff modelling: trade-offs in hydrological state representation and model evaluation. Hydrology and Earth System Sciences 9 1-2 (2005) 111-126
    • (2005) Hydrology and Earth System Sciences , vol.9 , Issue.1-2 , pp. 111-126
    • DeVos, N.J.1    Rientjes, T.H.M.2
  • 32
    • 0017516522 scopus 로고
    • A procedure for the selection of objective functions for hydrologic simulation models
    • Diskin M.H., and Simon E. A procedure for the selection of objective functions for hydrologic simulation models. Journal of Hydrology 34 1-2 (1977) 129-149
    • (1977) Journal of Hydrology , vol.34 , Issue.1-2 , pp. 129-149
    • Diskin, M.H.1    Simon, E.2
  • 33
    • 0001077032 scopus 로고
    • Nonparametric estimates of standard error: the jackknife, the bootstrap, and other methods
    • Efron B. Nonparametric estimates of standard error: the jackknife, the bootstrap, and other methods. Biometrika 68 3 (1981) 589-599
    • (1981) Biometrika , vol.68 , Issue.3 , pp. 589-599
    • Efron, B.1
  • 34
    • 84988052077 scopus 로고
    • Nonparametric standard errors and confidence intervals
    • Efron B. Nonparametric standard errors and confidence intervals. Canadian Journal of Statistics 9 2 (1981) 139-172
    • (1981) Canadian Journal of Statistics , vol.9 , Issue.2 , pp. 139-172
    • Efron, B.1
  • 35
    • 84945737762 scopus 로고
    • A leisurely look at the bootstrap, the jackknife and cross-validation
    • Efron B., and Gong G. A leisurely look at the bootstrap, the jackknife and cross-validation. American Statistician 37 1 (1983) 36-48
    • (1983) American Statistician , vol.37 , Issue.1 , pp. 36-48
    • Efron, B.1    Gong, G.2
  • 38
    • 0002847043 scopus 로고
    • The evaluation of extrapolative forecasting methods
    • Fildes R. The evaluation of extrapolative forecasting methods. International Journal of Forecasting 8 1 (1992) 81-98
    • (1992) International Journal of Forecasting , vol.8 , Issue.1 , pp. 81-98
    • Fildes, R.1
  • 39
    • 0031998129 scopus 로고    scopus 로고
    • Application example of neural networks for time series analysis: rainfall-runoff modeling
    • Furundzic D. Application example of neural networks for time series analysis: rainfall-runoff modeling. Signal Processing 64 3 (1998) 383-396
    • (1998) Signal Processing , vol.64 , Issue.3 , pp. 383-396
    • Furundzic, D.1
  • 40
    • 0001647659 scopus 로고
    • The trade-offs in choosing a time series method
    • Gardner E.S. The trade-offs in choosing a time series method. Journal of Forecasting 2 3 (1983) 263-267
    • (1983) Journal of Forecasting , vol.2 , Issue.3 , pp. 263-267
    • Gardner, E.S.1
  • 41
    • 0001083304 scopus 로고
    • A criterion of efficiency for rainfall-runoff models
    • Garrick M., Cunnane C., and Nash J.E. A criterion of efficiency for rainfall-runoff models. Journal of Hydrology 36 3-4 (1978) 375-381
    • (1978) Journal of Hydrology , vol.36 , Issue.3-4 , pp. 375-381
    • Garrick, M.1    Cunnane, C.2    Nash, J.E.3
  • 42
    • 1642414601 scopus 로고    scopus 로고
    • Over-parameterisation, a major obstacle to the use of artificial neural networks in hydrology?
