메뉴 건너뛰기




Volumn 11, Issue 5, 2007, Pages 1563-1579

Neural network modelling of non-linear hydrological relationships

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL NEURAL NETWORK; DATA; HYDROLOGICAL MODELING; RAINFALL-RUNOFF MODELING;

EID: 34648849221     PISSN: 10275606     EISSN: 16077938     Source Type: Journal    
DOI: 10.5194/hess-11-1563-2007     Document Type: Article
Times cited : (79)

References (62)
  • 1
    • 0004582526 scopus 로고    scopus 로고
    • Neural networks and the problem of accumulated error: An embedded solution that offers new opportunities for modelling and testing
    • edited by: Babovic, V. and Larsen, C. L, Copenhagen, Denmark, 24-26 August, A.A. Balkema Publishers, Rotterdam, The Netherlands
    • Abrahart, R. J.: Neural networks and the problem of accumulated error: an embedded solution that offers new opportunities for modelling and testing, in: Hydroinformatics'98: Proceedings Third International. Conference on Hydroinformatics, edited by: Babovic, V. and Larsen, C. L., Copenhagen, Denmark, 24-26 August 1998, A.A. Balkema Publishers, Rotterdam, The Netherlands, 2, 725-731, 1998.
    • (1998) Hydroinformatics'98: Proceedings Third International. Conference on Hydroinformatics , vol.2 , pp. 725-731
    • Abrahart, R.J.1
  • 2
    • 34249794005 scopus 로고    scopus 로고
    • Timing error correction procedure applied to neural network rainfall-runoff modelling
    • Abrahart, R. J., Heppenstall, A. J., and See, L. M.: Timing error correction procedure applied to neural network rainfall-runoff modelling, Hydrol. Sci. J., 52(3), 414-431, 2007.
    • (2007) Hydrol. Sci. J , vol.52 , Issue.3 , pp. 414-431
    • Abrahart, R.J.1    Heppenstall, A.J.2    See, L.M.3
  • 3
    • 85039094783 scopus 로고    scopus 로고
    • Abrahart, R. J., Kneale, P. E. and See, L. M. (Eds.): Neural Networks for Hydrological Modelling, A. A. Balkema Publishers, Rotterdam, The Netherlands, 2004.
    • Abrahart, R. J., Kneale, P. E. and See, L. M. (Eds.): Neural Networks for Hydrological Modelling, A. A. Balkema Publishers, Rotterdam, The Netherlands, 2004.
  • 4
    • 85039132274 scopus 로고    scopus 로고
    • Abrahart, R. J. and See, L. M.: Neural network emulation of a rainfall-runoff model, Hydrol. Earth Syst. Sci. Discuss., 4, 287-327, 2007, http://www.hydrol-earth-syst-sci-discuss.net/4/287/2007/.
    • Abrahart, R. J. and See, L. M.: Neural network emulation of a rainfall-runoff model, Hydrol. Earth Syst. Sci. Discuss., 4, 287-327, 2007, http://www.hydrol-earth-syst-sci-discuss.net/4/287/2007/.
  • 5
    • 0035480452 scopus 로고    scopus 로고
    • Investigating the role of saliency analysis with a neural network rainfall-runoff model
    • Abrahart, R. J., See, L., and Kneale, P. E.: Investigating the role of saliency analysis with a neural network rainfall-runoff model, Computers and Geosciences, 27(8), 921-928, 2001.
    • (2001) Computers and Geosciences , vol.27 , Issue.8 , pp. 921-928
    • Abrahart, R.J.1    See, L.2    Kneale, P.E.3
  • 6
    • 0035117652 scopus 로고    scopus 로고
    • Modelling Sediment Transfer in Malawi: Comparing Backpropagation Neural Network Solutions Against a Multiple Linear Regression Benchmark Using Small Data Sets
    • Abrahart, R. J. and White, S.: Modelling Sediment Transfer in Malawi: Comparing Backpropagation Neural Network Solutions Against a Multiple Linear Regression Benchmark Using Small Data Sets, Phys. Chem. Earth (B), 26(1), 19-24, 2001.
