-
1
-
-
0036698601
-
Multi-Model Data Fusion for River Flow Forecasting: An Evaluation of Six Alternative Methods Based on Two Contrasting Catchments
-
Abrahart, R. J., and See, L., 2002. Multi-Model Data Fusion for River Flow Forecasting:An Evaluation of Six Alternative Methods Based on Two Contrasting Catchments. Hydrology & Earth System Sciences, 6 (No. 4):655–670.
-
(2002)
Hydrology & Earth System Sciences
, vol.6
, Issue.4
, pp. 655-670
-
-
Abrahart, R.J.1
See, L.2
-
2
-
-
0032858697
-
Optimal Design of Aquifer Cleanup Systems under Uncertainty using a Neural Network and Genetic Algorithm
-
Aly, A. H., and Peralta, R. C., 1999. Optimal Design of Aquifer Cleanup Systems under Uncertainty using a Neural Network and Genetic Algorithm. Water Resources Research, 35 (No. 8):2523–2532.
-
(1999)
Water Resources Research
, vol.35
, Issue.8
, pp. 2523-2532
-
-
Aly, A.H.1
Peralta, R.C.2
-
3
-
-
0031236925
-
Asymptotic Statistical Theory of Overtraining and Cross-Validation
-
Amari, S. I., Murata, N., Müller, K. R., Finke, M., and Yang, H. H., 1997. Asymptotic Statistical Theory of Overtraining and Cross-Validation. IEEE Transactions on Neural Networks, 8 (No. 5):985–996.
-
(1997)
IEEE Transactions on Neural Networks
, vol.8
, Issue.5
, pp. 985-996
-
-
Amari, S.I.1
Murata, N.2
Müller, K.R.3
Finke, M.4
Yang, H.H.5
-
4
-
-
0034174396
-
Artificial Neural Networks in Hydrology II: Hydrologic Applications
-
ASCE Task Committee on Application of Artificial Neural Networks in Hydrology. 2000. Artificial Neural Networks in Hydrology II:Hydrologic Applications. Journal of Hydrologic Engineering, 5 (No. 2):124–137.
-
(2000)
Journal of Hydrologic Engineering
, vol.5
, Issue.2
, pp. 124-137
-
-
-
5
-
-
0001980141
-
The Evolution of Strategies in the Iterated prisoner's Dilemma, In
-
Davis L., (ed), Pitman, London
-
Axelrod, R., 1987. “ The Evolution of Strategies in the Iterated prisoner's Dilemma, In ”. In Genetic Algorithm and Simulated Annealing Edited by:Davis, L., 32–41. Pitman, London
-
(1987)
Genetic Algorithm and Simulated Annealing
, pp. 32-41
-
-
Axelrod, R.1
-
6
-
-
5844274683
-
Consistency in Unit Hydrographs
-
Barnes, B. S., 1959. Consistency in Unit Hydrographs. Proc. ASCE, 85 (No. HY8):39–63.
-
(1959)
Proc. ASCE
, vol.85
, Issue.HY8
, pp. 39-63
-
-
Barnes, B.S.1
-
7
-
-
9144230503
-
The Use of a Dimensionless Unit Hydrograph to Derive Unit Hydrographs for some Pacific Northwest Basins
-
Bender, D. L., and Roberson, J. A., 1961. The Use of a Dimensionless Unit Hydrograph to Derive Unit Hydrographs for some Pacific Northwest Basins. Journal of Geographical Research, 66:521–527.
-
(1961)
Journal of Geographical Research
, vol.66
, pp. 521-527
-
-
Bender, D.L.1
Roberson, J.A.2
-
8
-
-
0036715707
-
Performance of Neural Networks in Daily Streamflow Forecasting
-
Birikundavyi, S., Labib, R., Trung, H. T., and Rousselle, J., 2002. Performance of Neural Networks in Daily Streamflow Forecasting. Journal of Hydrologic Engineering, 7 (No. 5):392–398.
