메뉴 건너뛰기




Volumn 36, Issue 4, 2009, Pages 7624-7629

Generalization performance of support vector machines and neural networks in runoff modeling

Author keywords

Artificial neural networks (ANNs); Rainfall and climate data; Runoff prediction; Support vector machines (SVMs)

Indexed keywords

ARID REGIONS; BACKPROPAGATION; CONVEX OPTIMIZATION; FORECASTING; IMAGE RETRIEVAL; NEURAL NETWORKS; OPTIMIZATION; REAL TIME SYSTEMS; RUNOFF; STREAM FLOW; VECTORS; WATER RESOURCES;

EID: 60249084777     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2008.09.053     Document Type: Article
Times cited : (221)

References (23)
  • 1
    • 0034174280 scopus 로고    scopus 로고
    • Artificial Neural Networks in Hydrology, I: Preliminary Concepts
    • ASCE Task Committee on Application of the Artificial Neural Networks in Hydrology
    • ASCE Task Committee on Application of the Artificial Neural Networks in Hydrology. (2000a). Artificial Neural Networks in Hydrology, I: Preliminary Concepts. Journal of Hydrological Engineering, 5(2), 115-123.
    • (2000) Journal of Hydrological Engineering , vol.5 , Issue.2 , pp. 115-123
  • 2
    • 0034174396 scopus 로고    scopus 로고
    • ASCE Task Committee on Application of the Artificial Neural Networks in Hydrology. (2000b). Artificial Neural Networks in Hydrology, II: Hydrologic Applications. Journal of Hydrological Engineering, 5(2), 124-137.
    • ASCE Task Committee on Application of the Artificial Neural Networks in Hydrology. (2000b). Artificial Neural Networks in Hydrology, II: Hydrologic Applications. Journal of Hydrological Engineering, 5(2), 124-137.
  • 3
    • 31444454927 scopus 로고    scopus 로고
    • Support vector machines for nonlinear state space reconstruction: Application to Great Salt Lake time series
    • 10.1029/2004WR003785
    • Asefa T., Kemblowski M.W., Lall U., and Urroz G. Support vector machines for nonlinear state space reconstruction: Application to Great Salt Lake time series. Water Resources Research 41 (2005) W12422 10.1029/2004WR003785
    • (2005) Water Resources Research , vol.41
    • Asefa, T.1    Kemblowski, M.W.2    Lall, U.3    Urroz, G.4
  • 4
    • 31044438334 scopus 로고    scopus 로고
    • Multi-time scale stream flow prediction: The support vector machines approach
    • Asefa T., Kemblowski M.W., McKee M., and Khalil A. Multi-time scale stream flow prediction: The support vector machines approach. Journal of Hydrology 318 (2006) 7-16
    • (2006) Journal of Hydrology , vol.318 , pp. 7-16
    • Asefa, T.1    Kemblowski, M.W.2    McKee, M.3    Khalil, A.4
  • 5
    • 18944381810 scopus 로고    scopus 로고
    • Support vector machines (SVMs) for monitoring networks design
    • Asefa T., Kemblowski M.W., Urroz G., and McKee M. Support vector machines (SVMs) for monitoring networks design. Ground Water 43 3 (2005) 413-422
    • (2005) Ground Water , vol.43 , Issue.3 , pp. 413-422
    • Asefa, T.1    Kemblowski, M.W.2    Urroz, G.3    McKee, M.4
  • 6
    • 10944274219 scopus 로고    scopus 로고
    • Support vector-based ground water head observation networks design
    • 10.1029/2004WR003304
    • Asefa T., Kemblowski M.W., Urroz G., McKee M., and Khalil A. Support vector-based ground water head observation networks design. Water Resources Research 40 (2004) W11509 10.1029/2004WR003304
    • (2004) Water Resources Research , vol.40
    • Asefa, T.1    Kemblowski, M.W.2    Urroz, G.3    McKee, M.4    Khalil, A.5
  • 7
    • 60249099888 scopus 로고    scopus 로고
    • Chang, C, C & Lin, C, J, 2001, LIBSVM: A Library for Support Vector Machines Version 2.82, April 2006, Software
    • Chang, C. -C & Lin, C. -J. (2001). LIBSVM: A Library for Support Vector Machines (Version 2.82, April 2006). Software, .
  • 11
    • 33746914260 scopus 로고    scopus 로고
    • Support vector machines identification for runoff modeling