    • Gaume E., and Gosset R. Over-parameterisation, a major obstacle to the use of artificial neural networks in hydrology?. Hydrology and Earth System Sciences 7 5 (2003) 693-706
    • (2003) Hydrology and Earth System Sciences , vol.7 , Issue.5 , pp. 693-706
    • Gaume, E.1    Gosset, R.2
  • 43
    • 20844456071 scopus 로고    scopus 로고
    • Improving generalization of artificial neural networks in rainfall-runoff modelling
    • Giustolisi O., and Laucelli D. Improving generalization of artificial neural networks in rainfall-runoff modelling. Hydrological Sciences Journal 50 3 (2005) 439-457
    • (2005) Hydrological Sciences Journal , vol.50 , Issue.3 , pp. 439-457
    • Giustolisi, O.1    Laucelli, D.2
  • 44
    • 0022859568 scopus 로고
    • Criteria for comparison of single event models
    • Green I.R.A., and Stephenson D. Criteria for comparison of single event models. Hydrological Sciences Journal 31 3 (1986) 395-411
    • (1986) Hydrological Sciences Journal , vol.31 , Issue.3 , pp. 395-411
    • Green, I.R.A.1    Stephenson, D.2
  • 45
    • 0031922634 scopus 로고    scopus 로고
    • Toward improved calibration of hydrological models: multiple and noncommensurable measures of information
    • Gupta H.V., Sorooshian S., and Yapo P.O. Toward improved calibration of hydrological models: multiple and noncommensurable measures of information. Water Resources Research 34 4 (1998) 751-763
    • (1998) Water Resources Research , vol.34 , Issue.4 , pp. 751-763
    • Gupta, H.V.1    Sorooshian, S.2    Yapo, P.O.3
  • 46
    • 0001956933 scopus 로고    scopus 로고
    • How well does your model fit the data?
    • Hall M.J. How well does your model fit the data?. Journal of Hydroinformatics 3 1 (2001) 49-55
    • (2001) Journal of Hydroinformatics , vol.3 , Issue.1 , pp. 49-55
    • Hall, M.J.1
  • 47
    • 0032826146 scopus 로고    scopus 로고
    • Assessment criteria for simple conceptual daily rainfall-runoff models
    • Houghton-Carr H.A. Assessment criteria for simple conceptual daily rainfall-runoff models. Hydrological Sciences Journal 44 2 (1999) 237-261
    • (1999) Hydrological Sciences Journal , vol.44 , Issue.2 , pp. 237-261
    • Houghton-Carr, H.A.1
  • 48
    • 0029413797 scopus 로고
    • Artificial neural network modeling of the rainfall-runoff process
    • Hsu K.-L., Gupta H.V., and Sorooshian S. Artificial neural network modeling of the rainfall-runoff process. Water Resources Research 31 10 (1995) 2517-2530
    • (1995) Water Resources Research , vol.31 , Issue.10 , pp. 2517-2530
    • Hsu, K.-L.1    Gupta, H.V.2    Sorooshian, S.3
  • 49
    • 0035472003 scopus 로고    scopus 로고
    • River flow time series prediction with a range-dependent neural network
    • Hu T.S., Lam K.C., and Ng S.T. River flow time series prediction with a range-dependent neural network. Hydrological Sciences Journal 46 5 (2001) 729-745
    • (2001) Hydrological Sciences Journal , vol.46 , Issue.5 , pp. 729-745
    • Hu, T.S.1    Lam, K.C.2    Ng, S.T.3
  • 50
    • 2442639370 scopus 로고    scopus 로고
    • Development of effective and efficient rainfall-runoff models using integration of deterministic, real-coded genetic algorithms and artificial neural network techniques
    • Jain A., and Srinivasulu S. Development of effective and efficient rainfall-runoff models using integration of deterministic, real-coded genetic algorithms and artificial neural network techniques. Water Resources Research 40 4 (2004) W04302
    • (2004) Water Resources Research , vol.40 , Issue.4
    • Jain, A.1    Srinivasulu, S.2
  • 51
    • 28844473522 scopus 로고    scopus 로고
    • Integrated approach to model decomposed flow hydrograph using artificial neural network and conceptual techniques
    • Jain A., and Srinivasulu S. Integrated approach to model decomposed flow hydrograph using artificial neural network and conceptual techniques. Journal of Hydrology 317 3-4 (2005) 291-306
