메뉴 건너뛰기




Volumn 15, Issue , 2009, Pages 52-74

Rainfall runoff modelling using neural networks: State-Of-The-Art and future research needs

Author keywords

Catchment; Hybrid Models; Neural Networks; Rainfall Runoff Modeling; Training; Water Resources

Indexed keywords


EID: 80051804722     PISSN: 09715010     EISSN: 21643040     Source Type: Journal    
DOI: 10.1080/09715010.2009.10514968     Document Type: Article
Times cited : (10)

References (56)
  • 1
    • 0036698601 scopus 로고    scopus 로고
    • Multi-Model Data Fusion for River Flow Forecasting: An Evaluation of Six Alternative Methods Based on Two Contrasting Catchments
    • Abrahart, R. J., and See, L., 2002. Multi-Model Data Fusion for River Flow Forecasting:An Evaluation of Six Alternative Methods Based on Two Contrasting Catchments. Hydrology & Earth System Sciences, 6 (No. 4):655–670.
    • (2002) Hydrology & Earth System Sciences , vol.6 , Issue.4 , pp. 655-670
    • Abrahart, R.J.1    See, L.2
  • 2
    • 0032858697 scopus 로고    scopus 로고
    • Optimal Design of Aquifer Cleanup Systems under Uncertainty using a Neural Network and Genetic Algorithm
    • Aly, A. H., and Peralta, R. C., 1999. Optimal Design of Aquifer Cleanup Systems under Uncertainty using a Neural Network and Genetic Algorithm. Water Resources Research, 35 (No. 8):2523–2532.
    • (1999) Water Resources Research , vol.35 , Issue.8 , pp. 2523-2532
    • Aly, A.H.1    Peralta, R.C.2
  • 4
    • 0034174396 scopus 로고    scopus 로고
    • Artificial Neural Networks in Hydrology II: Hydrologic Applications
    • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology. 2000. Artificial Neural Networks in Hydrology II:Hydrologic Applications. Journal of Hydrologic Engineering, 5 (No. 2):124–137.
    • (2000) Journal of Hydrologic Engineering , vol.5 , Issue.2 , pp. 124-137
  • 5
    • 0001980141 scopus 로고
    • The Evolution of Strategies in the Iterated prisoner's Dilemma, In
    • Davis L., (ed), Pitman, London
    • Axelrod, R., 1987. “ The Evolution of Strategies in the Iterated prisoner's Dilemma, In ”. In Genetic Algorithm and Simulated Annealing Edited by:Davis, L., 32–41. Pitman, London
    • (1987) Genetic Algorithm and Simulated Annealing , pp. 32-41
    • Axelrod, R.1
  • 6
    • 5844274683 scopus 로고
    • Consistency in Unit Hydrographs
    • Barnes, B. S., 1959. Consistency in Unit Hydrographs. Proc. ASCE, 85 (No. HY8):39–63.
    • (1959) Proc. ASCE , vol.85 , Issue.HY8 , pp. 39-63
    • Barnes, B.S.1
  • 7
    • 9144230503 scopus 로고
    • The Use of a Dimensionless Unit Hydrograph to Derive Unit Hydrographs for some Pacific Northwest Basins
    • Bender, D. L., and Roberson, J. A., 1961. The Use of a Dimensionless Unit Hydrograph to Derive Unit Hydrographs for some Pacific Northwest Basins. Journal of Geographical Research, 66:521–527.
    • (1961) Journal of Geographical Research , vol.66 , pp. 521-527
    • Bender, D.L.1    Roberson, J.A.2
  • 9
    • 0036221122 scopus 로고    scopus 로고
    • Optimal Division of Data for Neural Network Models in Water Resources Applications
    • doi: 10.1029/2001 WR000266
    • Bowden, G. J., Maier, H. R., and Dandy, G. C., 2002. Optimal Division of Data for Neural Network Models in Water Resources Applications. Water Resources Research, 38 (No. 2) doi:10.1029/2001 WR000266
    • (2002) Water Resources Research , vol.38 , Issue.2
    • Bowden, G.J.1    Maier, H.R.2    Dandy, G.C.3
  • 10
    • 10644295753 scopus 로고    scopus 로고
    • Input Determination for Neural Network Models in Water Resources Applications: Part 1—Background and Methodology
    • 4
    • Bowden, G. J., Dandy, G. C., and Maier, H. R., 2005. Input Determination for Neural Network Models in Water Resources Applications:Part 1—Background and Methodology. Journal of Hydrology, 301 (No. 1):75–92. 4
    • (2005) Journal of Hydrology , vol.301 , Issue.1 , pp. 75-92
    • Bowden, G.J.1    Dandy, G.C.2    Maier, H.R.3
  • 11
    • 0032961025 scopus 로고    scopus 로고
    • River Flood Forecasting with a Neural Network Model
    • Campolo, M., Andreussi, P., and Soldati, A., 1999. River Flood Forecasting with a Neural Network Model. Water Resources Research, 35 (No. 4):1191–1197.