-
(2002)
Journal of Hydrologic Engineering
, vol.7
, Issue.5
, pp. 392-398
-
-
Birikundavyi, S.1
Labib, R.2
Trung, H.T.3
Rousselle, J.4
-
9
-
-
0036221122
-
Optimal Division of Data for Neural Network Models in Water Resources Applications
-
doi: 10.1029/2001 WR000266
-
Bowden, G. J., Maier, H. R., and Dandy, G. C., 2002. Optimal Division of Data for Neural Network Models in Water Resources Applications. Water Resources Research, 38 (No. 2) doi:10.1029/2001 WR000266
-
(2002)
Water Resources Research
, vol.38
, Issue.2
-
-
Bowden, G.J.1
Maier, H.R.2
Dandy, G.C.3
-
10
-
-
10644295753
-
Input Determination for Neural Network Models in Water Resources Applications: Part 1—Background and Methodology
-
4
-
Bowden, G. J., Dandy, G. C., and Maier, H. R., 2005. Input Determination for Neural Network Models in Water Resources Applications:Part 1—Background and Methodology. Journal of Hydrology, 301 (No. 1):75–92. 4
-
(2005)
Journal of Hydrology
, vol.301
, Issue.1
, pp. 75-92
-
-
Bowden, G.J.1
Dandy, G.C.2
Maier, H.R.3
-
11
-
-
0032961025
-
River Flood Forecasting with a Neural Network Model
-
Campolo, M., Andreussi, P., and Soldati, A., 1999. River Flood Forecasting with a Neural Network Model. Water Resources Research, 35 (No. 4):1191–1197.
-
(1999)
Water Resources Research
, vol.35
, Issue.4
, pp. 1191-1197
-
-
Campolo, M.1
Andreussi, P.2
Soldati, A.3
-
12
-
-
31044455061
-
Integration of Artificial Neural Networks with Conceptual Models in Rainfall-Runoff Modeling
-
Chen, J., and Adams, B. J., 2006. Integration of Artificial Neural Networks with Conceptual Models in Rainfall-Runoff Modeling. Journal of Hydrology, 318:232–249.
-
(2006)
Journal of Hydrology
, vol.318
, pp. 232-249
-
-
Chen, J.1
Adams, B.J.2
-
13
-
-
0031068057
-
Neural Network: A Need for Caution
-
Curry, B., and Morgan, R., 1997. Neural Network:A Need for Caution. Omega International Journal of Management Sciences, 25 (No. 1):123–133.
-
(1997)
Omega International Journal of Management Sciences
, vol.25
, Issue.1
, pp. 123-133
-
-
Curry, B.1
Morgan, R.2
-
14
-
-
84945952294
-
The Identification of Multiple Outliers
-
Davies, L., and Gather, U., 1993. The Identification of Multiple Outliers. Journal of the American Statistical Association, 88 (No. 423):782–792.
-
(1993)
Journal of the American Statistical Association
, vol.88
, Issue.423
, pp. 782-792
-
-
Davies, L.1
Gather, U.2
-
15
-
-
0032005702
-
An Artificial Neural Network Approach to Rainfall-Runoff Modeling
-
Dawson, C. W., and Wilby, R., 1998. An Artificial Neural Network Approach to Rainfall-Runoff Modeling. Hydrological Sciences Journal, 43 (No. 1):47–66.
-
(1998)
Hydrological Sciences Journal
, vol.43
, Issue.1
, pp. 47-66
-
-
Dawson, C.W.1
Wilby, R.2
-
16
-
-
0029673615
-
Rainfall-Runoff Modeling by Neural Networks and Kalman Filter
-
Dimopoulos, I., Lek, S., and Lauga, J., 1996. Rainfall-Runoff Modeling by Neural Networks and Kalman Filter. Hydrological Sciences Journal, 41 (No. 2):179–193.
-
(1996)
Hydrological Sciences Journal
, vol.41
, Issue.2
, pp. 179-193
-
-
Dimopoulos, I.1
Lek, S.2
Lauga, J.3
-
17
-
-
0027558431
-
Shuffled Complex Evolution Approach for Effective and Efficient Global Optimization
-
Duan, Q. Y., Gupta, V. K., and Sorooshian, S., 1993. Shuffled Complex Evolution Approach for Effective and Efficient Global Optimization. Journal of Optimization:Theory & Applications, 76 (No. 3):501–521.
-
(1993)
Journal of Optimization: Theory & Applications
, vol.76
, Issue.3
, pp. 501-521
-
-
Duan, Q.Y.1
Gupta, V.K.2
Sorooshian, S.3
-
18
-
-
0038563932
-
An Adaptive Metropolis Algorithm
-
Haario, H., Saksman, E., and Tamminen, J., 2001. An Adaptive Metropolis Algorithm. Bernoulli, 7 (No. 2):223–242.
