메뉴 건너뛰기




Volumn 42, Issue 7, 2006, Pages

Bayesian neural network for rainfall-runoff modeling

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER SIMULATION; MATHEMATICAL MODELS; NEURAL NETWORKS; OPTIMIZATION; PRESSURE DISTRIBUTION; RAIN; RIVERS; RUNOFF;

EID: 33748029144     PISSN: 00431397     EISSN: None     Source Type: Journal    
DOI: 10.1029/2005WR003971     Document Type: Article
Times cited : (125)

References (38)
  • 1
    • 0031724896 scopus 로고    scopus 로고
    • Modelling nitrogen transport and retention in the catchments of southern Sweden
    • Arheimer, B., and M. Brandt (1998), Modelling nitrogen transport and retention in the catchments of southern Sweden, Ambio, 27, 471-480.
    • (1998) Ambio , vol.27 , pp. 471-480
    • Arheimer, B.1    Brandt, M.2
  • 2
    • 0034174280 scopus 로고    scopus 로고
    • Artificial neural network in hydrology. I: Preliminary concepts
    • ASCE Task Committee on Application of Artificial Neural Network in Hydrology (2000a), Artificial neural network in hydrology. I: Preliminary concepts, J. Hydrol. Eng., 5, 115-123.
    • (2000) J. Hydrol. Eng. , vol.5 , pp. 115-123
  • 3
    • 0034174396 scopus 로고    scopus 로고
    • Artificial neural network in hydrology. II: Hydrologic applications
    • ASCE Task Committee on Application of Artificial Neural Network in Hydrology (2000b), Artificial neural network in hydrology. II: Hydrologic applications, J. Hydrol. Eng., 5, 124-137.
    • (2000) J. Hydrol. Eng. , vol.5 , pp. 124-137
  • 4
    • 0004231183 scopus 로고
    • Development and application of a conceptual runoff model for Scandinavian catchments
    • Norrkoping, Sweden
    • Bergström, S. (1976), Development and application of a conceptual runoff model for Scandinavian catchments, SMHI Rep. 7, Norrkoping, Sweden.
    • (1976) SMHI Rep. 7
    • Bergström, S.1
  • 6
    • 0025154108 scopus 로고
    • Simulation of runoff and nitrate transport from mixed basins in Sweden
    • Brandt, M. (1990), Simulation of runoff and nitrate transport from mixed basins in Sweden, Nord. Hydrol, 21, 13-34.
    • (1990) Nord. Hydrol , vol.21 , pp. 13-34
    • Brandt, M.1
  • 7
    • 0001561263 scopus 로고
    • Bayesian back-propagation
    • Buntine, W. L., and A. S. Weigend (1991), Bayesian back-propagation, Complex Syst, 5, 603-643.
    • (1991) Complex Syst , vol.5 , pp. 603-643
    • Buntine, W.L.1    Weigend, A.S.2
  • 8
    • 0036499322 scopus 로고    scopus 로고
    • Downscaling recent streamflow conditions in British Columbia, Canada using ensemble neural network models
    • Cannon, A. J., and P. H. Whitfield (2002), Downscaling recent streamflow conditions in British Columbia, Canada using ensemble neural network models, J. Hydrol., 259, 136-151.
    • (2002) J. Hydrol. , vol.259 , pp. 136-151
    • Cannon, A.J.1    Whitfield, P.H.2
  • 9
    • 19744362941 scopus 로고    scopus 로고
    • Nonstationary hydrological time series forecasting using nonlinear dynamic methods
    • Coulibaly, P., and C. K. Baldwin (2005), Nonstationary hydrological time series forecasting using nonlinear dynamic methods, J. Hydrol, 307, 164-174.
    • (2005) J. Hydrol , vol.307 , pp. 164-174
    • Coulibaly, P.1    Baldwin, C.K.2
  • 10
    • 0032829433 scopus 로고    scopus 로고
    • Hydrological forecasting using artificial neural networks: The state of the art
    • Coulibaly, P., F. Anctil, and B. Bobée (1999), Hydrological forecasting using artificial neural networks: The state of the art (in French), Can. J. Civ. Eng., 26, 293-304.
    • (1999) Can. J. Civ. Eng. , vol.26 , pp. 293-304
    • Coulibaly, P.1    Anctil, F.2    Bobée, B.3
  • 11
    • 0034621379 scopus 로고    scopus 로고
    • Daily reservoir inflow forecasting using artificial neural networks with stopped training approach
    • Coulibaly, P., F. Anctil, and B. Bobée (2000), Daily reservoir inflow forecasting using artificial neural networks with stopped training approach, J. Hydrol., 230, 244-257.
    • (2000) J. Hydrol. , vol.230 , pp. 244-257
    • Coulibaly, P.1    Anctil, F.2    Bobée, B.3
  • 12
    • 0035450182 scopus 로고    scopus 로고
    • Multivariate reservoir inflow forecasting using temporal neural networks
