-
1
-
-
0034210373
-
Application of adaptive fuzzy rule-based models for reconstruction of missing precipitation event
-
10.1080/02626660009492339
-
AJ Abebe DP Solomatine RGW Venneker 2000 Application of adaptive fuzzy rule-based models for reconstruction of missing precipitation event Hydrological Sciences Journal 45 3 425 436 10.1080/02626660009492339
-
(2000)
Hydrological Sciences Journal
, vol.45
, Issue.3
, pp. 425-436
-
-
Abebe, A.J.1
Solomatine, D.P.2
Venneker, R.G.W.3
-
6
-
-
77954143014
-
A hydrodynamic/neural network approach for enhanced river flow prediction
-
MT Dastorani NG Wright 2004 A hydrodynamic/neural network approach for enhanced river flow prediction International Journal of Civil Engineering 2 3 141 148
-
(2004)
International Journal of Civil Engineering
, vol.2
, Issue.3
, pp. 141-148
-
-
Dastorani, M.T.1
Wright, N.G.2
-
7
-
-
0032005702
-
An artificial neural network approach to rainfall-runoff modelling
-
10.1080/02626669809492102
-
CW Dawson R Wilby 1998 An artificial neural network approach to rainfall-runoff modelling Journal of Hydrological Sciences 43 1 47 66 10.1080/02626669809492102
-
(1998)
Journal of Hydrological Sciences
, vol.43
, Issue.1
, pp. 47-66
-
-
Dawson, C.W.1
Wilby, R.2
-
8
-
-
0033512986
-
A comparison of artificial neural network used for river flow forecasting
-
10.5194/hess-3-529-1999
-
CW Dawson R Wilby 1998 A comparison of artificial neural network used for river flow forecasting Journal of Hydrology & Earth System Sciences 3 4 529 540 10.5194/hess-3-529-1999
-
(1998)
Journal of Hydrology & Earth System Sciences
, vol.3
, Issue.4
, pp. 529-540
-
-
Dawson, C.W.1
Wilby, R.2
-
9
-
-
0037005708
-
Estimation of missing stream flow data using principles of chaos theory
-
10.1016/S0022-1694(01)00513-3 10.1016/S0022-1694(01)00513-3
-
A Elshorbagy SP Simonovic US Panu 2002 Estimation of missing stream flow data using principles of chaos theory Journal of Hydrology (Amsterdam) 255 123 133 10.1016/S0022-1694(01)00513-3 10.1016/S0022-1694(01)00513-3
-
(2002)
Journal of Hydrology (Amsterdam)
, vol.255
, pp. 123-133
-
-
Elshorbagy, A.1
Simonovic, S.P.2
Panu, U.S.3
-
10
-
-
0029413797
-
Artificial neural network modeling of the rainfall-runoff process
-
DOI 10.1029/95WR01955
-
K Hsu HV Gupta S Sorooshian 1995 Artificial neural network modeling of the rainfall-runoff process Journal of Water Resources Research 31 10 2517 2530 10.1029/95WR01955 10.1029/95WR01955 (Pubitemid 26475080)
-
(1995)
Water Resources Research
, vol.31
, Issue.10
, pp. 2517-2530
-
-
Kuo-Lin Hsu1
Gupta, H.V.2
Sorooshian, S.3
-
11
-
-
0027601884
-
Adaptive network based fuzzy inference systems
-
10.1109/21.256541 10.1109/21.256541
-
JR Jang 1993 Adaptive network based fuzzy inference systems IEEE Transactions on Systems, Man, & Cybernetics 23 665 685 10.1109/21.256541 10.1109/21.256541
-
(1993)
IEEE Transactions on Systems, Man, & Cybernetics
, vol.23
, pp. 665-685
-
-
Jang, J.R.1
-
12
-
-
0028667489
-
Neural networks for flow prediction
-
10.1061/(ASCE)0887-3801(1994)8:2(201) 10.1061/(ASCE)0887-3801(1994)8: 2(201)