-
(2001)
Bernoulli
, vol.7
, Issue.2
, pp. 223-242
-
-
Haario, H.1
Saksman, E.2
Tamminen, J.3
-
19
-
-
0029413797
-
Artificial Neural Network Modelling of the Rainfall-Runoff Process
-
Hsu, K., Gupta, H. V., and Sorooshian, S., 1995. Artificial Neural Network Modelling of the Rainfall-Runoff Process. Water Resources Research, 31 (No. 10):2517–2530.
-
(1995)
Water Resources Research
, vol.31
, Issue.10
, pp. 2517-2530
-
-
Hsu, K.1
Gupta, H.V.2
Sorooshian, S.3
-
20
-
-
0034641121
-
River Flow Prediction Using Artificial Neural Networks: Generalization beyond the Calibration Range
-
Imrie, C. E., Durucan, S., and Korre, A., 2000. River Flow Prediction Using Artificial Neural Networks:Generalization beyond the Calibration Range. Journal of Hydrology, 233:138–153.
-
(2000)
Journal of Hydrology
, vol.233
, pp. 138-153
-
-
Imrie, C.E.1
Durucan, S.2
Korre, A.3
-
21
-
-
0037340658
-
Comparative Analysis of Event Based Rainfall-Runoff Modeling Techniques-Deterministic
-
Jain, A., and Indurthy, S. K.V.P., 2003. Comparative Analysis of Event Based Rainfall-Runoff Modeling Techniques-Deterministic. Statistical, and Artificial Neural Networks, Journal of Hydrologic Engineering, 8 (No. 2):93–98.
-
(2003)
Statistical, and Artificial Neural Networks, Journal of Hydrologic Engineering
, vol.8
, Issue.2
, pp. 93-98
-
-
Jain, A.1
Indurthy, S.K.V.P.2
-
22
-
-
33846813334
-
Hybrid Neural Network Models for Hydrologic Time Series Forecasting
-
Jain, A., and Kumar, A. M., 2007. Hybrid Neural Network Models for Hydrologic Time Series Forecasting. Journal of Applied Soft Computing, 7 (No. 2):585–592.
-
(2007)
Journal of Applied Soft Computing
, vol.7
, Issue.2
, pp. 585-592
-
-
Jain, A.1
Kumar, A.M.2
-
23
-
-
2442639370
-
Development of Effective And Efficient Rainfall-Runoff Models Using Integration of Deterministic, Real-Coded Genetic Algorithms, and Artificial Neural Network Techniques
-
W04302, doi: 10.1029/2003WR002355
-
Jain, A., and Srinivasulu, S., 2004. Development of Effective And Efficient Rainfall-Runoff Models Using Integration of Deterministic, Real-Coded Genetic Algorithms, and Artificial Neural Network Techniques. Water Resources Research, 40 (No. 4) W04302, doi:10.1029/2003WR002355
-
(2004)
Water Resources Research
, vol.40
, Issue.4
-
-
Jain, A.1
Srinivasulu, S.2
-
24
-
-
28844473522
-
Integrated Approach to Modelling Decomposed Flow Hydrograph Using Artificial Neural Network and Conceptual Techniques
-
No. (3–4)
-
Jain, A., and Srinivasulu, S., 2006. Integrated Approach to Modelling Decomposed Flow Hydrograph Using Artificial Neural Network and Conceptual Techniques. Journal of Hydrology, 317:291–306. No. (3–4)
-
(2006)
Journal of Hydrology
, vol.317
, pp. 291-306
-
-
Jain, A.1
Srinivasulu, S.2
-
25
-
-
1542287371
-
Identification of Physical Processes Inherent in Artificial Neural Network Rainfall Runoff Models
-
Jain, A., Sudheer, K. P., and Srinivasulu, S., 2003. Identification of Physical Processes Inherent in Artificial Neural Network Rainfall Runoff Models. Hydrological Processes, 118 (No. 3):571–581.
-
(2003)
Hydrological Processes
, vol.118
, Issue.3
, pp. 571-581
-
-
Jain, A.1
Sudheer, K.P.2
Srinivasulu, S.3
-
26
-
-
33748029144
-
-
Khan, M. S., and Coulibaly, P., 2006. Bayesian Neural Network for Rainfall-Runoff Modeling, Water Resources Research, No., 42, W07409, doi:10.1029/2005WR003971.
