메뉴 건너뛰기




Volumn 16, Issue 4, 2007, Pages 373-386

Neuroevolution applied to river level forecasting under winter flood and drought conditions

Author keywords

Evolutionary algorithms; Neural networks; Rainfall runoff modeling

Indexed keywords

CLIMATE CHANGE; COMPUTER SIMULATION; COMPUTER SOFTWARE; DROUGHT; EVOLUTIONARY ALGORITHMS; FLOODS; FORECASTING; MATHEMATICAL MODELS; METEOROLOGY;

EID: 34547955684     PISSN: 03341860     EISSN: None     Source Type: Journal    
DOI: 10.1515/JISYS.2007.16.4.373     Document Type: Article
Times cited : (2)

References (18)
  • 1
    • 4644274685 scopus 로고    scopus 로고
    • Runoff modeling through back propagation artificial neural network with variable rainfall-runoff data
    • Agarwal, A. and Singh, R.D. 2004. Runoff modeling through back propagation artificial neural network with variable rainfall-runoff data, Water Resources Management, 18, 285-300.
    • (2004) Water Resources Management , vol.18 , pp. 285-300
    • Agarwal, A.1    Singh, R.D.2
  • 3
    • 0038240745 scopus 로고    scopus 로고
    • Artificial Neural Network Approach to flood forecasting in the River Arno
    • Campolo, M., Soldati, A. and Andreussi, P. 2003. Artificial Neural Network Approach to flood forecasting in the River Arno, Hydrological Sciences Journal, 48, 381-98.
    • (2003) Hydrological Sciences Journal , vol.48 , pp. 381-398
    • Campolo, M.1    Soldati, A.2    Andreussi, P.3
  • 4
    • 33846798345 scopus 로고    scopus 로고
    • HydroTest: A web-based toolbox of statistical measures for the standardised assessment of hydrological forecasts
    • Dawson, C.W. Abrahart, R.J. and See, L.M. 2007. HydroTest: a web-based toolbox of statistical measures for the standardised assessment of hydrological forecasts. Environmental Modeling and Software, 27, 1034-52.
    • (2007) Environmental Modeling and Software , vol.27 , pp. 1034-1052
    • Dawson, C.W.1    Abrahart, R.J.2    See, L.M.3
  • 5
    • 0037052898 scopus 로고    scopus 로고
    • A weather-type approach to analysing water resource drought in the Yorkshire region from 1881 to 1998
    • Fowler, H.J. and Kilsby, C.G. 2002. A weather-type approach to analysing water resource drought in the Yorkshire region from 1881 to 1998, Journal of Hydrology, 262, 177-92.
    • (2002) Journal of Hydrology , vol.262 , pp. 177-192
    • Fowler, H.J.1    Kilsby, C.G.2
  • 6
    • 0002941592 scopus 로고
    • Implicit niching in a learning classifier system: Nature's way
    • Horn, J., Goldberg, D.E. and Deb, K. 1994. Implicit niching in a learning classifier system: nature's way, Evolutionary Computation, 2, 27-66.
    • (1994) Evolutionary Computation , vol.2 , pp. 27-66
    • Horn, J.1    Goldberg, D.E.2    Deb, K.3
  • 7
    • 0029413797 scopus 로고
    • Artificial neural networks modeling of the rainfall-runoff process
    • Hsu, K.L., Gupta, H.V. and Sorooshian, S. 1995. Artificial neural networks modeling of the rainfall-runoff process, Water Resources Research, 31, 2517-30.
    • (1995) Water Resources Research , vol.31 , pp. 2517-2530
    • Hsu, K.L.1    Gupta, H.V.2    Sorooshian, S.3
  • 8
    • 1542287371 scopus 로고    scopus 로고
    • Identification of physical processes inherent in artificial neural network rainfall runoff models
    • Jain, A., Sudheer, K.P. and Srinivasulu, S. 2004. Identification of physical processes inherent in artificial neural network rainfall runoff models, Hydrological Processes, 18, 571-81.
    • (2004) Hydrological Processes , vol.18 , pp. 571-581
    • Jain, A.1    Sudheer, K.P.2    Srinivasulu, S.3
  • 12
    • 10444270597 scopus 로고    scopus 로고
    • Forming neural networks through efficient and adaptive coevolution
    • Moriarty, D.E. and Miikkulainen, R. 1998. Forming neural networks through efficient and adaptive coevolution, Evolutionary Computation, 5, 373-99.
    • (1998) Evolutionary Computation , vol.5 , pp. 373-399
    • Moriarty, D.E.1    Miikkulainen, R.2
  • 13
    • 0030159380 scopus 로고    scopus 로고
    • Artificial neural networks as rainfall-runoff models
    • Minns, A.W. and Hall, M.J. 1996. Artificial neural networks as rainfall-runoff models, Hydrological Sciences Journal, 41, 399-417.
    • (1996) Hydrological Sciences Journal , vol.41 , pp. 399-417
    • Minns, A.W.1    Hall, M.J.2
  • 16
    • 1642333234 scopus 로고    scopus 로고
    • Explaining the internal behaviour of artificial neural network river flow models
    • Sudheer, K.P. and Jain, A. 2004. Explaining the internal behaviour of artificial neural network river flow models, Hydrological Processes, 18, 833-844.
    • (2004) Hydrological Processes , vol.18 , pp. 833-844
    • Sudheer, K.P.1    Jain, A.2
  • 17
    • 0034298851 scopus 로고    scopus 로고
    • Application of tank, NAM, ARMA and neural network models to flood forecasting
    • Tingsanchali, T. and Gautam, M.R. 2000. Application of tank, NAM, ARMA and neural network models to flood forecasting, Hydrological Processes, 14, 2473-87.
    • (2000) Hydrological Processes , vol.14 , pp. 2473-2487
    • Tingsanchali, T.1    Gautam, M.R.2
  • 18
    • 0037388711 scopus 로고    scopus 로고
    • Detection of conceptual model rainfall-runoff processes inside an artificial neural network
    • Wilby, R.L., Abrahart, R.J. and Dawson, C.W. 2003. Detection of conceptual model rainfall-runoff processes inside an artificial neural network, Hydrological Sciences Journal, 48, 163-81.
    • (2003) Hydrological Sciences Journal , vol.48 , pp. 163-181
    • Wilby, R.L.1    Abrahart, R.J.2    Dawson, C.W.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.