-
1
-
-
0031724896
-
Modelling nitrogen transport and retention in the catchments of southern Sweden
-
Arheimer, B., and M. Brandt (1998), Modelling nitrogen transport and retention in the catchments of southern Sweden, Ambio, 27, 471-480.
-
(1998)
Ambio
, vol.27
, pp. 471-480
-
-
Arheimer, B.1
Brandt, M.2
-
2
-
-
0034174280
-
Artificial neural network in hydrology. I: Preliminary concepts
-
ASCE Task Committee on Application of Artificial Neural Network in Hydrology (2000a), Artificial neural network in hydrology. I: Preliminary concepts, J. Hydrol. Eng., 5, 115-123.
-
(2000)
J. Hydrol. Eng.
, vol.5
, pp. 115-123
-
-
-
3
-
-
0034174396
-
Artificial neural network in hydrology. II: Hydrologic applications
-
ASCE Task Committee on Application of Artificial Neural Network in Hydrology (2000b), Artificial neural network in hydrology. II: Hydrologic applications, J. Hydrol. Eng., 5, 124-137.
-
(2000)
J. Hydrol. Eng.
, vol.5
, pp. 124-137
-
-
-
4
-
-
0004231183
-
Development and application of a conceptual runoff model for Scandinavian catchments
-
Norrkoping, Sweden
-
Bergström, S. (1976), Development and application of a conceptual runoff model for Scandinavian catchments, SMHI Rep. 7, Norrkoping, Sweden.
-
(1976)
SMHI Rep. 7
-
-
Bergström, S.1
-
6
-
-
0025154108
-
Simulation of runoff and nitrate transport from mixed basins in Sweden
-
Brandt, M. (1990), Simulation of runoff and nitrate transport from mixed basins in Sweden, Nord. Hydrol, 21, 13-34.
-
(1990)
Nord. Hydrol
, vol.21
, pp. 13-34
-
-
Brandt, M.1
-
7
-
-
0001561263
-
Bayesian back-propagation
-
Buntine, W. L., and A. S. Weigend (1991), Bayesian back-propagation, Complex Syst, 5, 603-643.
-
(1991)
Complex Syst
, vol.5
, pp. 603-643
-
-
Buntine, W.L.1
Weigend, A.S.2
-
8
-
-
0036499322
-
Downscaling recent streamflow conditions in British Columbia, Canada using ensemble neural network models
-
Cannon, A. J., and P. H. Whitfield (2002), Downscaling recent streamflow conditions in British Columbia, Canada using ensemble neural network models, J. Hydrol., 259, 136-151.
-
(2002)
J. Hydrol.
, vol.259
, pp. 136-151
-
-
Cannon, A.J.1
Whitfield, P.H.2
-
9
-
-
19744362941
-
Nonstationary hydrological time series forecasting using nonlinear dynamic methods
-
Coulibaly, P., and C. K. Baldwin (2005), Nonstationary hydrological time series forecasting using nonlinear dynamic methods, J. Hydrol, 307, 164-174.
-
(2005)
J. Hydrol
, vol.307
, pp. 164-174
-
-
Coulibaly, P.1
Baldwin, C.K.2
-
10
-
-
0032829433
-
Hydrological forecasting using artificial neural networks: The state of the art
-
Coulibaly, P., F. Anctil, and B. Bobée (1999), Hydrological forecasting using artificial neural networks: The state of the art (in French), Can. J. Civ. Eng., 26, 293-304.
-
(1999)
Can. J. Civ. Eng.
, vol.26
, pp. 293-304
-
-
Coulibaly, P.1
Anctil, F.2
Bobée, B.3
-
11
-
-
0034621379
-
Daily reservoir inflow forecasting using artificial neural networks with stopped training approach
-
Coulibaly, P., F. Anctil, and B. Bobée (2000), Daily reservoir inflow forecasting using artificial neural networks with stopped training approach, J. Hydrol., 230, 244-257.
-
(2000)
J. Hydrol.
, vol.230
, pp. 244-257
-
-
Coulibaly, P.1
Anctil, F.2
Bobée, B.3
-
12
-
-
0035450182
-
Multivariate reservoir inflow forecasting using temporal neural networks
-
Coulibaly, P., F. Anctil, and B. Bobée (2001a), Multivariate reservoir inflow forecasting using temporal neural networks, J. Hydrol. Eng., 6, 367-376.
-
(2001)
J. Hydrol. Eng.
, vol.6
, pp. 367-376
-
-
Coulibaly, P.1
Anctil, F.2
Bobée, B.3
-
13
-
-
0035876630
-
Improving extreme hydrologic events forecasting using a new criterion for artificial neural network selection
-
Coulibaly, P., B. Bobée, and F. Anctil (2001b), Improving extreme hydrologic events forecasting using a new criterion for artificial neural network selection, Hydrol. Processes, 15, 1533-1536.
