메뉴 건너뛰기




Volumn 337, Issue 1-2, 2007, Pages 22-34

A comparative study of artificial neural networks and neuro-fuzzy in continuous modeling of the daily and hourly behaviour of runoff

Author keywords

Modeling; Neural networks; Neuro fuzzy; Rainfall runoff

Indexed keywords

ALGORITHMS; GRAPHICAL USER INTERFACES; HYDROLOGY; MATHEMATICAL MODELS; NEURAL NETWORKS; WATER MANAGEMENT;

EID: 33947572974     PISSN: 00221694     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jhydrol.2007.01.013     Document Type: Article
Times cited : (165)

References (45)
  • 1
    • 0034174280 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology-I: preliminary concepts
    • ASCE Task Committee. Artificial neural networks in hydrology-I: preliminary concepts. J. Hydrol. Eng. 5 (2000) 115-123
    • (2000) J. Hydrol. Eng. , vol.5 , pp. 115-123
    • ASCE Task Committee1
  • 2
    • 0034174396 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology-II: hydrologic applications
    • ASCE Task Committee. Artificial neural networks in hydrology-II: hydrologic applications. J. Hydrol. Eng. 5 (2000) 124-137
    • (2000) J. Hydrol. Eng. , vol.5 , pp. 124-137
    • ASCE Task Committee1
  • 3
    • 0345257361 scopus 로고    scopus 로고
    • Short-term water level prediction using neural networks and neuro-fuzzy approach
    • Bazartseren B., Hildebrandt G., and Holz K.P. Short-term water level prediction using neural networks and neuro-fuzzy approach. Neurocomputing 55 (2003) 439-450
    • (2003) Neurocomputing , vol.55 , pp. 439-450
    • Bazartseren, B.1    Hildebrandt, G.2    Holz, K.P.3
  • 5
    • 0032961025 scopus 로고    scopus 로고
    • River flood forecasting with a neural network model
    • Campolo M., Andreussi P., and Soldati A. River flood forecasting with a neural network model. Water Resour. Res. 35 (1999) 1191-1197
    • (1999) Water Resour. Res. , vol.35 , pp. 1191-1197
    • Campolo, M.1    Andreussi, P.2    Soldati, A.3
  • 6
    • 0032722662 scopus 로고    scopus 로고
    • Forecasting river flow rate during low-flow periods using neural networks
    • Campolo M., Soldati A., and Andreussi P. Forecasting river flow rate during low-flow periods using neural networks. Water Resour. Res. 35 (1999) 3547-3552
    • (1999) Water Resour. Res. , vol.35 , pp. 3547-3552
    • Campolo, M.1    Soldati, A.2    Andreussi, P.3
  • 7
    • 0035340711 scopus 로고    scopus 로고
    • A counterpropagation fuzzy-neural network modeling approach to real time streamflow prediction
    • Chang F.J., and Chen Y.C. A counterpropagation fuzzy-neural network modeling approach to real time streamflow prediction. J. Hydrol. 245 (2001) 153-164
    • (2001) J. Hydrol. , vol.245 , pp. 153-164
    • Chang, F.J.1    Chen, Y.C.2
  • 8
    • 0036719845 scopus 로고    scopus 로고
    • Real-time recurrent learning neural network for stream-flow forecasting
    • Chang F.J., Chang L.C., and Huang H.L. Real-time recurrent learning neural network for stream-flow forecasting. Hydrol. Process. 16 (2002) 2577-2588
    • (2002) Hydrol. Process. , vol.16 , pp. 2577-2588
    • Chang, F.J.1    Chang, L.C.2    Huang, H.L.3
  • 9
    • 84974743850 scopus 로고
    • Fuzzy model identification based on cluster estimation
    • Chiu S.L. Fuzzy model identification based on cluster estimation. J. Intell. Fuzzy Syst. 2 (1994) 267-278
    • (1994) J. Intell. Fuzzy Syst. , vol.2 , pp. 267-278
    • Chiu, S.L.1
  • 11
    • 0034993945 scopus 로고    scopus 로고
    • Artificial neural network modeling of water table depth fluctuations