-
(2006)
Bayesian Neural Network for Rainfall-Runoff Modeling, Water Resources Research, No.
-
-
Khan, M.S.1
Coulibaly, P.2
-
27
-
-
31444455186
-
Bayesian Parameter Estimation Applied to Artificial Neural Networks Used for Hydrological Modeling
-
W12409, doi:10.1029/2005WR004152
-
Kingston, G. B., Lambert, M. F., and Maier, H. R., 2005. Bayesian Parameter Estimation Applied to Artificial Neural Networks Used for Hydrological Modeling. Water Resources Research, 41 W12409, doi:10.1029/2005WR004152
-
(2005)
Water Resources Research
, vol.41
-
-
Kingston, G.B.1
Lambert, M.F.2
Maier, H.R.3
-
28
-
-
44349171685
-
Bayesian Model Selection Applied to Artificial Neural Networks Used for Water Resources Modeling
-
W04419, doi:10.1029/2007WR006155
-
Kingston, G. B., Maier, H. R., and Lambert, M. F., 2008. Bayesian Model Selection Applied to Artificial Neural Networks Used for Water Resources Modeling. Water Resources Research, 44 W04419, doi:10.1029/2007WR006155
-
(2008)
Water Resources Research
, vol.44
-
-
Kingston, G.B.1
Maier, H.R.2
Lambert, M.F.3
-
29
-
-
0033957764
-
Neural Networks for the Prediction and Forecasting of Water Resources Variables: A Review of Modelling Issues and Applications
-
Maier, H. R., and Dandy, G. C., 2000. Neural Networks for the Prediction and Forecasting of Water Resources Variables:A Review of Modelling Issues and Applications. Environmental Modelling and Software, 15 (No. 1):101–124.
-
(2000)
Environmental Modelling and Software
, vol.15
, Issue.1
, pp. 101-124
-
-
Maier, H.R.1
Dandy, G.C.2
-
30
-
-
0037142398
-
Hybrid Neural Network Modeling of a Full-Scale Industrial Wastewater Treatment Process
-
Lee, D. S., Jeon, C. O., Park, J. M., and Chang, K. S., 2002. Hybrid Neural Network Modeling of a Full-Scale Industrial Wastewater Treatment Process. Biotechnology and Bioengineering, 78 (No. 6):670–682.
-
(2002)
Biotechnology and Bioengineering
, vol.78
, Issue.6
, pp. 670-682
-
-
Lee, D.S.1
Jeon, C.O.2
Park, J.M.3
Chang, K.S.4
-
32
-
-
0029748915
-
A Neural Network Model for Rainfall-Runoff Using Radial Basis Functions
-
Mason, J. C., Price, R. K., and Tem'Me, A., 1996. A Neural Network Model for Rainfall-Runoff Using Radial Basis Functions. Journal of Hydraulic Research, 34 (No. 4):537–548.
-
(1996)
Journal of Hydraulic Research
, vol.34
, Issue.4
, pp. 537-548
-
-
Mason, J.C.1
Price, R.K.2
Tem'Me, A.3
-
33
-
-
44749087316
-
Non-Linear Variable Selection for Artificial Neural Networks Using Partial Mutual Information
-
11
-
May, R. J., Maier, H. R., Dandy, G. C., and Fernando, T. M.K.G., 2008. Non-Linear Variable Selection for Artificial Neural Networks Using Partial Mutual Information. Environmental Modelling and Software, 23 (No. 10):1312–1326. 11
-
(2008)
Environmental Modelling and Software
, vol.23
, Issue.10
, pp. 1312-1326
-
-
May, R.J.1
Maier, H.R.2
Dandy, G.C.3
Fernando, T.M.K.G.4
-
34
-
-
0030159380
-
Artificial Neural Networks as Rainfall-Runoff Models
-
Minns, A. W., and Hall, M. J., 1996. Artificial Neural Networks as Rainfall-Runoff Models. Hydrological Sciences Journal, 41 (No. 3):399–417.
-
(1996)
Hydrological Sciences Journal
, vol.41
, Issue.3
, pp. 399-417
-
-
Minns, A.W.1
Hall, M.J.2
-
35
-
-
85024566149
-
-
Minns, A. W., and Hall, M. J., 1997. Living with the Ultimate Black Box:More on Artificial Neural Networks, BHS 6th National Hydrology Symposium, Salford, UK, pp.9.45–9.49.