    • (2005) Journal of Hydrology , vol.317 , Issue.3-4 , pp. 291-306
    • Jain, A.1    Srinivasulu, S.2
  • 52
    • 33645947036 scopus 로고    scopus 로고
    • Ten iterative steps in the development and evaluation of environmental models
    • Jakeman A.J., Letcher R.A., and Norton J.P. Ten iterative steps in the development and evaluation of environmental models. Environmental Modelling and Software 21 (2006) 602-614
    • (2006) Environmental Modelling and Software , vol.21 , pp. 602-614
    • Jakeman, A.J.1    Letcher, R.A.2    Norton, J.P.3
  • 53
    • 30444441291 scopus 로고    scopus 로고
    • Rainfall-runoff models using artificial neural networks for ensemble streamflow prediction
    • Jeong D.-I., and Kim Y.-O. Rainfall-runoff models using artificial neural networks for ensemble streamflow prediction. Hydrological Processes 19 19 (2005) 3819-3835
    • (2005) Hydrological Processes , vol.19 , Issue.19 , pp. 3819-3835
    • Jeong, D.-I.1    Kim, Y.-O.2
  • 54
    • 33646572227 scopus 로고    scopus 로고
    • Chaotic time series prediction with a global model: artificial neural network
    • Karunasinghe D.S.K., and Liong S.-Y. Chaotic time series prediction with a global model: artificial neural network. Journal of Hydrology 323 1-4 (2006) 92-105
    • (2006) Journal of Hydrology , vol.323 , Issue.1-4 , pp. 92-105
    • Karunasinghe, D.S.K.1    Liong, S.-Y.2
  • 56
    • 38149148184 scopus 로고
    • On correlation, with applications to the radar and raingage measurement of rainfall
    • Kessler E., and Neas B. On correlation, with applications to the radar and raingage measurement of rainfall. Atmospheric Research 34 1-4 (1994) 217-229
    • (1994) Atmospheric Research , vol.34 , Issue.1-4 , pp. 217-229
    • Kessler, E.1    Neas, B.2
  • 57
    • 0019227948 scopus 로고
    • Real-time forecasting with a conceptual hydrologic model: 2. Application and results
    • Kitanidis P.K., and Bras R.L. Real-time forecasting with a conceptual hydrologic model: 2. Application and results. Water Resources Research 16 6 (1980) 1034-1044
    • (1980) Water Resources Research , vol.16 , Issue.6 , pp. 1034-1044
    • Kitanidis, P.K.1    Bras, R.L.2
  • 58
    • 0035977694 scopus 로고    scopus 로고
    • Groups and neural networks based streamflow data infilling procedures
    • Khalil M., Panu U.S., and Lennox W.C. Groups and neural networks based streamflow data infilling procedures. Journal of Hydrology 241 3-4 (2001) 153-176
    • (2001) Journal of Hydrology , vol.241 , Issue.3-4 , pp. 153-176
    • Khalil, M.1    Panu, U.S.2    Lennox, W.C.3
  • 59
    • 0022841192 scopus 로고
    • Operational testing of hydrological simulation models
    • Klemes V. Operational testing of hydrological simulation models. Hydrological Sciences Journal 31 3 (1986) 13-24
    • (1986) Hydrological Sciences Journal , vol.31 , Issue.3 , pp. 13-24
    • Klemes, V.1
  • 60
    • 33748913014 scopus 로고    scopus 로고
    • Comparison of different efficiency criteria for hydrological model assessment
    • Proceedings of the 8th Workshop for Large Scale Hydrological Modelling-Oppurg 2004. Krause P., Bongartz K., and Flügel W.-A. (Eds)
    • Krause P., Boyle D.P., and Bäse F. Comparison of different efficiency criteria for hydrological model assessment. In: Krause P., Bongartz K., and Flügel W.-A. (Eds). Proceedings of the 8th Workshop for Large Scale Hydrological Modelling-Oppurg 2004. Advances in Geosciences vol. 5 (2005) 89-97
    • (2005) Advances in Geosciences , vol.5 , pp. 89-97
    • Krause, P.1    Boyle, D.P.2    Bäse, F.3
  • 61
    • 16444365723 scopus 로고    scopus 로고
    • Rainfall-runoff modelling using artificial neural networks: comparison of network types
    • Kumar A.R.S., Sudheer K.P., Jain S.K., and Agarwal P.K. Rainfall-runoff modelling using artificial neural networks: comparison of network types. Hydrological Processes 19 (2005) 1277-1291