-
N Karunanithi WJ Grenney D Whitley K Bovee 1994 Neural networks for flow prediction Journal of Computing in Civil Engineering 8 2 201 220 10.1061/(ASCE)0887-3801(1994)8:2(201) 10.1061/(ASCE)0887-3801(1994)8:2(201)
-
(1994)
Journal of Computing in Civil Engineering
, vol.8
, Issue.2
, pp. 201-220
-
-
Karunanithi, N.1
Grenney, W.J.2
Whitley, D.3
Bovee, K.4
-
13
-
-
0032845493
-
HyFIS: Adaptive neuro-fuzzy inference systems and their application to nonlinear dynamical systems
-
DOI 10.1016/S0893-6080(99)00067-2, PII S0893608099000672
-
J Kim N Kasabov 1999 ANFIS: adaptive neuro-fuzzy inference systems and their application to nonlinear dynamical systems Neural Networks 12 1301 1319 10.1016/S0893-6080(99)00067-2 (Pubitemid 29475159)
-
(1999)
Neural Networks
, vol.12
, Issue.9
, pp. 1301-1319
-
-
Kim, J.1
Kasabov, N.2
-
14
-
-
77954144402
-
ANFIS model for the time series prediction of interior daylight illuminance
-
CP Kurian VI George J Bhat RS Aithal 2006 ANFIS model for the time series prediction of interior daylight illuminance AIML Journal 6 3 35 40
-
(2006)
AIML Journal
, vol.6
, Issue.3
, pp. 35-40
-
-
Kurian, C.P.1
George, V.I.2
Bhat, J.3
Aithal, R.S.4
-
18
-
-
77954143552
-
Rainfall forecasting through artificial neural networks
-
V. Babovic L.C. Larsen (eds). Balkema Rotterdam
-
Luk, K. C., Ball, J. E., & Sharma, A. (1998). Rainfall forecasting through artificial neural networks. In V. Babovic & L. C. Larsen (Eds.), Hydroinformatics '98. Rotterdam: Balkema.
-
(1998)
Hydroinformatics '98
-
-
Luk, K.C.1
Ball, J.E.2
Sharma, A.3
-
19
-
-
0030159380
-
Artificial neural networks as rainfall-runoff models
-
10.1080/02626669609491511
-
AW Minns MJ Hall 1996 Artificial neural networks as rainfall-runoff models Journal of Hydrological Sciences 41 3 399 417 10.1080/02626669609491511
-
(1996)
Journal of Hydrological Sciences
, vol.41
, Issue.3
, pp. 399-417
-
-
Minns, A.W.1
Hall, M.J.2
-
20
-
-
33748621520
-
-
NeuroDimension Retrieved from
-
NeuroDimension. (2001). NeuroSolutions. Retrieved from http://www.nd.com.
-
(2001)
NeuroSolutions
-
-
-
21
-
-
0000646059
-
Learning internal representations by back propagation
-
D.E. Rumelhart J.L. McClelland PDP Research Group (eds). MIT Cambridge, MA
-
Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning internal representations by back propagation. In D. E. Rumelhart, J. L. McClelland, & PDP Research Group (Eds.), Parallel distributed processing, (Vol. 1, pp. 318-362). Cambridge, MA: MIT.
-
(1986)
Parallel Distributed Processing, (Vol. 1)
, pp. 318-362
-
-
Rumelhart, D.E.1
Hinton, G.E.2
Williams, R.J.3
-
22
-
-
0033167344
-
Rainfall-runoff modeling using Artificial Neural Networks
-
DOI 10.1061/(ASCE)1084-0699(1999)4:3(232)
-
SA Tokar PA Johnson 1999 Rainfall-runoff modeling using artificial neural networks Journal of Hydrologic Engineering 4 3 232 239 10.1061/(ASCE)1084- 0699(1999)4:3(232) 10.1061/(ASCE)1084-0699(1999)4:3(232) (Pubitemid 29437829)
-
(1999)
Journal of Hydrologic Engineering
, vol.4
, Issue.3
, pp. 232-239
-
-
Tokar, A.S.1
Johnson, P.A.2
|