    • (2001) Phys. Chem. Earth (B) , vol.26 , Issue.1 , pp. 19-24
    • Abrahart, R.J.1    White, S.2
  • 8
    • 0028808990 scopus 로고
    • Assessing the Performance of the NELUP Hydrological Models for River Basin Planning
    • Adams, R., Dunn, S. M., Lunn, R., Mackay, R., and O'Callaghan, J. R.: Assessing the Performance of the NELUP Hydrological Models for River Basin Planning, J. Environ. Planning Manage., 38(1), 53-76, 1995.
    • (1995) J. Environ. Planning Manage , vol.38 , Issue.1 , pp. 53-76
    • Adams, R.1    Dunn, S.M.2    Lunn, R.3    Mackay, R.4    O'Callaghan, J.R.5
  • 9
    • 0034174280 scopus 로고    scopus 로고
    • Artificial Neural Networks in Hydrology. I. Preliminary Concepts
    • ASCE
    • ASCE: Artificial Neural Networks in Hydrology. I. Preliminary Concepts, J. Hydrol. Eng., 5(2), 115-123, 2000a.
    • (2000) J. Hydrol. Eng , vol.5 , Issue.2 , pp. 115-123
  • 10
    • 0034174396 scopus 로고    scopus 로고
    • Artificial Neural Networks in Hydrology. II. Hydrologic Applications
    • ASCE
    • ASCE: Artificial Neural Networks in Hydrology. II. Hydrologic Applications, J. Hydrol. Eng., 5(2), 124-137, 2000b.
    • (2000) J. Hydrol. Eng , vol.5 , Issue.2 , pp. 124-137
  • 11
    • 19944401912 scopus 로고    scopus 로고
    • Data-driven modelling in the context of sediment transport
    • Bhattacharya, B., Price, R. K., and Solomatine, D. P.: Data-driven modelling in the context of sediment transport, Phys. Chem. Earth, 30(4-5), 297-302, 2005.
    • (2005) Phys. Chem. Earth , vol.30 , Issue.4-5 , pp. 297-302
    • Bhattacharya, B.1    Price, R.K.2    Solomatine, D.P.3
  • 13
    • 0036715707 scopus 로고    scopus 로고
    • Performance of Neural Networks in Daily Streamflow Forecasting
    • Birikundavy, S., Labib, R., Trung, H. J., and Rousselle, J.: Performance of Neural Networks in Daily Streamflow Forecasting, J. Hydrol. Eng., 7(5), 392-398, 2002.
    • (2002) J. Hydrol. Eng , vol.7 , Issue.5 , pp. 392-398
    • Birikundavy, S.1    Labib, R.2    Trung, H.J.3    Rousselle, J.4
  • 14
    • 0038240745 scopus 로고    scopus 로고
    • Artificial neural network approach to flood forecasting in the River Arno
    • Campolo, M., Soldati, A., and Andreussi, P.: Artificial neural network approach to flood forecasting in the River Arno, Hydrol. Sci. J., 48(3), 381-398, 2003.
    • (2003) Hydrol. Sci. J , vol.48 , Issue.3 , pp. 381-398
    • Campolo, M.1    Soldati, A.2    Andreussi, P.3
  • 15
    • 33846408316 scopus 로고    scopus 로고
    • A distributed monthly hydrological model for integrating spatial variations of basin topography and rainfall
    • Chen, X., Chen, Y. D., and Xu, C.: A distributed monthly hydrological model for integrating spatial variations of basin topography and rainfall, Hydrol. Processes, 21(2), 242-252, 2007.