    • (2005) Hydrological Processes , vol.19 , pp. 1277-1291
    • Kumar, A.R.S.1    Sudheer, K.P.2    Jain, S.K.3    Agarwal, P.K.4
  • 62
    • 84856619266 scopus 로고    scopus 로고
    • Classification of heterogeneous precipitation fields for the assessment and possible improvement of lumped neural network models for streamflow forecasts
    • Lauzon N., Anctil F., and Baxter C.W. Classification of heterogeneous precipitation fields for the assessment and possible improvement of lumped neural network models for streamflow forecasts. Hydrology and Earth System Sciences Discussions 3 1 (2006) 201-227
    • (2006) Hydrology and Earth System Sciences Discussions , vol.3 , Issue.1 , pp. 201-227
    • Lauzon, N.1    Anctil, F.2    Baxter, C.W.3
  • 63
    • 0031224890 scopus 로고    scopus 로고
    • The continuing search for an anthropogenic climate change signal: limitations of correlation-based approaches
    • Legates D.R., and Davis R.E. The continuing search for an anthropogenic climate change signal: limitations of correlation-based approaches. Geophysical Research Letters 24 18 (1997) 2319-2322
    • (1997) Geophysical Research Letters , vol.24 , Issue.18 , pp. 2319-2322
    • Legates, D.R.1    Davis, R.E.2
  • 64
    • 0032920124 scopus 로고    scopus 로고
    • Evaluating the use of "goodness-of-fit" measures in hydrologic and hydroclimatic model validation
    • Legates D.R., and McCabe G.J. Evaluating the use of "goodness-of-fit" measures in hydrologic and hydroclimatic model validation. Water Resources Research 35 1 (1999) 233-241
    • (1999) Water Resources Research , vol.35 , Issue.1 , pp. 233-241
    • Legates, D.R.1    McCabe, G.J.2
  • 65
    • 1642387025 scopus 로고    scopus 로고
    • A non-linear rainfall-runoff model using radial basis function network
    • Lin G.-F., and Chen L.-H. A non-linear rainfall-runoff model using radial basis function network. Journal of Hydrology 289 1-4 (2004) 1-8
    • (2004) Journal of Hydrology , vol.289 , Issue.1-4 , pp. 1-8
    • Lin, G.-F.1    Chen, L.-H.2
  • 66
    • 21344450695 scopus 로고    scopus 로고
    • Time series forecasting by combining the radial basis function network and self-organizing map
    • Lin G.-F., and Chen L.-H. Time series forecasting by combining the radial basis function network and self-organizing map. Hydrological Processes 19 10 (2005) 1925-1937
    • (2005) Hydrological Processes , vol.19 , Issue.10 , pp. 1925-1937
    • Lin, G.-F.1    Chen, L.-H.2
  • 68
    • 0029413502 scopus 로고
    • Neural nets for modelling rainfall-runoff transformations
    • Lorrai M., and Sechi G. Neural nets for modelling rainfall-runoff transformations. Water Resources Management 9 4 (1995) 299-313
    • (1995) Water Resources Management , vol.9 , Issue.4 , pp. 299-313
    • Lorrai, M.1    Sechi, G.2
  • 69
    • 0029663621 scopus 로고    scopus 로고
    • The use of artificial neural networks for the prediction of water quality parameters
    • Maier H.R., and Dandy G.C. The use of artificial neural networks for the prediction of water quality parameters. Water Resources Research 32 4 (1996) 1013-1022
    • (1996) Water Resources Research , vol.32 , Issue.4 , pp. 1013-1022
    • Maier, H.R.1    Dandy, G.C.2
  • 70
    • 0033957764 scopus 로고    scopus 로고
    • Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications
    • Maier H.R., and Dandy G.C. Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications. Environmental Modelling and Software 15 1 (2000) 101-124
    • (2000) Environmental Modelling and Software , vol.15 , Issue.1 , pp. 101-124
    • Maier, H.R.1    Dandy, G.C.2
  • 71
    • 0041519747 scopus 로고
    • Accuracy measures: theoretical and practical concerns
    • Makridakis S. Accuracy measures: theoretical and practical concerns. International Journal of Forecasting 9 4 (1993) 527-529