    • (1999) Water Resources Research , vol.35 , Issue.4 , pp. 1191-1197
    • Campolo, M.1    Andreussi, P.2    Soldati, A.3
  • 12
    • 31044455061 scopus 로고    scopus 로고
    • Integration of Artificial Neural Networks with Conceptual Models in Rainfall-Runoff Modeling
    • Chen, J., and Adams, B. J., 2006. Integration of Artificial Neural Networks with Conceptual Models in Rainfall-Runoff Modeling. Journal of Hydrology, 318:232–249.
    • (2006) Journal of Hydrology , vol.318 , pp. 232-249
    • Chen, J.1    Adams, B.J.2
  • 15
    • 0032005702 scopus 로고    scopus 로고
    • An Artificial Neural Network Approach to Rainfall-Runoff Modeling
    • Dawson, C. W., and Wilby, R., 1998. An Artificial Neural Network Approach to Rainfall-Runoff Modeling. Hydrological Sciences Journal, 43 (No. 1):47–66.
    • (1998) Hydrological Sciences Journal , vol.43 , Issue.1 , pp. 47-66
    • Dawson, C.W.1    Wilby, R.2
  • 16
    • 0029673615 scopus 로고    scopus 로고
    • Rainfall-Runoff Modeling by Neural Networks and Kalman Filter
    • Dimopoulos, I., Lek, S., and Lauga, J., 1996. Rainfall-Runoff Modeling by Neural Networks and Kalman Filter. Hydrological Sciences Journal, 41 (No. 2):179–193.
    • (1996) Hydrological Sciences Journal , vol.41 , Issue.2 , pp. 179-193
    • Dimopoulos, I.1    Lek, S.2    Lauga, J.3
  • 17
    • 0027558431 scopus 로고
    • Shuffled Complex Evolution Approach for Effective and Efficient Global Optimization
    • Duan, Q. Y., Gupta, V. K., and Sorooshian, S., 1993. Shuffled Complex Evolution Approach for Effective and Efficient Global Optimization. Journal of Optimization:Theory & Applications, 76 (No. 3):501–521.
    • (1993) Journal of Optimization: Theory & Applications , vol.76 , Issue.3 , pp. 501-521
    • Duan, Q.Y.1    Gupta, V.K.2    Sorooshian, S.3
  • 18
    • 0038563932 scopus 로고    scopus 로고
    • An Adaptive Metropolis Algorithm
    • Haario, H., Saksman, E., and Tamminen, J., 2001. An Adaptive Metropolis Algorithm. Bernoulli, 7 (No. 2):223–242.
    • (2001) Bernoulli , vol.7 , Issue.2 , pp. 223-242
    • Haario, H.1    Saksman, E.2    Tamminen, J.3
  • 19
    • 0029413797 scopus 로고
    • Artificial Neural Network Modelling of the Rainfall-Runoff Process
    • Hsu, K., Gupta, H. V., and Sorooshian, S., 1995. Artificial Neural Network Modelling of the Rainfall-Runoff Process. Water Resources Research, 31 (No. 10):2517–2530.
    • (1995) Water Resources Research , vol.31 , Issue.10 , pp. 2517-2530
    • Hsu, K.1    Gupta, H.V.2    Sorooshian, S.3
  • 20
    • 0034641121 scopus 로고    scopus 로고
    • River Flow Prediction Using Artificial Neural Networks: Generalization beyond the Calibration Range
    • Imrie, C. E., Durucan, S., and Korre, A., 2000. River Flow Prediction Using Artificial Neural Networks:Generalization beyond the Calibration Range. Journal of Hydrology, 233:138–153.
    • (2000) Journal of Hydrology , vol.233 , pp. 138-153
    • Imrie, C.E.1    Durucan, S.2    Korre, A.3
  • 22
    • 33846813334 scopus 로고    scopus 로고
    • Hybrid Neural Network Models for Hydrologic Time Series Forecasting
    • Jain, A., and Kumar, A. M., 2007. Hybrid Neural Network Models for Hydrologic Time Series Forecasting. Journal of Applied Soft Computing, 7 (No. 2):585–592.