    • (2007) Hydrol. Processes , vol.21 , Issue.2 , pp. 242-252
    • Chen, X.1    Chen, Y.D.2    Xu, C.3
  • 16
    • 0036845179 scopus 로고    scopus 로고
    • Combining a fuzzy optimal model with a genetic algorithm to solve multi-objective rainfall-runoff model calibration
    • Cheng, C. T., Ou, C. P., and Chau, K. W.: Combining a fuzzy optimal model with a genetic algorithm to solve multi-objective rainfall-runoff model calibration, J. Hydrol., 268(1-4), 72-86, 2002.
    • (2002) J. Hydrol , vol.268 , Issue.1-4 , pp. 72-86
    • Cheng, C.T.1    Ou, C.P.2    Chau, K.W.3
  • 17
    • 28744454934 scopus 로고    scopus 로고
    • Using genetic algorithm and TOPSIS for Xinanjiang model calibration with a single procedure
    • Cheng, C.-T., Zhao, M.-Y., Chau, K. W., and Wu, X.-Y.: Using genetic algorithm and TOPSIS for Xinanjiang model calibration with a single procedure, J. Hydrol., 316(1-4), 129-140, 2006.
    • (2006) J. Hydrol , vol.316 , Issue.1-4 , pp. 129-140
    • Cheng, C.-T.1    Zhao, M.-Y.2    Chau, K.W.3    Wu, X.-Y.4
  • 18
    • 34250009165 scopus 로고    scopus 로고
    • Neural networks, linear functions and neglected non-linearity, Computational
    • Curry, B. and Morgan, P. H.: Neural networks, linear functions and neglected non-linearity, Computational Management Science, 1, 15-29, 2003.
    • (2003) Management Science , vol.1 , pp. 15-29
    • Curry, B.1    Morgan, P.H.2
  • 19
    • 33846798345 scopus 로고    scopus 로고
    • HydroTest: A web-based toolbox of evaluation metrics for the standardised assessment of hydrological forecasts
    • Dawson, C. W., Abrahart, R. J., and See, L. M.: HydroTest: a web-based toolbox of evaluation metrics for the standardised assessment of hydrological forecasts, Environ. Modell. Software, 22(4), 1034-1052, 2007.
    • (2007) Environ. Modell. Software , vol.22 , Issue.4 , pp. 1034-1052
    • Dawson, C.W.1    Abrahart, R.J.2    See, L.M.3
  • 20
    • 0034749335 scopus 로고    scopus 로고
    • Hydrological modelling using artificial neural networks
    • Dawson, C. W. and Wilby, R. L.: Hydrological modelling using artificial neural networks, Progress in Physical Geography, 25(1), 80-108, 2001.
    • (2001) Progress in Physical Geography , vol.25 , Issue.1 , pp. 80-108
    • Dawson, C.W.1    Wilby, R.L.2
  • 21
    • 0027079624 scopus 로고
    • A rainfall-runoff scheme for use in the Hamburg climate model
    • edited by: O'Kane, J. P, Elsevier, Amsterdam, The Netherlands
    • Dümenil, L. and Todini, E.: A rainfall-runoff scheme for use in the Hamburg climate model, in: Advances in Theoretical Hydrology - A tribute to James Dooge, edited by: O'Kane, J. P., Elsevier, Amsterdam, The Netherlands, 129-157, 1992.
    • (1992) Advances in Theoretical Hydrology - A tribute to James Dooge , pp. 129-157
    • Dümenil, L.1    Todini, E.2
  • 22
    • 1642414601 scopus 로고    scopus 로고
    • Over-parameterisation, a major obstacle to the use of artificial neural networks in hydrology?
    • Gaume, E. and Gosset, R.: Over-parameterisation, a major obstacle to the use of artificial neural networks in hydrology?, Hydrol. Earth Syst. Sci., 7(5), 693-706, 2003.
    • (2003) Hydrol. Earth Syst. Sci , vol.7 , Issue.5 , pp. 693-706
    • Gaume, E.1    Gosset, R.2
  • 23
    • 0003489163 scopus 로고    scopus 로고
    • Govindaraju, R. S. and Rao, A. R, Eds, Kluwer Academic Publishers, Dordrecht, The Netherlands
    • Govindaraju, R. S. and Rao, A. R. (Eds.): Artificial Neural Networks in Hydrology, Kluwer Academic Publishers, Dordrecht, The Netherlands, 2000.
