메뉴 건너뛰기




Volumn 166, Issue 1-4, 2010, Pages 421-434

Application of ANN and ANFIS models for reconstructing missing flow data

Author keywords

Artificial neural networks; Data gap filling; Hydrological data; Neuro fuzzy systems

Indexed keywords

ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM; ANFIS MODEL; ARID LANDS; ARTIFICIAL NEURAL NETWORK; DATA GAP; EFFICIENT METHOD; FEASIBILITY STUDIES; FLOW DATA; GAUGING STATIONS; HETEROGENEOUS DATA; HYDROLOGICAL DATA; MISSING DATA; NEUROFUZZY SYSTEM; RATIO METHOD; REAL-TIME DECISION MAKING;

EID: 77954144514     PISSN: 01676369     EISSN: 15732959     Source Type: Journal    
DOI: 10.1007/s10661-009-1012-8     Document Type: Article
Times cited : (130)

References (22)
  • 1
    • 0034210373 scopus 로고    scopus 로고
    • Application of adaptive fuzzy rule-based models for reconstruction of missing precipitation event
    • 10.1080/02626660009492339
    • AJ Abebe DP Solomatine RGW Venneker 2000 Application of adaptive fuzzy rule-based models for reconstruction of missing precipitation event Hydrological Sciences Journal 45 3 425 436 10.1080/02626660009492339
    • (2000) Hydrological Sciences Journal , vol.45 , Issue.3 , pp. 425-436
    • Abebe, A.J.1    Solomatine, D.P.2    Venneker, R.G.W.3
  • 6
    • 77954143014 scopus 로고    scopus 로고
    • A hydrodynamic/neural network approach for enhanced river flow prediction
    • MT Dastorani NG Wright 2004 A hydrodynamic/neural network approach for enhanced river flow prediction International Journal of Civil Engineering 2 3 141 148
    • (2004) International Journal of Civil Engineering , vol.2 , Issue.3 , pp. 141-148
    • Dastorani, M.T.1    Wright, N.G.2
  • 7
    • 0032005702 scopus 로고    scopus 로고
    • An artificial neural network approach to rainfall-runoff modelling
    • 10.1080/02626669809492102
    • CW Dawson R Wilby 1998 An artificial neural network approach to rainfall-runoff modelling Journal of Hydrological Sciences 43 1 47 66 10.1080/02626669809492102
    • (1998) Journal of Hydrological Sciences , vol.43 , Issue.1 , pp. 47-66
    • Dawson, C.W.1    Wilby, R.2
  • 8
    • 0033512986 scopus 로고    scopus 로고
    • A comparison of artificial neural network used for river flow forecasting
    • 10.5194/hess-3-529-1999
    • CW Dawson R Wilby 1998 A comparison of artificial neural network used for river flow forecasting Journal of Hydrology & Earth System Sciences 3 4 529 540 10.5194/hess-3-529-1999
    • (1998) Journal of Hydrology & Earth System Sciences , vol.3 , Issue.4 , pp. 529-540
    • Dawson, C.W.1    Wilby, R.2
  • 9
    • 0037005708 scopus 로고    scopus 로고
    • Estimation of missing stream flow data using principles of chaos theory
    • 10.1016/S0022-1694(01)00513-3 10.1016/S0022-1694(01)00513-3
    • A Elshorbagy SP Simonovic US Panu 2002 Estimation of missing stream flow data using principles of chaos theory Journal of Hydrology (Amsterdam) 255 123 133 10.1016/S0022-1694(01)00513-3 10.1016/S0022-1694(01)00513-3
    • (2002) Journal of Hydrology (Amsterdam) , vol.255 , pp. 123-133
    • Elshorbagy, A.1    Simonovic, S.P.2    Panu, U.S.3
  • 10
    • 0029413797 scopus 로고
    • Artificial neural network modeling of the rainfall-runoff process
    • DOI 10.1029/95WR01955
    • K Hsu HV Gupta S Sorooshian 1995 Artificial neural network modeling of the rainfall-runoff process Journal of Water Resources Research 31 10 2517 2530 10.1029/95WR01955 10.1029/95WR01955 (Pubitemid 26475080)
    • (1995) Water Resources Research , vol.31 , Issue.10 , pp. 2517-2530
    • Kuo-Lin Hsu1    Gupta, H.V.2    Sorooshian, S.3
  • 11
    • 0027601884 scopus 로고
    • Adaptive network based fuzzy inference systems
    • 10.1109/21.256541 10.1109/21.256541