    • Coulibaly, P., F. Anctil, and B. Bobée (2001a), Multivariate reservoir inflow forecasting using temporal neural networks, J. Hydrol. Eng., 6, 367-376.
    • (2001) J. Hydrol. Eng. , vol.6 , pp. 367-376
    • Coulibaly, P.1    Anctil, F.2    Bobée, B.3
  • 13
    • 0035876630 scopus 로고    scopus 로고
    • Improving extreme hydrologic events forecasting using a new criterion for artificial neural network selection
    • Coulibaly, P., B. Bobée, and F. Anctil (2001b), Improving extreme hydrologic events forecasting using a new criterion for artificial neural network selection, Hydrol. Processes, 15, 1533-1536.
    • (2001) Hydrol. Processes , vol.15 , pp. 1533-1536
    • Coulibaly, P.1    Bobée, B.2    Anctil, F.3
  • 14
    • 0034749335 scopus 로고    scopus 로고
    • Hydrological modeling using artificial neural networks
    • Dawson, C. W., and R. L. Wilby (2001), Hydrological modeling using artificial neural networks, Prog. Phys. Geogr., 25, 80-108.
    • (2001) Prog. Phys. Geogr. , vol.25 , pp. 80-108
    • Dawson, C.W.1    Wilby, R.L.2
  • 15
    • 19744363846 scopus 로고    scopus 로고
    • Hydrologic impact of climate change in the Saguenay watershed: Comparison of downscaling methods and hydrologic models
    • Dibike, Y., and P. Coulibaly (2005), Hydrologic impact of climate change in the Saguenay watershed: Comparison of downscaling methods and hydrologic models, J. Hydrol, 307(1-4), 145-163.
    • (2005) J. Hydrol , vol.307 , Issue.1-4 , pp. 145-163
    • Dibike, Y.1    Coulibaly, P.2
  • 16
    • 0027149406 scopus 로고
    • Predicting runoff from rainfall using neural networks
    • Am. Soc. of Civ. Eng., Reston, Va.
    • Halff, A. H., H. M. Halff, and M. Azmoodeh (1993), Predicting runoff from rainfall using neural networks, in Proceedings of Engineering Hydrology, pp. 760-765, Am. Soc. of Civ. Eng., Reston, Va.
    • (1993) Proceedings of Engineering Hydrology , pp. 760-765
    • Halff, A.H.1    Halff, H.M.2    Azmoodeh, M.3
  • 17
    • 0032466364 scopus 로고    scopus 로고
    • Applying neural network models to prediction and data analysis in meteorology and oceanography
    • Hsieh, W. W., and B. Tang (1998), Applying neural network models to prediction and data analysis in meteorology and oceanography, Bull. Am. Meteorol. Soc., 79, 1855-1870.
    • (1998) Bull. Am. Meteorol. Soc. , vol.79 , pp. 1855-1870
    • Hsieh, W.W.1    Tang, B.2
  • 18
    • 2442639370 scopus 로고    scopus 로고
    • Development of effective and efficient rainfall-runoff models using integration of deterministic, real-coded genetic algorithms and artificial neural network techniques
    • W04302, doi:10.1029/2003WR002355
    • Jain, A., and S. Srinivasulu (2004), Development of effective and efficient rainfall-runoff models using integration of deterministic, real-coded genetic algorithms and artificial neural network techniques, Water Resour. Res., 40, W04302, doi:10.1029/2003WR002355.
    • (2004) Water Resour. Res. , vol.40
    • Jain, A.1    Srinivasulu, S.2
  • 19
    • 0035312886 scopus 로고    scopus 로고
    • Bayesian approach for neural networks-review and case studies
    • Lampinen, J., and A. Vehtari (2001), Bayesian approach for neural networks-review and case studies, Neural Networks, 14, 257-274.
    • (2001) Neural Networks , vol.14 , pp. 257-274
    • Lampinen, J.1    Vehtari, A.2
  • 20
    • 0032920124 scopus 로고    scopus 로고
    • Evaluation the use of "goodness-of-fit" measures in hydrologie and hydroclimatic model validation
    • Legates, D. R., and G. J. McCabe (1999), Evaluation the use of "goodness-of-fit" measures in hydrologie and hydroclimatic model validation, Water Resour. Res., 35, 233-241.
    • (1999) Water Resour. Res. , vol.35 , pp. 233-241
    • Legates, D.R.1    McCabe, G.J.2
  • 21
    • 0034610407 scopus 로고    scopus 로고
    • Analysis of conceptual rainfall-runoff modelling performance in different climates
    • Lidén, R., and J. Harlin (2000), Analysis of conceptual rainfall-runoff modelling performance in different climates, J. Hydrol., 238, 231-247.
    • (2000) J. Hydrol. , vol.238 , pp. 231-247
    • Lidén, R.1    Harlin, J.2
  • 22
    • 33748076846 scopus 로고    scopus 로고
    • HBV-96-En areellt fördelad modell for vattenkrafthydrologin
    • Swed. Meteorol. and Hydrol. Inst., Norrköping