    • (2000) Artificial Neural Networks in Hydrology
  • 24
    • 33846419128 scopus 로고    scopus 로고
    • Uncertainties in real-time flood forecasting with neural networks
    • Han, D., Kwong, T., and Li, S.: Uncertainties in real-time flood forecasting with neural networks, Hydrol. Processes, 21(2), 223-228, 2007.
    • (2007) Hydrol. Processes , vol.21 , Issue.2 , pp. 223-228
    • Han, D.1    Kwong, T.2    Li, S.3
  • 25
    • 34249996860 scopus 로고    scopus 로고
    • The extrapolation of artificial neural networks for the modelling of rainfall-runoff relationships
    • Hettiarachchi, P., Hall, M. J., and Minns, A. W.: The extrapolation of artificial neural networks for the modelling of rainfall-runoff relationships, J. Hydroinformatics, 7(4), 291-296, 2005.
    • (2005) J. Hydroinformatics , vol.7 , Issue.4 , pp. 291-296
    • Hettiarachchi, P.1    Hall, M.J.2    Minns, A.W.3
  • 26
    • 85102998620 scopus 로고
    • Modeling in soil physics: A critical review
    • Soil Society of America, Madison, Wisconsin, USA
    • Hillel, D.: Modeling in soil physics: A critical review. In: Future Developments in Soil Science Research, Soil Society of America, Madison, Wisconsin, USA, 35-42, 1986.
    • (1986) Future Developments in Soil Science Research , pp. 35-42
    • Hillel, D.1
  • 27
    • 20844441077 scopus 로고    scopus 로고
    • A modified Xinanjiang model and its application in northern China
    • Hu, C., Guo, S., Xiong, L., and Dingzhi Peng, D.: A modified Xinanjiang model and its application in northern China, Nordic Hydrology, 36(2), 175-192, 2005.
    • (2005) Nordic Hydrology , vol.36 , Issue.2 , pp. 175-192
    • Hu, C.1    Guo, S.2    Xiong, L.3    Dingzhi Peng, D.4
  • 28
    • 85039101110 scopus 로고    scopus 로고
    • Hsu, C. Y., Lee, H. Y., and Lin, Y. L.: Estimation of sediment yields in a watershed area using ANN method, in: River Basin Management II (Transactions of the Wessex Institute, Ecology and the Environment 60, Progress in Water Resources 7), edited by: Brebbia, C. A., WIT Press, Southampton, UK, 461-470, 2003.
    • Hsu, C. Y., Lee, H. Y., and Lin, Y. L.: Estimation of sediment yields in a watershed area using ANN method, in: River Basin Management II (Transactions of the Wessex Institute, Ecology and the Environment Vol. 60, Progress in Water Resources Vol. 7), edited by: Brebbia, C. A., WIT Press, Southampton, UK, 461-470, 2003.
  • 29
    • 4644299731 scopus 로고    scopus 로고
    • Forecasting flows in Apalachicola River using neural networks
    • Huang, W., Xu, B., and Chad-Hilton, A.: Forecasting flows in Apalachicola River using neural networks, Hydrol. Processes, 18(13), 2545-2564, 2004.
    • (2004) Hydrol. Processes , vol.18 , Issue.13 , pp. 2545-2564
    • Huang, W.1    Xu, B.2    Chad-Hilton, A.3
  • 30
    • 0034737013 scopus 로고    scopus 로고
    • A modified spatial soil moisture storage capacity distribution curve for the Xinanjiang Model
    • Jayawardena, A. W. and Zhou, M. C.: A modified spatial soil moisture storage capacity distribution curve for the Xinanjiang Model, J. Hydrol., 227(1-4), 93-113, 2000.