    • (2007) Journal of Applied Soft Computing , vol.7 , Issue.2 , pp. 585-592
    • Jain, A.1    Kumar, A.M.2
  • 23
    • 2442639370 scopus 로고    scopus 로고
    • Development of Effective And Efficient Rainfall-Runoff Models Using Integration of Deterministic, Real-Coded Genetic Algorithms, and Artificial Neural Network Techniques
    • W04302, doi: 10.1029/2003WR002355
    • Jain, A., and Srinivasulu, S., 2004. Development of Effective And Efficient Rainfall-Runoff Models Using Integration of Deterministic, Real-Coded Genetic Algorithms, and Artificial Neural Network Techniques. Water Resources Research, 40 (No. 4) W04302, doi:10.1029/2003WR002355
    • (2004) Water Resources Research , vol.40 , Issue.4
    • Jain, A.1    Srinivasulu, S.2
  • 24
    • 28844473522 scopus 로고    scopus 로고
    • Integrated Approach to Modelling Decomposed Flow Hydrograph Using Artificial Neural Network and Conceptual Techniques
    • No. (3–4)
    • Jain, A., and Srinivasulu, S., 2006. Integrated Approach to Modelling Decomposed Flow Hydrograph Using Artificial Neural Network and Conceptual Techniques. Journal of Hydrology, 317:291–306. No. (3–4)
    • (2006) Journal of Hydrology , vol.317 , pp. 291-306
    • Jain, A.1    Srinivasulu, S.2
  • 25
    • 1542287371 scopus 로고    scopus 로고
    • Identification of Physical Processes Inherent in Artificial Neural Network Rainfall Runoff Models
    • Jain, A., Sudheer, K. P., and Srinivasulu, S., 2003. Identification of Physical Processes Inherent in Artificial Neural Network Rainfall Runoff Models. Hydrological Processes, 118 (No. 3):571–581.
    • (2003) Hydrological Processes , vol.118 , Issue.3 , pp. 571-581
    • Jain, A.1    Sudheer, K.P.2    Srinivasulu, S.3
  • 27
    • 31444455186 scopus 로고    scopus 로고
    • Bayesian Parameter Estimation Applied to Artificial Neural Networks Used for Hydrological Modeling
    • W12409, doi:10.1029/2005WR004152
    • Kingston, G. B., Lambert, M. F., and Maier, H. R., 2005. Bayesian Parameter Estimation Applied to Artificial Neural Networks Used for Hydrological Modeling. Water Resources Research, 41 W12409, doi:10.1029/2005WR004152
    • (2005) Water Resources Research , vol.41
    • Kingston, G.B.1    Lambert, M.F.2    Maier, H.R.3
  • 28
    • 44349171685 scopus 로고    scopus 로고
    • Bayesian Model Selection Applied to Artificial Neural Networks Used for Water Resources Modeling
    • W04419, doi:10.1029/2007WR006155
    • Kingston, G. B., Maier, H. R., and Lambert, M. F., 2008. Bayesian Model Selection Applied to Artificial Neural Networks Used for Water Resources Modeling. Water Resources Research, 44 W04419, doi:10.1029/2007WR006155
    • (2008) Water Resources Research , vol.44
    • Kingston, G.B.1    Maier, H.R.2    Lambert, M.F.3
  • 29
    • 0033957764 scopus 로고    scopus 로고
    • Neural Networks for the Prediction and Forecasting of Water Resources Variables: A Review of Modelling Issues and Applications
    • Maier, H. R., and Dandy, G. C., 2000. Neural Networks for the Prediction and Forecasting of Water Resources Variables:A Review of Modelling Issues and Applications. Environmental Modelling and Software, 15 (No. 1):101–124.
    • (2000) Environmental Modelling and Software , vol.15 , Issue.1 , pp. 101-124
    • Maier, H.R.1    Dandy, G.C.2
  • 30
    • 0037142398 scopus 로고    scopus 로고
    • Hybrid Neural Network Modeling of a Full-Scale Industrial Wastewater Treatment Process
    • Lee, D. S., Jeon, C. O., Park, J. M., and Chang, K. S., 2002. Hybrid Neural Network Modeling of a Full-Scale Industrial Wastewater Treatment Process. Biotechnology and Bioengineering, 78 (No. 6):670–682.