    • Coulibaly P., Anctil F., Aravena R., and Bobe'e B. Artificial neural network modeling of water table depth fluctuations. Water Resour. Res. 37 (2001) 885-896
    • (2001) Water Resour. Res. , vol.37 , pp. 885-896
    • Coulibaly, P.1    Anctil, F.2    Aravena, R.3    Bobe'e, B.4
  • 12
    • 20344369583 scopus 로고    scopus 로고
    • Groundwater level forecasting using artificial neural networks
    • Daliakopoulos I.N., Coulibalya P., and Tsanis I.K. Groundwater level forecasting using artificial neural networks. J. Hydrol. 309 (2005) 229-240
    • (2005) J. Hydrol. , vol.309 , pp. 229-240
    • Daliakopoulos, I.N.1    Coulibalya, P.2    Tsanis, I.K.3
  • 14
    • 20344385052 scopus 로고    scopus 로고
    • Applicability of neuro-fuzzy techniques in predicting ground-water vulnerability: a GIS-based sensitivity analysis
    • Dixon B. Applicability of neuro-fuzzy techniques in predicting ground-water vulnerability: a GIS-based sensitivity analysis. J. Hydrol. 309 (2004) 17-38
    • (2004) J. Hydrol. , vol.309 , pp. 17-38
    • Dixon, B.1
  • 15
    • 0345712372 scopus 로고    scopus 로고
    • Fuzzy rule-based approach to describe solute transport in the unsaturated zone
    • Dou C., Woldt W., and Gogardi I. Fuzzy rule-based approach to describe solute transport in the unsaturated zone. J. Hydrol. 220 (1999) 74-85
    • (1999) J. Hydrol. , vol.220 , pp. 74-85
    • Dou, C.1    Woldt, W.2    Gogardi, I.3
  • 16
    • 0026445234 scopus 로고
    • Effective and efficient global optimization for conceptual rainfall runoff models
    • Duan Q., Sorooshian S., and Gupta V.K. Effective and efficient global optimization for conceptual rainfall runoff models. Water Resour. Res. 28 (1992) 1015-1031
    • (1992) Water Resour. Res. , vol.28 , pp. 1015-1031
    • Duan, Q.1    Sorooshian, S.2    Gupta, V.K.3
  • 17
    • 0029413797 scopus 로고
    • Artificial neural network modelling of the rainfall-runoff process
    • Hsu K., Gupta H.V., and Sorooshian S. Artificial neural network modelling of the rainfall-runoff process. Water Resour. Res. 31 (1995) 2517-2530
    • (1995) Water Resour. Res. , vol.31 , pp. 2517-2530
    • Hsu, K.1    Gupta, H.V.2    Sorooshian, S.3
  • 18
    • 0035472003 scopus 로고    scopus 로고
    • River flow time series prediction with a range-dependent neural network
    • Hu T.S., Lam K.C., and Ng S.T. River flow time series prediction with a range-dependent neural network. Hydrol. Sci. J. 46 (2001) 729-745
    • (2001) Hydrol. Sci. J. , vol.46 , pp. 729-745
    • Hu, T.S.1    Lam, K.C.2    Ng, S.T.3
  • 19
    • 0034641121 scopus 로고    scopus 로고
    • River flow prediction using artificial neural networks: generalisation beyond the calibration range
    • Imrie C.E., Durucan S., and Korre A. River flow prediction using artificial neural networks: generalisation beyond the calibration range. J. Hydrol. 233 (2000) 138-153
    • (2000) J. Hydrol. , vol.233 , pp. 138-153
    • Imrie, C.E.1    Durucan, S.2    Korre, A.3
  • 20
    • 1542287371 scopus 로고    scopus 로고
    • Identification of physical processes inherent in artificial neural network rainfall-runoff models
    • Jain A., Sudheer K.P., and Srinivasulu S. Identification of physical processes inherent in artificial neural network rainfall-runoff models. Hydrol. Process. 118 (2004) 571-581
    • (2004) Hydrol. Process. , vol.118 , pp. 571-581
    • Jain, A.1    Sudheer, K.P.2    Srinivasulu, S.3
  • 23
    • 0032434569 scopus 로고    scopus 로고
    • Localized precipitation forecasts from a numerical weather prediction model using artificial neural networks