    • (2000) J. Hydrol , vol.227 , Issue.1-4 , pp. 93-113
    • Jayawardena, A.W.1    Zhou, M.C.2
  • 31
    • 0034845425 scopus 로고    scopus 로고
    • Using neural networks with a linear output neuron to model plasmaetch processes
    • doi:10.1109/ISIE.2001. 931830
    • Kim, B., Choi, W., and Kim, H.: Using neural networks with a linear output neuron to model plasmaetch processes, Proceedings IEEE International Symposium on Industrial Electronics, 1, 441-445, 2001, doi:10.1109/ISIE.2001. 931830
    • (2001) Proceedings IEEE International Symposium on Industrial Electronics , vol.1 , pp. 441-445
    • Kim, B.1    Choi, W.2    Kim, H.3
  • 32
    • 10244249159 scopus 로고    scopus 로고
    • Multi-layer perceptrons with Levenberg-Marquardt training algorithm for suspended sediment concentration prediction and estimation
    • Kisi, O.: Multi-layer perceptrons with Levenberg-Marquardt training algorithm for suspended sediment concentration prediction and estimation, Hydrol. Sci. J., 49(3), 1025-1040, 2004.
    • (2004) Hydrol. Sci. J , vol.49 , Issue.3 , pp. 1025-1040
    • Kisi, O.1
  • 33
    • 23044459648 scopus 로고    scopus 로고
    • Suspended sediment estimation using neuro-fuzzy and neural network approaches
    • Kisi, O.: Suspended sediment estimation using neuro-fuzzy and neural network approaches, Hydrol. Sci. J., 50(4), 683-696, 2005.
    • (2005) Hydrol. Sci. J , vol.50 , Issue.4 , pp. 683-696
    • Kisi, O.1
  • 34
    • 33749515420 scopus 로고    scopus 로고
    • Atmospheric-hydrological modeling of severe precipitation and floods in the Huaihe River Basin, China
    • Lin, CA., Wen, L., Lu, G., Wu, Z., Zhang, J., Yang, Y., Zhu, Y., and Tong, L.: Atmospheric-hydrological modeling of severe precipitation and floods in the Huaihe River Basin, China, J. Hydrol., 330(1-2), 249-259, 2006.
    • (2006) J. Hydrol , vol.330 , Issue.1-2 , pp. 249-259
    • Lin, C.A.1    Wen, L.2    Lu, G.3    Wu, Z.4    Zhang, J.5    Yang, Y.6    Zhu, Y.7    Tong, L.8
  • 35
    • 0002666560 scopus 로고
    • Runoff Volume Estimates with Neural Networks, in: Neural Networks and Combinatorial Optimization in Civil and Structural Engineering
    • edited by: Topping, B. H. V. and Khan, A. I, Edinburgh, UK, 17-19 August, Civil-Comp Press, Stirling, UK
    • Liong, S. Y. and Chan, W. T.: Runoff Volume Estimates with Neural Networks, in: Neural Networks and Combinatorial Optimization in Civil and Structural Engineering, edited by: Topping, B. H. V. and Khan, A. I., Proceedings Third International Conference on the Application of Artificial Intelligence to Civil and Structural Engineering, Edinburgh, UK, 17-19 August 1993, Civil-Comp Press, Stirling, UK, 67-70, 1993.
    • (1993) Proceedings Third International Conference on the Application of Artificial Intelligence to Civil and Structural Engineering , pp. 67-70
    • Liong, S.Y.1    Chan, W.T.2
  • 36
    • 0031451881 scopus 로고    scopus 로고
    • Artificial neural networks as a tool in urban storm drainage
    • Loke, E., Warnaars, E. A., Jacobsen, P., Nelen, F., and Almeida, M. D.: Artificial neural networks as a tool in urban storm drainage, Water Sci. Technol., 36(8-9), 101-109, 1997.
    • (1997) Water Sci. Technol , vol.36 , Issue.8-9 , pp. 101-109
    • Loke, E.1    Warnaars, E.A.2    Jacobsen, P.3    Nelen, F.4    Almeida, M.D.5
  • 37
    • 0033957764 scopus 로고    scopus 로고
    • Neural networks for the prediction and forecasting of water resources variables: A review of modelling issues and applications
    • Maier, H. R. and Dandy, G. C.: Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications, Environ. Modell. Software, 15(1), 101-124, 2000.