-
(1997)
Living with the Ultimate Black Box: More on Artificial Neural Networks, BHS 6th National Hydrology Symposium, Salford, UK, pp.9.45–9.49.
-
-
Minns, A.W.1
Hall, M.J.2
-
36
-
-
0001259448
-
Estimation of Mutual Information Using Kernel Density Estimators
-
Moon, Y. I., Rajagopalan, B., and Lall, U., 1995. Estimation of Mutual Information Using Kernel Density Estimators. Physics Review A, 52 (No. 3):2318–2321.
-
(1995)
Physics Review A
, vol.52
, Issue.3
, pp. 2318-2321
-
-
Moon, Y.I.1
Rajagopalan, B.2
Lall, U.3
-
39
-
-
33845600932
-
Cluster-Based Hydrologic Prediction Using Genetic Algorithm-Trained Neural Networks
-
Parasuraman, K., and Elshorbagy, A., 2007. Cluster-Based Hydrologic Prediction Using Genetic Algorithm-Trained Neural Networks. Journal of Hydrologic Engineering, 12 (No. 1):52–62.
-
(2007)
Journal of Hydrologic Engineering
, vol.12
, Issue.1
, pp. 52-62
-
-
Parasuraman, K.1
Elshorbagy, A.2
-
41
-
-
0036899543
-
Artificial Neural Networks for Daily Rainfall Runoff Modeling
-
Rajurkar, M. P., Kothyari, U. C., and Chaube, U. C., 2002. Artificial Neural Networks for Daily Rainfall Runoff Modeling. Hydrological Sciences Journal, 47 (No. 6):865–876.
-
(2002)
Hydrological Sciences Journal
, vol.47
, Issue.6
, pp. 865-876
-
-
Rajurkar, M.P.1
Kothyari, U.C.2
Chaube, U.C.3
-
42
-
-
0022471098
-
Learning Representations by Back-Propagating Errors
-
Rumelhart, D. E., Hinton, G. E., and Williams, R. J., 1986. Learning Representations by Back-Propagating Errors. Nature, 323:533–536.
-
(1986)
Nature
, vol.323
, pp. 533-536
-
-
Rumelhart, D.E.1
Hinton, G.E.2
Williams, R.J.3
-
43
-
-
0033535432
-
A Nonlinear Rainfall-Runoff Model Using an Artificial Neural Network
-
Sajikumar, N., and Thandaveswara, B. S., 1999. A Nonlinear Rainfall-Runoff Model Using an Artificial Neural Network. Journal of Hydrology, 216:32–55.
-
(1999)
Journal of Hydrology
, vol.216
, pp. 32-55
-
-
Sajikumar, N.1
Thandaveswara, B.S.2
-
45
-
-
69249099866
-
Visualisation of Hidden Neuron Behaviour in a Neural Network Rainfall-Runoff Model. In
-
Abrahart R.J., See L.M., Solomatine D., (eds)
-
See, L. M., Jain, A., Abrahart, R. J., and Dawson, C. W., 2008. “ Visualisation of Hidden Neuron Behaviour in a Neural Network Rainfall-Runoff Model. In ”. In Practical Hydro informatics:Computational Intelligence and Technological Developments in Water Applications, Springer-Verlag Edited by:Abrahart, R. J., See, L. M., and Solomatine, D., 87–99.
-
(2008)
Practical Hydro informatics: Computational Intelligence and Technological Developments in Water Applications, Springer-Verlag
, pp. 87-99
-
-
See, L.M.1
Jain, A.2
Abrahart, R.J.3
Dawson, C.W.4
-
46
-
-
0035701248
-
A Non-Linear Neural Network Technique for Updating River Flow Forecasts
-
Shamseldin, A. Y., and O'Connor, K. M., 2001. A Non-Linear Neural Network Technique for Updating River Flow Forecasts. Hydrology & Earth System Sciences, 5 (No. 4):577–597.
-
(2001)
Hydrology & Earth System Sciences
, vol.5
, Issue.4
, pp. 577-597
-
-
Shamseldin, A.Y.1
O'Connor, K.M.2
-
47
-
-
0034694877
-
Seasonal to Interannual Rainfall Probabilistic Forecasts for Improved Water Supply Management: Part 1- A Strategy for System Predictor Identification
-
Sharma, A., 2000. Seasonal to Interannual Rainfall Probabilistic Forecasts for Improved Water Supply Management:Part 1- A Strategy for System Predictor Identification. Journal of Hydrology, 239:232–239.