    • (2002) Biotechnology and Bioengineering , vol.78 , Issue.6 , pp. 670-682
    • Lee, D.S.1    Jeon, C.O.2    Park, J.M.3    Chang, K.S.4
  • 32
    • 0029748915 scopus 로고    scopus 로고
    • A Neural Network Model for Rainfall-Runoff Using Radial Basis Functions
    • Mason, J. C., Price, R. K., and Tem'Me, A., 1996. A Neural Network Model for Rainfall-Runoff Using Radial Basis Functions. Journal of Hydraulic Research, 34 (No. 4):537–548.
    • (1996) Journal of Hydraulic Research , vol.34 , Issue.4 , pp. 537-548
    • Mason, J.C.1    Price, R.K.2    Tem'Me, A.3
  • 33
    • 44749087316 scopus 로고    scopus 로고
    • Non-Linear Variable Selection for Artificial Neural Networks Using Partial Mutual Information
    • 11
    • May, R. J., Maier, H. R., Dandy, G. C., and Fernando, T. M.K.G., 2008. Non-Linear Variable Selection for Artificial Neural Networks Using Partial Mutual Information. Environmental Modelling and Software, 23 (No. 10):1312–1326. 11
    • (2008) Environmental Modelling and Software , vol.23 , Issue.10 , pp. 1312-1326
    • May, R.J.1    Maier, H.R.2    Dandy, G.C.3    Fernando, T.M.K.G.4
  • 34
    • 0030159380 scopus 로고    scopus 로고
    • Artificial Neural Networks as Rainfall-Runoff Models
    • Minns, A. W., and Hall, M. J., 1996. Artificial Neural Networks as Rainfall-Runoff Models. Hydrological Sciences Journal, 41 (No. 3):399–417.
    • (1996) Hydrological Sciences Journal , vol.41 , Issue.3 , pp. 399-417
    • Minns, A.W.1    Hall, M.J.2
  • 36
    • 0001259448 scopus 로고
    • Estimation of Mutual Information Using Kernel Density Estimators
    • Moon, Y. I., Rajagopalan, B., and Lall, U., 1995. Estimation of Mutual Information Using Kernel Density Estimators. Physics Review A, 52 (No. 3):2318–2321.
    • (1995) Physics Review A , vol.52 , Issue.3 , pp. 2318-2321
    • Moon, Y.I.1    Rajagopalan, B.2    Lall, U.3
  • 39
    • 33845600932 scopus 로고    scopus 로고
    • Cluster-Based Hydrologic Prediction Using Genetic Algorithm-Trained Neural Networks
    • Parasuraman, K., and Elshorbagy, A., 2007. Cluster-Based Hydrologic Prediction Using Genetic Algorithm-Trained Neural Networks. Journal of Hydrologic Engineering, 12 (No. 1):52–62.
    • (2007) Journal of Hydrologic Engineering , vol.12 , Issue.1 , pp. 52-62
    • Parasuraman, K.1    Elshorbagy, A.2
  • 41
    • 0036899543 scopus 로고    scopus 로고
    • Artificial Neural Networks for Daily Rainfall Runoff Modeling
    • Rajurkar, M. P., Kothyari, U. C., and Chaube, U. C., 2002. Artificial Neural Networks for Daily Rainfall Runoff Modeling. Hydrological Sciences Journal, 47 (No. 6):865–876.
    • (2002) Hydrological Sciences Journal , vol.47 , Issue.6 , pp. 865-876
    • Rajurkar, M.P.1    Kothyari, U.C.2    Chaube, U.C.3
  • 42
    • 0022471098 scopus 로고
    • Learning Representations by Back-Propagating Errors
    • Rumelhart, D. E., Hinton, G. E., and Williams, R. J., 1986. Learning Representations by Back-Propagating Errors. Nature, 323:533–536.
    • (1986) Nature , vol.323 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 43
    • 0033535432 scopus 로고    scopus 로고
    • A Nonlinear Rainfall-Runoff Model Using an Artificial Neural Network
    • Sajikumar, N., and Thandaveswara, B. S., 1999. A Nonlinear Rainfall-Runoff Model Using an Artificial Neural Network. Journal of Hydrology, 216:32–55.
    • (1999) Journal of Hydrology , vol.216 , pp. 32-55
    • Sajikumar, N.1    Thandaveswara, B.S.2
  • 46
    • 0035701248 scopus 로고    scopus 로고
    • A Non-Linear Neural Network Technique for Updating River Flow Forecasts
    • Shamseldin, A. Y., and O'Connor, K. M., 2001. A Non-Linear Neural Network Technique for Updating River Flow Forecasts. Hydrology & Earth System Sciences, 5 (No. 4):577–597.