    • (2000) Environ. Modell. Software , vol.15 , Issue.1 , pp. 101-124
    • Maier, H.R.1    Dandy, G.C.2
  • 38
    • 0022241420 scopus 로고
    • The probability-distributed principle and runoff production at point and basin scales
    • Moore, R. J.: The probability-distributed principle and runoff production at point and basin scales, Hydrol. Sci. J., 30(2), 273-297, 1985.
    • (1985) Hydrol. Sci. J , vol.30 , Issue.2 , pp. 273-297
    • Moore, R.J.1
  • 39
    • 33846362488 scopus 로고    scopus 로고
    • The PDM rainfall-runoff model
    • Moore, R. J.: The PDM rainfall-runoff model, Hydrol. Earth Syst. Sci., 11(1), 483-499, 2007.
    • (2007) Hydrol. Earth Syst. Sci , vol.11 , Issue.1 , pp. 483-499
    • Moore, R.J.1
  • 40
    • 0002613467 scopus 로고    scopus 로고
    • On the use of self-registering rain and flood gauges in making observations of the relations of rainfall and flood discharges in a given catchment
    • 19-31
    • Mulvaney, T. J.: On the use of self-registering rain and flood gauges in making observations of the relations of rainfall and flood discharges in a given catchment, Proceedings of the Institution of Civil Engineers in Ireland, 4, 19-31, 1851.
    • Proceedings of the Institution of Civil Engineers in Ireland , vol.4 , pp. 1851
    • Mulvaney, T.J.1
  • 41
    • 0036611003 scopus 로고    scopus 로고
    • Prediction of Sediment Load Concentration in Rivers using Artificial Neural Network Model
    • Nagy, H. M., Watanabe, K., and Hirano, M.: Prediction of Sediment Load Concentration in Rivers using Artificial Neural Network Model, J. Hydraul. Eng., 128(3), 588-595, 2002.
    • (2002) J. Hydraul. Eng , vol.128 , Issue.3 , pp. 588-595
    • Nagy, H.M.1    Watanabe, K.2    Hirano, M.3
  • 42
    • 33847023848 scopus 로고    scopus 로고
    • Use of an artificial neural network to capture the domain knowledge of a conventional hydraulic simulation model
    • Rao, Z. and Alvarruiz, F.: Use of an artificial neural network to capture the domain knowledge of a conventional hydraulic simulation model, J. Hydroinformatics, 9(1), 15-24, 2007.
    • (2007) J. Hydroinformatics , vol.9 , Issue.1 , pp. 15-24
    • Rao, Z.1    Alvarruiz, F.2
  • 43
    • 4644296256 scopus 로고    scopus 로고
    • Predicting catchment flow in a semi-arid region via an artificial neural network technique
    • Riad, S., Mania, J., Bouchaou, L., and Najjar, Y.: Predicting catchment flow in a semi-arid region via an artificial neural network technique, Hydrol. Processes, 18(13), 2387-2393, 2004.
    • (2004) Hydrol. Processes , vol.18 , Issue.13 , pp. 2387-2393
    • Riad, S.1    Mania, J.2    Bouchaou, L.3    Najjar, Y.4
  • 44
    • 0028174533 scopus 로고
    • Optimization of groundwater remediation using artificial neural networks with parallel solute transport modeling
    • Rogers, L. L. and Dowla, F. U.: Optimization of groundwater remediation using artificial neural networks with parallel solute transport modeling, Water Resour. Res., 30(2), 457-481, 1994.