    • (1993) International Journal of Forecasting , vol.9 , Issue.4 , pp. 527-529
    • Makridakis, S.1
  • 72
    • 0014776873 scopus 로고
    • River flow forecasting through conceptual models 1: a discussion of principles
    • Nash J.E., and Sutcliffe J.V. River flow forecasting through conceptual models 1: a discussion of principles. Journal of Hydrology 10 3 (1970) 282-290
    • (1970) Journal of Hydrology , vol.10 , Issue.3 , pp. 282-290
    • Nash, J.E.1    Sutcliffe, J.V.2
  • 73
    • 0003856402 scopus 로고
    • Flood Studies Report
    • Natural Environment Research Council, London, UK
    • NERC. Flood Studies Report. Hydrological Studies Vol. 1 (1975), Natural Environment Research Council, London, UK
    • (1975) Hydrological Studies , vol.1
    • NERC1
  • 74
    • 30444443166 scopus 로고    scopus 로고
    • A conceptual rainfall-runoff model considering seasonal variation
    • Paik K., Kim J.H., Kim H.S., and Lee D.R. A conceptual rainfall-runoff model considering seasonal variation. Hydrological Processes 19 19 (2005) 3837-3850
    • (2005) Hydrological Processes , vol.19 , Issue.19 , pp. 3837-3850
    • Paik, K.1    Kim, J.H.2    Kim, H.S.3    Lee, D.R.4
  • 75
    • 0000629279 scopus 로고
    • Mathematical contributions to the theory of evolution. III. Regression, heredity and panmixia
    • Pearson K. Mathematical contributions to the theory of evolution. III. Regression, heredity and panmixia. Philosophical Transactions of the Royal Society of London Series A 187 (1896) 253-318
    • (1896) Philosophical Transactions of the Royal Society of London Series A , vol.187 , pp. 253-318
    • Pearson, K.1
  • 76
    • 20644445412 scopus 로고    scopus 로고
    • Error analysis for the evaluation of model performance: rainfall-runoff event time series data
    • Pebesma E.J., Switzer P., and Loague K. Error analysis for the evaluation of model performance: rainfall-runoff event time series data. Hydrological Processes 19 8 (2005) 1529-1548
    • (2005) Hydrological Processes , vol.19 , Issue.8 , pp. 1529-1548
    • Pebesma, E.J.1    Switzer, P.2    Loague, K.3
  • 77
    • 0347135926 scopus 로고    scopus 로고
    • Modeling of the daily rainfall-runoff relationship with artificial neural network
    • Rajurkar M.P., Kothyari U.C., and Chaube U.C. Modeling of the daily rainfall-runoff relationship with artificial neural network. Journal of Hydrology 285 1-4 (2004) 96-113
    • (2004) Journal of Hydrology , vol.285 , Issue.1-4 , pp. 96-113
    • Rajurkar, M.P.1    Kothyari, U.C.2    Chaube, U.C.3
  • 78
    • 4644296256 scopus 로고    scopus 로고
    • Predicting catchment flow in a semi-arid region via an artificial neural network technique
    • Riad S., Mania J., Bouchaou L., and Najjar Y. Predicting catchment flow in a semi-arid region via an artificial neural network technique. Hydrological Processes 18 13 (2004) 2387-2393
    • (2004) Hydrological Processes , vol.18 , Issue.13 , pp. 2387-2393
    • Riad, S.1    Mania, J.2    Bouchaou, L.3    Najjar, Y.4
  • 79
    • 0348011425 scopus 로고    scopus 로고
    • Modelling guidelines-terminology and guiding principles
    • Refsgaard J.C., and Henriksen H.J. Modelling guidelines-terminology and guiding principles. Advances in Water Resources 27 1 (2004) 71-82
    • (2004) Advances in Water Resources , vol.27 , Issue.1 , pp. 71-82
    • Refsgaard, J.C.1    Henriksen, H.J.2
  • 81
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz G. Estimating the dimension of a model. Annals of Statistics 6 2 (1978) 461-464
    • (1978) Annals of Statistics , vol.6 , Issue.2 , pp. 461-464
    • Schwarz, G.1
  • 82
    • 33846842530 scopus 로고    scopus 로고
    • See, L., Abrahart, R.J., 1999. Multi-model data fusion for hydrological forecasting. Proceedings of the 4th International Conference on Geocomputation, Fredericksburg, Virginia, USA, 25-28 July.