    • Kuligowski R., and Barros A.P. Localized precipitation forecasts from a numerical weather prediction model using artificial neural networks. Weather Forecast. 13 (1998) 1195-1205
    • (1998) Weather Forecast. , vol.13 , pp. 1195-1205
    • Kuligowski, R.1    Barros, A.P.2
  • 24
    • 2542447559 scopus 로고    scopus 로고
    • River flow forecasting using recurrent neural networks
    • Kumar D.N., Raju K.S., and Sathish T. River flow forecasting using recurrent neural networks. Water Resour. Mange. 18 (2004) 143-161
    • (2004) Water Resour. Mange. , vol.18 , pp. 143-161
    • Kumar, D.N.1    Raju, K.S.2    Sathish, T.3
  • 25
    • 0035104376 scopus 로고    scopus 로고
    • An application of artificial neural networks for rainfall forecasting
    • Luk K.C., Ball J.E., and Sharma A. An application of artificial neural networks for rainfall forecasting. Math. Computer Modell. 33 (2001) 683-693
    • (2001) Math. Computer Modell. , vol.33 , pp. 683-693
    • Luk, K.C.1    Ball, J.E.2    Sharma, A.3
  • 26
    • 0034737033 scopus 로고    scopus 로고
    • A study of optimal model lag and spatial inputs to artificial neural network for rainfall forecasting
    • Luk K.C., Ball J.E., and Sharma A. A study of optimal model lag and spatial inputs to artificial neural network for rainfall forecasting. J. Hydrol. 227 (2000) 56-65
    • (2000) J. Hydrol. , vol.227 , pp. 56-65
    • Luk, K.C.1    Ball, J.E.2    Sharma, A.3
  • 27
    • 0000234257 scopus 로고
    • The evidence framework applied to classification networks
    • MacKay D. The evidence framework applied to classification networks. Neural Comput. 4 (1992) 720-736
    • (1992) Neural Comput. , vol.4 , pp. 720-736
    • MacKay, D.1
  • 28
    • 0032301756 scopus 로고    scopus 로고
    • Predicting a chaotic time series using a fuzzy neural network
    • Maguire L.P., Roche B., McGinnity T.T., and McDaid L.J. Predicting a chaotic time series using a fuzzy neural network. Inf. Sci. 112 (1998) 125-136
    • (1998) Inf. Sci. , vol.112 , pp. 125-136
    • Maguire, L.P.1    Roche, B.2    McGinnity, T.T.3    McDaid, L.J.4
  • 29
    • 0033957764 scopus 로고    scopus 로고
    • Neural networks for the predictions and forecasting of water resources variables: review of modeling issues and applications
    • Maier H., and Dandy G. Neural networks for the predictions and forecasting of water resources variables: review of modeling issues and applications. Environ. Modell. Software 15 (2000) 101-124
    • (2000) Environ. Modell. Software , vol.15 , pp. 101-124
    • Maier, H.1    Dandy, G.2
  • 30
    • 0346846648 scopus 로고    scopus 로고
    • Artificial neural network mode.ling of hydrogen storage properties of Mg-based Alloys
    • Malinova T., and Guo Z.X. Artificial neural network mode.ling of hydrogen storage properties of Mg-based Alloys. Mater. Sci. Eng. A 365 (2004) 219-227
    • (2004) Mater. Sci. Eng. A , vol.365 , pp. 219-227
    • Malinova, T.1    Guo, Z.X.2
  • 31
    • 1942490118 scopus 로고    scopus 로고
    • A neuro-fuzzy computing technique for modeling hydrological time series
    • Nayak P.C., Sudheer K.P., Rangan D.M., and Ramasastri K.S. A neuro-fuzzy computing technique for modeling hydrological time series. J. Hydrol. 291 (2004) 52-66
    • (2004) J. Hydrol. , vol.291 , pp. 52-66
    • Nayak, P.C.1    Sudheer, K.P.2    Rangan, D.M.3    Ramasastri, K.S.4
  • 34
    • 10644287862 scopus 로고    scopus 로고
    • Artificial neural network technique for rainfall forecasting applied to the Saõ Paulo region