    • JR Jang 1993 Adaptive network based fuzzy inference systems IEEE Transactions on Systems, Man, & Cybernetics 23 665 685 10.1109/21.256541 10.1109/21.256541
    • (1993) IEEE Transactions on Systems, Man, & Cybernetics , vol.23 , pp. 665-685
    • Jang, J.R.1
  • 12
    • 0028667489 scopus 로고
    • Neural networks for flow prediction
    • 10.1061/(ASCE)0887-3801(1994)8:2(201) 10.1061/(ASCE)0887-3801(1994)8: 2(201)
    • N Karunanithi WJ Grenney D Whitley K Bovee 1994 Neural networks for flow prediction Journal of Computing in Civil Engineering 8 2 201 220 10.1061/(ASCE)0887-3801(1994)8:2(201) 10.1061/(ASCE)0887-3801(1994)8:2(201)
    • (1994) Journal of Computing in Civil Engineering , vol.8 , Issue.2 , pp. 201-220
    • Karunanithi, N.1    Grenney, W.J.2    Whitley, D.3    Bovee, K.4
  • 13
    • 0032845493 scopus 로고    scopus 로고
    • HyFIS: Adaptive neuro-fuzzy inference systems and their application to nonlinear dynamical systems
    • DOI 10.1016/S0893-6080(99)00067-2, PII S0893608099000672
    • J Kim N Kasabov 1999 ANFIS: adaptive neuro-fuzzy inference systems and their application to nonlinear dynamical systems Neural Networks 12 1301 1319 10.1016/S0893-6080(99)00067-2 (Pubitemid 29475159)
    • (1999) Neural Networks , vol.12 , Issue.9 , pp. 1301-1319
    • Kim, J.1    Kasabov, N.2
  • 14
    • 77954144402 scopus 로고    scopus 로고
    • ANFIS model for the time series prediction of interior daylight illuminance
    • CP Kurian VI George J Bhat RS Aithal 2006 ANFIS model for the time series prediction of interior daylight illuminance AIML Journal 6 3 35 40
    • (2006) AIML Journal , vol.6 , Issue.3 , pp. 35-40
    • Kurian, C.P.1    George, V.I.2    Bhat, J.3    Aithal, R.S.4
  • 18
    • 77954143552 scopus 로고    scopus 로고
    • Rainfall forecasting through artificial neural networks
    • V. Babovic L.C. Larsen (eds). Balkema Rotterdam
    • Luk, K. C., Ball, J. E., & Sharma, A. (1998). Rainfall forecasting through artificial neural networks. In V. Babovic & L. C. Larsen (Eds.), Hydroinformatics '98. Rotterdam: Balkema.
    • (1998) Hydroinformatics '98
    • Luk, K.C.1    Ball, J.E.2    Sharma, A.3
  • 19
    • 0030159380 scopus 로고    scopus 로고
    • Artificial neural networks as rainfall-runoff models
    • 10.1080/02626669609491511
    • AW Minns MJ Hall 1996 Artificial neural networks as rainfall-runoff models Journal of Hydrological Sciences 41 3 399 417 10.1080/02626669609491511
    • (1996) Journal of Hydrological Sciences , vol.41 , Issue.3 , pp. 399-417
    • Minns, A.W.1    Hall, M.J.2
  • 20
    • 33748621520 scopus 로고    scopus 로고
    • NeuroDimension Retrieved from
    • NeuroDimension. (2001). NeuroSolutions. Retrieved from http://www.nd.com.
    • (2001) NeuroSolutions
  • 21
    • 0000646059 scopus 로고
    • Learning internal representations by back propagation
    • D.E. Rumelhart J.L. McClelland PDP Research Group (eds). MIT Cambridge, MA
    • Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning internal representations by back propagation. In D. E. Rumelhart, J. L. McClelland, & PDP Research Group (Eds.), Parallel distributed processing, (Vol. 1, pp. 318-362). Cambridge, MA: MIT.
    • (1986) Parallel Distributed Processing, (Vol. 1) , pp. 318-362
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 22
    • 0033167344 scopus 로고    scopus 로고
    • Rainfall-runoff modeling using Artificial Neural Networks
    • DOI 10.1061/(ASCE)1084-0699(1999)4:3(232)
    • SA Tokar PA Johnson 1999 Rainfall-runoff modeling using artificial neural networks Journal of Hydrologic Engineering 4 3 232 239 10.1061/(ASCE)1084- 0699(1999)4:3(232) 10.1061/(ASCE)1084-0699(1999)4:3(232) (Pubitemid 29437829)
    • (1999) Journal of Hydrologic Engineering , vol.4 , Issue.3 , pp. 232-239
    • Tokar, A.S.1    Johnson, P.A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.