    • (1994) Water Resour. Res , vol.30 , Issue.2 , pp. 457-481
    • Rogers, L.L.1    Dowla, F.U.2
  • 45
    • 85039110713 scopus 로고    scopus 로고
    • Sarle, W. S. (Ed.): Neural Network FAQ, Part 3 of 7: Generalisation [periodic posting to the Usenet newsgroup comp.ai.neural-nets]. (ftp://ftp.sas.com/pub/neural/FAQ.html) 1997 [Last accessed: 8 November 2006]
    • Sarle, W. S. (Ed.): Neural Network FAQ, Part 3 of 7: Generalisation [periodic posting to the Usenet newsgroup comp.ai.neural-nets]. (ftp://ftp.sas.com/pub/neural/FAQ.html) 1997 [Last accessed: 8 November 2006]
  • 46
    • 0033536914 scopus 로고    scopus 로고
    • Modification of the probability-distributed interacting storage capacity model
    • Senbeta, D. A., Shamseldin, A. Y., and O'Connor, K. M.: Modification of the probability-distributed interacting storage capacity model, J. Hydrol., 224(3), 149-168, 1999.
    • (1999) J. Hydrol , vol.224 , Issue.3 , pp. 149-168
    • Senbeta, D.A.1    Shamseldin, A.Y.2    O'Connor, K.M.3
  • 47
    • 16444365723 scopus 로고    scopus 로고
    • Rainfall-runoff modelling using artificial neural networks: Comparison of network types
    • Senthil Kumar, A. R., Sudheer, K. P., Jain, S. K., and Agarwal, P. K.: Rainfall-runoff modelling using artificial neural networks: comparison of network types, Hydrol. Processes, 19(3), 1277-1291, 2005.
    • (2005) Hydrol. Processes , vol.19 , Issue.3 , pp. 1277-1291
    • Senthil Kumar, A.R.1    Sudheer, K.P.2    Jain, S.K.3    Agarwal, P.K.4
  • 48
    • 34648825564 scopus 로고    scopus 로고
    • Artificial neural network model for flood, forecasting in a developing country
    • in press
    • Shamseldin, A. Y.: Artificial neural network model for flood, forecasting in a developing country, J. Hydroinformatics, in press, 2007.
    • (2007) J. Hydroinformatics
    • Shamseldin, A.Y.1
  • 49
    • 85039125453 scopus 로고    scopus 로고
    • Singh, A. K., Deo, M. C., and Kumar, V. S.: Prediction of littoral drift with artificial neural networks, Hydrol. Earth Syst. Sci. Discuss., 4(4), 2497-2519, 2007.
    • Singh, A. K., Deo, M. C., and Kumar, V. S.: Prediction of littoral drift with artificial neural networks, Hydrol. Earth Syst. Sci. Discuss., 4(4), 2497-2519, 2007.
  • 50
    • 0002133630 scopus 로고    scopus 로고
    • Neural network approximation of a hydrodynamics model in optimizing reservoir operation
    • edited by: Müller, A, Zurich, Switzerland, 9-13 September, A.A. Balkema Publishers, Rotterdam, The Netherlands
    • Solomatine, D. P. and Avila Torres, L. A.: Neural network approximation of a hydrodynamics model in optimizing reservoir operation, in: Hydroinformatics 96: Proceedings Second International Conference on Hydroinformatics, edited by: Müller, A., Zurich, Switzerland, 9-13 September 1996, A.A. Balkema Publishers, Rotterdam, The Netherlands, 1, 201-206, 1996.
    • (1996) Hydroinformatics 96: Proceedings Second International Conference on Hydroinformatics , vol.1 , pp. 201-206
    • Solomatine, D.P.1    Avila Torres, L.A.2
  • 51
    • 0142151558 scopus 로고    scopus 로고
    • Development of a distributed hydrological model and its application to soil erosion simulation in a forested catchment during storm period
    • Su, B., Kazama, S., Lu, M., and Sawamoto, M.: Development of a distributed hydrological model and its application to soil erosion simulation in a forested catchment during storm period, Hydrol., Processes, 17(14), 2811-2823, 2003.