  • 83
    • 0013394082 scopus 로고    scopus 로고
    • On the need for benchmarks in hydrological modelling
    • Seibert J. On the need for benchmarks in hydrological modelling. Hydrological Processes 15 6 (2001) 1063-1064
    • (2001) Hydrological Processes , vol.15 , Issue.6 , pp. 1063-1064
    • Seibert, J.1
  • 84
    • 0342506462 scopus 로고    scopus 로고
    • Application of a neural network technique to rainfall-runoff modelling
    • Shamseldin A.Y. Application of a neural network technique to rainfall-runoff modelling. Journal of Hydrology 199 3-4 (1997) 272-294
    • (1997) Journal of Hydrology , vol.199 , Issue.3-4 , pp. 272-294
    • Shamseldin, A.Y.1
  • 86
    • 0018455212 scopus 로고
    • Direct optimization of Muskingum routing coefficients
    • Stephenson D. Direct optimization of Muskingum routing coefficients. Journal of Hydrology 41 1-2 (1979) 161-165
    • (1979) Journal of Hydrology , vol.41 , Issue.1-2 , pp. 161-165
    • Stephenson, D.1
  • 87
    • 0037470339 scopus 로고    scopus 로고
    • Improving peak flow estimates in artificial neural network river flow models
    • Sudheer K.P., Nayak P.C., and Ramasastri K.S. Improving peak flow estimates in artificial neural network river flow models. Hydrological Processes 17 3 (2003) 677-686
    • (2003) Hydrological Processes , vol.17 , Issue.3 , pp. 677-686
    • Sudheer, K.P.1    Nayak, P.C.2    Ramasastri, K.S.3
  • 88
    • 0242656262 scopus 로고    scopus 로고
    • Application of a neural network model in establishing a stage-discharge relationship for a tidal river
    • Supharatid S. Application of a neural network model in establishing a stage-discharge relationship for a tidal river. Hydrological Processes 17 15 (2003) 3085-3099
    • (2003) Hydrological Processes , vol.17 , Issue.15 , pp. 3085-3099
    • Supharatid, S.1
  • 89
    • 33845307599 scopus 로고    scopus 로고
    • How effective and efficient are multiobjective evolutionary algorithms at hydrologic model calibration?
    • Tang Y., Reed P., and Wagener T. How effective and efficient are multiobjective evolutionary algorithms at hydrologic model calibration?. Hydrology and Earth System Sciences 10 2 (2006) 289-307
    • (2006) Hydrology and Earth System Sciences , vol.10 , Issue.2 , pp. 289-307
    • Tang, Y.1    Reed, P.2    Wagener, T.3
  • 90
    • 85006533095 scopus 로고    scopus 로고
    • Fuzzy set based error measure for hydrologic model evaluation
    • Teegavarapu R., and Elshorbagy A. Fuzzy set based error measure for hydrologic model evaluation. Journal of Hydroinformatics 7 3 (2005) 199-207
    • (2005) Journal of Hydroinformatics , vol.7 , Issue.3 , pp. 199-207
    • Teegavarapu, R.1    Elshorbagy, A.2
  • 91
    • 26444531130 scopus 로고    scopus 로고
    • Identification of rainfall-runoff models for operational applications
    • Wagener T., and McIntyre N. Identification of rainfall-runoff models for operational applications. Hydrological Sciences Journal 50 5 (2005) 735-751
    • (2005) Hydrological Sciences Journal , vol.50 , Issue.5 , pp. 735-751
    • Wagener, T.1    McIntyre, N.2
  • 93
    • 0019707668 scopus 로고
    • On the validation of models
    • Wilmott C.J. On the validation of models. Physical Geography 2 2 (1981) 184-194
    • (1981) Physical Geography , vol.2 , Issue.2 , pp. 184-194
    • Wilmott, C.J.1
  • 95
    • 0004017695 scopus 로고
    • Operational Hydrology Report No. 23, WMO Publ. No. 646, World Meteorological Organization, Geneva, Switzerland
    • WMO. Intercomparison of Models of Snowmelt Runoff. Operational Hydrology Report No. 23, WMO Publ. No. 646 (1986), World Meteorological Organization, Geneva, Switzerland
    • (1986) Intercomparison of Models of Snowmelt Runoff
    • WMO1
  • 96
    • 0030162090 scopus 로고    scopus 로고
    • Automatic calibration of conceptual rainfall-runoff models: sensitivity to calibration data
    • Yapo P.O., Gupta H.V., and Sorooshian S. Automatic calibration of conceptual rainfall-runoff models: sensitivity to calibration data. Journal of Hydrology 181 1-4 (1996) 23-48
    • (1996) Journal of Hydrology , vol.181 , Issue.1-4 , pp. 23-48
    • Yapo, P.O.1    Gupta, H.V.2    Sorooshian, S.3
  • 97
    • 0034736047 scopus 로고    scopus 로고
    • Fuzzy multi-objective function for rainfall-runoff model calibration
    • Yu P.-S., and Yang T.-C. Fuzzy multi-objective function for rainfall-runoff model calibration. Journal of Hydrology 238 1-2 (2000) 1-14
    • (2000) Journal of Hydrology , vol.238 , Issue.1-2 , pp. 1-14
    • Yu, P.-S.1    Yang, T.-C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.