    • Lindström, G., M. Gardelin, B. Johansson, M. Persson, and S. Bergström (1996), HBV-96-En areellt fördelad modell for vattenkrafthydrologin, Rep. RH 12, Swed. Meteorol. and Hydrol. Inst., Norrköping.
    • (1996) Rep. RH 12
    • Lindström, G.1    Gardelin, M.2    Johansson, B.3    Persson, M.4    Bergström, S.5
  • 23
    • 0000234257 scopus 로고
    • Bayesian interpolation
    • MacKay, D. J. C. (1992), Bayesian interpolation, Neural Comput., 4, 720-736.
    • (1992) Neural Comput. , vol.4 , pp. 720-736
    • MacKay, D.J.C.1
  • 24
    • 0033957764 scopus 로고    scopus 로고
    • Neural networks for the prediction and forecasting of water resources variables: A review of modeling issues and applications
    • Maier, H. R., and G. C. Dandy (2000), Neural networks for the prediction and forecasting of water resources variables: A review of modeling issues and applications, Environ. Model. Software, 15, 101-123.
    • (2000) Environ. Model. Software , vol.15 , pp. 101-123
    • Maier, H.R.1    Dandy, G.C.2
  • 25
    • 0027205884 scopus 로고
    • A scaled conjugate gradient algorithm for fast supervised learning
    • Møoller, M. (1993), A scaled conjugate gradient algorithm for fast supervised learning, Neural Networks, 6, 525-533.
    • (1993) Neural Networks , vol.6 , pp. 525-533
    • Møoller, M.1
  • 27
    • 0014776873 scopus 로고
    • River flow forecasting through conceptual models, Part 1: Discussion principles
    • Nash, J. E., and J. V. Sutcliffe (1970), River flow forecasting through conceptual models, Part 1: Discussion principles, J. Hydrol., 10, 282-290.
    • (1970) J. Hydrol. , vol.10 , pp. 282-290
    • Nash, J.E.1    Sutcliffe, J.V.2
  • 28
    • 0037591475 scopus 로고
    • Bayesian learning via stochastic dynamics
    • edited by C. L. Giles et al., Elsevier, New York
    • Neal, R. M. (1993), Bayesian learning via stochastic dynamics, in Advances in Neural Information Processing Systems 5, edited by C. L. Giles et al., pp. 475-482, Elsevier, New York.
    • (1993) Advances in Neural Information Processing Systems 5 , pp. 475-482
    • Neal, R.M.1
  • 31
    • 0003271452 scopus 로고
    • Stopped training and other remedies for overfilling
    • Carnegie Mellon University, Pittsburgh, Pa.
    • Sarle, W. S. (1995), Stopped training and other remedies for overfilling, paper presenled al the 27th Symposium on lhe Interface for Computing Science and Statistics, Carnegie Mellon University, Pittsburgh, Pa.
    • (1995) 27th Symposium on Lhe Interface for Computing Science and Statistics
    • Sarle, W.S.1
  • 33
    • 0342506462 scopus 로고    scopus 로고
    • Applicalion of a neural network technique to rainfall-runoff modeling
    • Shamseldin, A. Y. (1997), Applicalion of a neural network technique to rainfall-runoff modeling, J. Hydrol., 199, 272-294.
    • (1997) J. Hydrol. , vol.199 , pp. 272-294
    • Shamseldin, A.Y.1
  • 35
    • 0031777214 scopus 로고    scopus 로고
    • Forecasting ENSO events: A neural network-Extended EOF approach
    • Tangang, F. T., B. Tang, A. H. Monahan, and W. W. Hsieh (1998), Forecasting ENSO events: A neural network-Extended EOF approach, J. Clim., 11, 29-41.
    • (1998) J. Clim. , vol.11 , pp. 29-41
    • Tangang, F.T.1    Tang, B.2    Monahan, A.H.3    Hsieh, W.W.4
  • 36
    • 0033167344 scopus 로고    scopus 로고
    • Rainfall-runoff modeling using artificial neural networks
    • Tokar, A. S., and P. A. Johnson (1999), Rainfall-runoff modeling using artificial neural networks, J. Hydrol. Eng., 4, 232-239.
    • (1999) J. Hydrol. Eng. , vol.4 , pp. 232-239
    • Tokar, A.S.1    Johnson, P.A.2
  • 37
    • 0001905135 scopus 로고
    • On the asymptotic behaviour of posterior distribu-tions
    • Walker, A. M. (1969), On the asymptotic behaviour of posterior distribu-tions, J. R. Stat. Soc., 31, 80-88.
    • (1969) J. R. Stat. Soc. , vol.31 , pp. 80-88
    • Walker, A.M.1
  • 38
    • 0000673452 scopus 로고
    • Bayesian regularization and pruning using a Laplace prior
    • Williams, P. M. (1995), Bayesian regularization and pruning using a Laplace prior, Neural Comput., 7, 117-143.
    • (1995) Neural Comput. , vol.7 , pp. 117-143
    • Williams, P.M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.