-
(2001)
Hydrol. Processes
, vol.15
, pp. 1533-1536
-
-
Coulibaly, P.1
Bobée, B.2
Anctil, F.3
-
14
-
-
0034749335
-
Hydrological modeling using artificial neural networks
-
Dawson, C. W., and R. L. Wilby (2001), Hydrological modeling using artificial neural networks, Prog. Phys. Geogr., 25, 80-108.
-
(2001)
Prog. Phys. Geogr.
, vol.25
, pp. 80-108
-
-
Dawson, C.W.1
Wilby, R.L.2
-
15
-
-
19744363846
-
Hydrologic impact of climate change in the Saguenay watershed: Comparison of downscaling methods and hydrologic models
-
Dibike, Y., and P. Coulibaly (2005), Hydrologic impact of climate change in the Saguenay watershed: Comparison of downscaling methods and hydrologic models, J. Hydrol, 307(1-4), 145-163.
-
(2005)
J. Hydrol
, vol.307
, Issue.1-4
, pp. 145-163
-
-
Dibike, Y.1
Coulibaly, P.2
-
16
-
-
0027149406
-
Predicting runoff from rainfall using neural networks
-
Am. Soc. of Civ. Eng., Reston, Va.
-
Halff, A. H., H. M. Halff, and M. Azmoodeh (1993), Predicting runoff from rainfall using neural networks, in Proceedings of Engineering Hydrology, pp. 760-765, Am. Soc. of Civ. Eng., Reston, Va.
-
(1993)
Proceedings of Engineering Hydrology
, pp. 760-765
-
-
Halff, A.H.1
Halff, H.M.2
Azmoodeh, M.3
-
17
-
-
0032466364
-
Applying neural network models to prediction and data analysis in meteorology and oceanography
-
Hsieh, W. W., and B. Tang (1998), Applying neural network models to prediction and data analysis in meteorology and oceanography, Bull. Am. Meteorol. Soc., 79, 1855-1870.
-
(1998)
Bull. Am. Meteorol. Soc.
, vol.79
, pp. 1855-1870
-
-
Hsieh, W.W.1
Tang, B.2
-
18
-
-
2442639370
-
Development of effective and efficient rainfall-runoff models using integration of deterministic, real-coded genetic algorithms and artificial neural network techniques
-
W04302, doi:10.1029/2003WR002355
-
Jain, A., and S. Srinivasulu (2004), Development of effective and efficient rainfall-runoff models using integration of deterministic, real-coded genetic algorithms and artificial neural network techniques, Water Resour. Res., 40, W04302, doi:10.1029/2003WR002355.
-
(2004)
Water Resour. Res.
, vol.40
-
-
Jain, A.1
Srinivasulu, S.2
-
19
-
-
0035312886
-
Bayesian approach for neural networks-review and case studies
-
Lampinen, J., and A. Vehtari (2001), Bayesian approach for neural networks-review and case studies, Neural Networks, 14, 257-274.
-
(2001)
Neural Networks
, vol.14
, pp. 257-274
-
-
Lampinen, J.1
Vehtari, A.2
-
20
-
-
0032920124
-
Evaluation the use of "goodness-of-fit" measures in hydrologie and hydroclimatic model validation
-
Legates, D. R., and G. J. McCabe (1999), Evaluation the use of "goodness-of-fit" measures in hydrologie and hydroclimatic model validation, Water Resour. Res., 35, 233-241.
-
(1999)
Water Resour. Res.
, vol.35
, pp. 233-241
-
-
Legates, D.R.1
McCabe, G.J.2
-
21
-
-
0034610407
-
Analysis of conceptual rainfall-runoff modelling performance in different climates
-
Lidén, R., and J. Harlin (2000), Analysis of conceptual rainfall-runoff modelling performance in different climates, J. Hydrol., 238, 231-247.
-
(2000)
J. Hydrol.
, vol.238
, pp. 231-247
-
-
Lidén, R.1
Harlin, J.2
-
22
-
-
33748076846
-
HBV-96-En areellt fördelad modell for vattenkrafthydrologin
-
Swed. Meteorol. and Hydrol. Inst., Norrköping
-
Lindström, G., M. Gardelin, B. Johansson, M. Persson, and S. Bergström (1996), HBV-96-En areellt fördelad modell for vattenkrafthydrologin, Rep. RH 12, Swed. Meteorol. and Hydrol. Inst., Norrköping.
-
(1996)
Rep. RH 12
-
-
Lindström, G.1
Gardelin, M.2
Johansson, B.3
Persson, M.4
Bergström, S.5
-
23
-
-
0000234257
-
Bayesian interpolation
-
MacKay, D. J. C. (1992), Bayesian interpolation, Neural Comput., 4, 720-736.
-
(1992)
Neural Comput.