-
(2000)
Journal of Hydrology
, vol.239
, pp. 232-239
-
-
Sharma, A.1
-
48
-
-
0029416249
-
Neural Network Models of Rainfall-Runoff Processes
-
Smith, J., and Eli, R. N., 1995. Neural Network Models of Rainfall-Runoff Processes. Journal of Water Resources Planning and Management, 121 (No. 6):499–508.
-
(1995)
Journal of Water Resources Planning and Management
, vol.121
, Issue.6
, pp. 499-508
-
-
Smith, J.1
Eli, R.N.2
-
49
-
-
0026254768
-
A General Regression Neural Network
-
Specht, D. F., 1991. A General Regression Neural Network. IEEE Transactions on Neural Networks, 2 (No. 6):568–576.
-
(1991)
IEEE Transactions on Neural Networks
, vol.2
, Issue.6
, pp. 568-576
-
-
Specht, D.F.1
-
50
-
-
23044433719
-
Knowledge Extraction from Trained Neural Network River Flow Models
-
Sudheer, K. P. 2005. Knowledge Extraction from Trained Neural Network River Flow Models. Journal of Hydrologic Engineering, 10 (No. 4):264–269.
-
(2005)
Journal of Hydrologic Engineering
, vol.10
, Issue.4
, pp. 264-269
-
-
Sudheer, K.P.1
-
51
-
-
0037470339
-
Improving Peak Flow Estimates in Artificial Neural Network River Flow Models
-
Sudheer, K. P., Nayak, P. C., and Ramasastri, K. S., 2003. Improving Peak Flow Estimates in Artificial Neural Network River Flow Models. Hydrological Processes, 17 (No. 3):677–686.
-
(2003)
Hydrological Processes
, vol.17
, Issue.3
, pp. 677-686
-
-
Sudheer, K.P.1
Nayak, P.C.2
Ramasastri, K.S.3
-
52
-
-
0034174356
-
Hydrological Forecasting Using Neural Networks
-
Thirumalaiah, K., and Deo, M. C., 2000. Hydrological Forecasting Using Neural Networks. Journal of Hydrologic Engineering, 5 (No. 2):180–189.
-
(2000)
Journal of Hydrologic Engineering
, vol.5
, Issue.2
, pp. 180-189
-
-
Thirumalaiah, K.1
Deo, M.C.2
-
53
-
-
0034174397
-
Precipitation Runoff Modeling Using Artificial Neural Network And Conceptual Models
-
Tokar, A. S., and Markus, M., 2000. Precipitation Runoff Modeling Using Artificial Neural Network And Conceptual Models. Journal of Hydrologic Engineering, 5 (No. 2):156–161.
-
(2000)
Journal of Hydrologic Engineering
, vol.5
, Issue.2
, pp. 156-161
-
-
Tokar, A.S.1
Markus, M.2
-
54
-
-
38049168357
-
SOM-Based Data Visualization Methods
-
Vesanto, J., 1999. SOM-Based Data Visualization Methods. Intelligent Data Analysis, 3:111–126.
-
(1999)
Intelligent Data Analysis
, vol.3
, pp. 111-126
-
-
Vesanto, J.1
-
55
-
-
0037388711
-
Detection of Conceptual Model Rainfall-Runoff Processes inside an Artificial Neural Network
-
Wilby, R. L., Abrahart, R. J., and Dawson, C. W., 2003. Detection of Conceptual Model Rainfall-Runoff Processes inside an Artificial Neural Network. Hydrological Sciences Journal, 48 (No. 2):163–181.
-
(2003)
Hydrological Sciences Journal
, vol.48
, Issue.2
, pp. 163-181
-
-
Wilby, R.L.1
Abrahart, R.J.2
Dawson, C.W.3
-
56
-
-
0034100712
-
Prediction of Watershed Runoff Using Bayesian Concepts and Modular Neural Networks
-
Zhang, B., and Govindaraju, S., 2000. Prediction of Watershed Runoff Using Bayesian Concepts and Modular Neural Networks. Water Resources Research, 36 (No. 3):753–762.
-
(2000)
Water Resources Research
, vol.36
, Issue.3
, pp. 753-762
-
-
Zhang, B.1
Govindaraju, S.2
|