    • S. Y. Liong, K. K. Phoon, & V, Babovic, Eds, June, Singapore pp
    • Han, D., & Cluckie, I. (2004). Support vector machines identification for runoff modeling. In S. Y. Liong, K. K. Phoon, & V., Babovic, (Eds.), Proceedings of the sixth international conference on hydroinformatics, June, Singapore (pp. 21-24).
    • (2004) Proceedings of the sixth international conference on hydroinformatics , pp. 21-24
    • Han, D.1    Cluckie, I.2
  • 12
    • 20844458468 scopus 로고    scopus 로고
    • Applicability of statistical learning algorithms in groundwater quality modeling
    • 10.1029/2004WR003608
    • Khalil A., Almasri M.N., McKee M., and Kaluarachchi J.J. Applicability of statistical learning algorithms in groundwater quality modeling. Water Resources Research 41 (2005) W05010 10.1029/2004WR003608
    • (2005) Water Resources Research , vol.41
    • Khalil, A.1    Almasri, M.N.2    McKee, M.3    Kaluarachchi, J.J.4
  • 13
    • 29944444287 scopus 로고    scopus 로고
    • Sparse Bayesian learning machine for real-time management of reservoir releases
    • 10.1029/2004WR003891
    • Khalil A., McKee M., Kemblowski M.W., and Asefa T. Sparse Bayesian learning machine for real-time management of reservoir releases. Water Resources Research 41 (2005) W11401 10.1029/2004WR003891
    • (2005) Water Resources Research , vol.41
    • Khalil, A.1    McKee, M.2    Kemblowski, M.W.3    Asefa, T.4
  • 14
    • 28444480680 scopus 로고    scopus 로고
    • Multiobjective analysis of chaotic dynamics systems with sparse learning machines
    • 10.1016/j.advwatres.2005.05.011
    • Khalil A., McKee M., Kemblowski M.W., Asefa T., and Bastidas L. Multiobjective analysis of chaotic dynamics systems with sparse learning machines. Advances in Water Resources 29 (2006) 72-88 10.1016/j.advwatres.2005.05.011
    • (2006) Advances in Water Resources , vol.29 , pp. 72-88
    • Khalil, A.1    McKee, M.2    Kemblowski, M.W.3    Asefa, T.4    Bastidas, L.5
  • 15
    • 1642497522 scopus 로고    scopus 로고
    • River flow modeling using artificial neural networks
    • Kisi O. River flow modeling using artificial neural networks. Journal of Hydrologic Engineering 9 1 (2004) 60-63
    • (2004) Journal of Hydrologic Engineering , vol.9 , Issue.1 , pp. 60-63
    • Kisi, O.1
  • 16
    • 33746830757 scopus 로고    scopus 로고
    • Using support vector machines for long-term discharge prediction
    • Lin J.-Y., Cheng C.-T., and Chau K.-W. Using support vector machines for long-term discharge prediction. Hydrological Sciences Journal 51 4 (2006) 599-612
    • (2006) Hydrological Sciences Journal , vol.51 , Issue.4 , pp. 599-612
    • Lin, J.-Y.1    Cheng, C.-T.2    Chau, K.-W.3
  • 20
    • 0034174397 scopus 로고    scopus 로고
    • Precipitation-Runoff modeling using artificial neural networks and conceptual models
    • Tokar A.S., and Markus M. Precipitation-Runoff modeling using artificial neural networks and conceptual models. Journal of Hydrologic Engineering 5 2 (2000) 156-161
    • (2000) Journal of Hydrologic Engineering , vol.5 , Issue.2 , pp. 156-161
    • Tokar, A.S.1    Markus, M.2
  • 22
    • 33746916489 scopus 로고    scopus 로고
    • Support vector regression for real-time flood stage forecasting
    • Yu P.-S., Chen S.-T., and Chang I.-F. Support vector regression for real-time flood stage forecasting. Journal of Hydrology 328 (2006) 704-716
    • (2006) Journal of Hydrology , vol.328 , pp. 704-716
    • Yu, P.-S.1    Chen, S.-T.2    Chang, I.-F.3
  • 23
    • 0033019602 scopus 로고    scopus 로고
    • Short term stream flow forecasting using artificial neural networks
    • Zealand C.M., and Burn D.H. Short term stream flow forecasting using artificial neural networks. Journal of Hydrology 214 (1999) 32-48
    • (1999) Journal of Hydrology , vol.214 , pp. 32-48
    • Zealand, C.M.1    Burn, D.H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.