, vol.4
, pp. 720-736
-
-
MacKay, D.J.C.1
-
24
-
-
0033957764
-
Neural networks for the prediction and forecasting of water resources variables: A review of modeling issues and applications
-
Maier, H. R., and G. C. Dandy (2000), Neural networks for the prediction and forecasting of water resources variables: A review of modeling issues and applications, Environ. Model. Software, 15, 101-123.
-
(2000)
Environ. Model. Software
, vol.15
, pp. 101-123
-
-
Maier, H.R.1
Dandy, G.C.2
-
25
-
-
0027205884
-
A scaled conjugate gradient algorithm for fast supervised learning
-
Møoller, M. (1993), A scaled conjugate gradient algorithm for fast supervised learning, Neural Networks, 6, 525-533.
-
(1993)
Neural Networks
, vol.6
, pp. 525-533
-
-
Møoller, M.1
-
27
-
-
0014776873
-
River flow forecasting through conceptual models, Part 1: Discussion principles
-
Nash, J. E., and J. V. Sutcliffe (1970), River flow forecasting through conceptual models, Part 1: Discussion principles, J. Hydrol., 10, 282-290.
-
(1970)
J. Hydrol.
, vol.10
, pp. 282-290
-
-
Nash, J.E.1
Sutcliffe, J.V.2
-
28
-
-
0037591475
-
Bayesian learning via stochastic dynamics
-
edited by C. L. Giles et al., Elsevier, New York
-
Neal, R. M. (1993), Bayesian learning via stochastic dynamics, in Advances in Neural Information Processing Systems 5, edited by C. L. Giles et al., pp. 475-482, Elsevier, New York.
-
(1993)
Advances in Neural Information Processing Systems 5
, pp. 475-482
-
-
Neal, R.M.1
-
30
-
-
0002530434
-
Back-propagation: The basic theory
-
edited by Y. Chauvin and D. E. Rumelhart, Lawrence Erlbaum, Hillsdale, N. J.
-
Rumelhart, D. E., R. Durbin, R. Golden, and Y. Chauvin (1995), Back-propagation: The basic theory, in Back Propagation: Theory, Architectures, and Applications, edited by Y. Chauvin and D. E. Rumelhart, pp. 1-34, Lawrence Erlbaum, Hillsdale, N. J.
-
(1995)
Back Propagation: Theory, Architectures, and Applications
, pp. 1-34
-
-
Rumelhart, D.E.1
Durbin, R.2
Golden, R.3
Chauvin, Y.4
-
31
-
-
0003271452
-
Stopped training and other remedies for overfilling
-
Carnegie Mellon University, Pittsburgh, Pa.
-
Sarle, W. S. (1995), Stopped training and other remedies for overfilling, paper presenled al the 27th Symposium on lhe Interface for Computing Science and Statistics, Carnegie Mellon University, Pittsburgh, Pa.
-
(1995)
27th Symposium on Lhe Interface for Computing Science and Statistics
-
-
Sarle, W.S.1
-
33
-
-
0342506462
-
Applicalion of a neural network technique to rainfall-runoff modeling
-
Shamseldin, A. Y. (1997), Applicalion of a neural network technique to rainfall-runoff modeling, J. Hydrol., 199, 272-294.
-
(1997)
J. Hydrol.
, vol.199
, pp. 272-294
-
-
Shamseldin, A.Y.1
-
35
-
-
0031777214
-
Forecasting ENSO events: A neural network-Extended EOF approach
-
Tangang, F. T., B. Tang, A. H. Monahan, and W. W. Hsieh (1998), Forecasting ENSO events: A neural network-Extended EOF approach, J. Clim., 11, 29-41.
-
(1998)
J. Clim.
, vol.11
, pp. 29-41
-
-
Tangang, F.T.1
Tang, B.2
Monahan, A.H.3
Hsieh, W.W.4
-
36
-
-
0033167344
-
Rainfall-runoff modeling using artificial neural networks
-
Tokar, A. S., and P. A. Johnson (1999), Rainfall-runoff modeling using artificial neural networks, J. Hydrol. Eng., 4, 232-239.
-
(1999)
J. Hydrol. Eng.
, vol.4
, pp. 232-239
-
-
Tokar, A.S.1
Johnson, P.A.2
-
37
-
-
0001905135
-
On the asymptotic behaviour of posterior distribu-tions
-
Walker, A. M. (1969), On the asymptotic behaviour of posterior distribu-tions, J. R. Stat. Soc., 31, 80-88.
-
(1969)
J. R. Stat. Soc.
, vol.31
, pp. 80-88
-
-
Walker, A.M.1
-
38
-
-
0000673452
-
Bayesian regularization and pruning using a Laplace prior
-
Williams, P. M. (1995), Bayesian regularization and pruning using a Laplace prior, Neural Comput., 7, 117-143.
-
(1995)
Neural Comput.
, vol.7
, pp. 117-143
-
-
Williams, P.M.1
|