    • Rami'rez M.C.P., Velho H.F.C., and Ferreira N.J. Artificial neural network technique for rainfall forecasting applied to the Saõ Paulo region. J. Hydrol. 301 (2005) 146-162
    • (2005) J. Hydrol. , vol.301 , pp. 146-162
    • Rami'rez, M.C.P.1    Velho, H.F.C.2    Ferreira, N.J.3
  • 35
    • 0031581547 scopus 로고    scopus 로고
    • Water flow modeling in the unsaturated zone with imprecise parameters using a fuzzy approach
    • Schulz K., and Huwe B. Water flow modeling in the unsaturated zone with imprecise parameters using a fuzzy approach. J. Hydrol. 201 (1997) 211-229
    • (1997) J. Hydrol. , vol.201 , pp. 211-229
    • Schulz, K.1    Huwe, B.2
  • 36
    • 0342506462 scopus 로고    scopus 로고
    • Application of a neural network technique to rainfall-runoff modelling
    • Shamseldin A.Y. Application of a neural network technique to rainfall-runoff modelling. J. Hydrol. 199 (1997) 272-294
    • (1997) J. Hydrol. , vol.199 , pp. 272-294
    • Shamseldin, A.Y.1
  • 37
    • 0030201218 scopus 로고    scopus 로고
    • Effect of data standardization on neural network training
    • Shanker M., Hu M.Y., and Hung M.S. Effect of data standardization on neural network training. Int. J. Mange. Sci. 24 (1996) 385-397
    • (1996) Int. J. Mange. Sci. , vol.24 , pp. 385-397
    • Shanker, M.1    Hu, M.Y.2    Hung, M.S.3
  • 38
    • 0029416249 scopus 로고
    • Neural network models of the rainfall-runoff process
    • Smith J., and Eli R.N. Neural network models of the rainfall-runoff process. J. Water Resour. Plan. Manage. 121 (1995) 499-508
    • (1995) J. Water Resour. Plan. Manage. , vol.121 , pp. 499-508
    • Smith, J.1    Eli, R.N.2
  • 40
    • 0037197571 scopus 로고    scopus 로고
    • A data-driven algorithm for constructing artificial neural network rainfall-runoff models
    • Sudheer K.P., Gosain A.K., and Ramasastri K.S. A data-driven algorithm for constructing artificial neural network rainfall-runoff models. Hydrol. Process. 16 (2002) 1325-1330
    • (2002) Hydrol. Process. , vol.16 , pp. 1325-1330
    • Sudheer, K.P.1    Gosain, A.K.2    Ramasastri, K.S.3
  • 41
    • 0033167344 scopus 로고    scopus 로고
    • Rainfall-runoff modelling using artificial neural networks
    • Tokar A.S., and Johnson P.A. Rainfall-runoff modelling using artificial neural networks. J. Hydrol. Eng. 4 (1999) 232-239
    • (1999) J. Hydrol. Eng. , vol.4 , pp. 232-239
    • Tokar, A.S.1    Johnson, P.A.2
  • 42
    • 27944507998 scopus 로고    scopus 로고
    • Valenca, M., Ludermir, T., 2000. Monthly streamflow forecasting using an neural fuzzy network model. In: Proceedings of the Sixth Brazilian Symposium on Neural Networks 6, pp. 117-119.
  • 44
    • 0035340544 scopus 로고    scopus 로고
    • A nonlinear combination of the forecasts of rainfall-runoff models by the first order Takagi-Sugeno fuzzy system
    • Xiong L.H., Shamseldin A.Y., and O'Connor K.M. A nonlinear combination of the forecasts of rainfall-runoff models by the first order Takagi-Sugeno fuzzy system. J. Hydrol. 245 (2001) 196-217
    • (2001) J. Hydrol. , vol.245 , pp. 196-217
    • Xiong, L.H.1    Shamseldin, A.Y.2    O'Connor, K.M.3
  • 45
    • 0033019602 scopus 로고    scopus 로고
    • Short-term streamflow forecasting using artificial neural networks
    • Zealand C., Burn D.H., and Simonovic S.P. Short-term streamflow forecasting using artificial neural networks. J. Hydrol. 214 (1999) 32-48
    • (1999) J. Hydrol. , vol.214 , pp. 32-48
    • Zealand, C.1    Burn, D.H.2    Simonovic, S.P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.