    • (2001) Hydrology & Earth System Sciences , vol.5 , Issue.4 , pp. 577-597
    • Shamseldin, A.Y.1    O'Connor, K.M.2
  • 47
    • 0034694877 scopus 로고    scopus 로고
    • Seasonal to Interannual Rainfall Probabilistic Forecasts for Improved Water Supply Management: Part 1- A Strategy for System Predictor Identification
    • Sharma, A., 2000. Seasonal to Interannual Rainfall Probabilistic Forecasts for Improved Water Supply Management:Part 1- A Strategy for System Predictor Identification. Journal of Hydrology, 239:232–239.
    • (2000) Journal of Hydrology , vol.239 , pp. 232-239
    • Sharma, A.1
  • 49
    • 0026254768 scopus 로고
    • A General Regression Neural Network
    • Specht, D. F., 1991. A General Regression Neural Network. IEEE Transactions on Neural Networks, 2 (No. 6):568–576.
    • (1991) IEEE Transactions on Neural Networks , vol.2 , Issue.6 , pp. 568-576
    • Specht, D.F.1
  • 50
    • 23044433719 scopus 로고    scopus 로고
    • Knowledge Extraction from Trained Neural Network River Flow Models
    • Sudheer, K. P. 2005. Knowledge Extraction from Trained Neural Network River Flow Models. Journal of Hydrologic Engineering, 10 (No. 4):264–269.
    • (2005) Journal of Hydrologic Engineering , vol.10 , Issue.4 , pp. 264-269
    • Sudheer, K.P.1
  • 51
    • 0037470339 scopus 로고    scopus 로고
    • Improving Peak Flow Estimates in Artificial Neural Network River Flow Models
    • Sudheer, K. P., Nayak, P. C., and Ramasastri, K. S., 2003. Improving Peak Flow Estimates in Artificial Neural Network River Flow Models. Hydrological Processes, 17 (No. 3):677–686.
    • (2003) Hydrological Processes , vol.17 , Issue.3 , pp. 677-686
    • Sudheer, K.P.1    Nayak, P.C.2    Ramasastri, K.S.3
  • 52
    • 0034174356 scopus 로고    scopus 로고
    • Hydrological Forecasting Using Neural Networks
    • Thirumalaiah, K., and Deo, M. C., 2000. Hydrological Forecasting Using Neural Networks. Journal of Hydrologic Engineering, 5 (No. 2):180–189.
    • (2000) Journal of Hydrologic Engineering , vol.5 , Issue.2 , pp. 180-189
    • Thirumalaiah, K.1    Deo, M.C.2
  • 53
    • 0034174397 scopus 로고    scopus 로고
    • Precipitation Runoff Modeling Using Artificial Neural Network And Conceptual Models
    • Tokar, A. S., and Markus, M., 2000. Precipitation Runoff Modeling Using Artificial Neural Network And Conceptual Models. Journal of Hydrologic Engineering, 5 (No. 2):156–161.
    • (2000) Journal of Hydrologic Engineering , vol.5 , Issue.2 , pp. 156-161
    • Tokar, A.S.1    Markus, M.2
  • 54
    • 38049168357 scopus 로고    scopus 로고
    • SOM-Based Data Visualization Methods
    • Vesanto, J., 1999. SOM-Based Data Visualization Methods. Intelligent Data Analysis, 3:111–126.
    • (1999) Intelligent Data Analysis , vol.3 , pp. 111-126
    • Vesanto, J.1
  • 55
    • 0037388711 scopus 로고    scopus 로고
    • Detection of Conceptual Model Rainfall-Runoff Processes inside an Artificial Neural Network
    • Wilby, R. L., Abrahart, R. J., and Dawson, C. W., 2003. Detection of Conceptual Model Rainfall-Runoff Processes inside an Artificial Neural Network. Hydrological Sciences Journal, 48 (No. 2):163–181.
    • (2003) Hydrological Sciences Journal , vol.48 , Issue.2 , pp. 163-181
    • Wilby, R.L.1    Abrahart, R.J.2    Dawson, C.W.3
  • 56
    • 0034100712 scopus 로고    scopus 로고
    • Prediction of Watershed Runoff Using Bayesian Concepts and Modular Neural Networks
    • Zhang, B., and Govindaraju, S., 2000. Prediction of Watershed Runoff Using Bayesian Concepts and Modular Neural Networks. Water Resources Research, 36 (No. 3):753–762.
    • (2000) Water Resources Research , vol.36 , Issue.3 , pp. 753-762
    • Zhang, B.1    Govindaraju, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.