    • (2003) Hydrol., Processes , vol.17 , Issue.14 , pp. 2811-2823
    • Su, B.1    Kazama, S.2    Lu, M.3    Sawamoto, M.4
  • 52
    • 0030483015 scopus 로고    scopus 로고
    • The ARNO rainfall-runoff model
    • Todini, E.: The ARNO rainfall-runoff model, J. Hydrol., 175(1-4), 339-382, 1996.
    • (1996) J. Hydrol , vol.175 , Issue.1-4 , pp. 339-382
    • Todini, E.1
  • 53
    • 85039120107 scopus 로고    scopus 로고
    • Todini, E.: The ARNO model, in: Mathematical Models of Large Watershed Hydrology, edited by: Singh, V. P. and Frevert, D. K., Water Resources Publications LLC, Highlands Ranch, CO, USA, 687-716, 2002.
    • Todini, E.: The ARNO model, in: Mathematical Models of Large Watershed Hydrology, edited by: Singh, V. P. and Frevert, D. K., Water Resources Publications LLC, Highlands Ranch, CO, USA, 687-716, 2002.
  • 54
    • 0034694775 scopus 로고    scopus 로고
    • Comparison of short-term rainfall prediction models for real-time flood forecasting
    • Toth, E., Brath, A., and Montanari, A.: Comparison of short-term rainfall prediction models for real-time flood forecasting, J. Hydrol., 239(1-4), 132-147, 2000.
    • (2000) J. Hydrol , vol.239 , Issue.1-4 , pp. 132-147
    • Toth, E.1    Brath, A.2    Montanari, A.3
  • 56
    • 0037388711 scopus 로고    scopus 로고
    • Detection of conceptual model rainfall-runoff processes inside an artificial neural network
    • Wilby, R. L., Abrahart, R. J., and Dawson, C. W.: Detection of conceptual model rainfall-runoff processes inside an artificial neural network, Hydrol. Sci. J., 48(2), 163-181, 2003.
    • (2003) Hydrol. Sci. J , vol.48 , Issue.2 , pp. 163-181
    • Wilby, R.L.1    Abrahart, R.J.2    Dawson, C.W.3
  • 57
    • 0026493570 scopus 로고
    • A land-surface hydrology parameterisation with subgrid variablility for general circulation models
    • Wood, E. F., Lettenmaier, D. P., and Zartarian, V. G.: A land-surface hydrology parameterisation with subgrid variablility for general circulation models, J. Geophys. Res., 97(D3), 2717-2728, 1992.
    • (1992) J. Geophys. Res , vol.97 , Issue.D3 , pp. 2717-2728
    • Wood, E.F.1    Lettenmaier, D.P.2    Zartarian, V.G.3
  • 58
    • 0042658013 scopus 로고    scopus 로고
    • Modeling Flow and Sediment Transport in a River System Using an Artificial Neural Network
    • Yitian, L. and Gu, R. R.: Modeling Flow and Sediment Transport in a River System Using an Artificial Neural Network, Environ. Manage., 31(1), 122-134, 2003.
    • (2003) Environ. Manage , vol.31 , Issue.1 , pp. 122-134
    • Yitian, L.1    Gu, R.R.2
  • 60
    • 0026895285 scopus 로고
    • The Xinanjiang model applied in China
    • Zhao, R.-J.: The Xinanjiang model applied in China, J. Hydrol., 135(1-4), 371-381, 1992.
    • (1992) J. Hydrol , vol.135 , Issue.1-4 , pp. 371-381
    • Zhao, R.-J.1
  • 61
    • 0000626643 scopus 로고
    • The Xinanjiang Model
    • edited by: Singh, V. P, Water Resources Publications, Fort Collins, USA
    • Zhao, R.-J. and Liu, X.-R.: The Xinanjiang Model, in: Computer Models of Watershed Hydrology, edited by: Singh, V. P., Water Resources Publications, Fort Collins, USA, 215-232, 1995.
    • (1995) Computer Models of Watershed Hydrology , pp. 215-232
    • Zhao, R.-J.1    Liu, X.-R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.