-
1
-
-
0034174280
-
Artificial neural networks in hydrology-I: preliminary concepts
-
ASCE Task Committee. Artificial neural networks in hydrology-I: preliminary concepts. J. Hydrol. Eng. 5 (2000) 115-123
-
(2000)
J. Hydrol. Eng.
, vol.5
, pp. 115-123
-
-
ASCE Task Committee1
-
2
-
-
0034174396
-
Artificial neural networks in hydrology-II: hydrologic applications
-
ASCE Task Committee. Artificial neural networks in hydrology-II: hydrologic applications. J. Hydrol. Eng. 5 (2000) 124-137
-
(2000)
J. Hydrol. Eng.
, vol.5
, pp. 124-137
-
-
ASCE Task Committee1
-
3
-
-
0345257361
-
Short-term water level prediction using neural networks and neuro-fuzzy approach
-
Bazartseren B., Hildebrandt G., and Holz K.P. Short-term water level prediction using neural networks and neuro-fuzzy approach. Neurocomputing 55 (2003) 439-450
-
(2003)
Neurocomputing
, vol.55
, pp. 439-450
-
-
Bazartseren, B.1
Hildebrandt, G.2
Holz, K.P.3
-
5
-
-
0032961025
-
River flood forecasting with a neural network model
-
Campolo M., Andreussi P., and Soldati A. River flood forecasting with a neural network model. Water Resour. Res. 35 (1999) 1191-1197
-
(1999)
Water Resour. Res.
, vol.35
, pp. 1191-1197
-
-
Campolo, M.1
Andreussi, P.2
Soldati, A.3
-
6
-
-
0032722662
-
Forecasting river flow rate during low-flow periods using neural networks
-
Campolo M., Soldati A., and Andreussi P. Forecasting river flow rate during low-flow periods using neural networks. Water Resour. Res. 35 (1999) 3547-3552
-
(1999)
Water Resour. Res.
, vol.35
, pp. 3547-3552
-
-
Campolo, M.1
Soldati, A.2
Andreussi, P.3
-
7
-
-
0035340711
-
A counterpropagation fuzzy-neural network modeling approach to real time streamflow prediction
-
Chang F.J., and Chen Y.C. A counterpropagation fuzzy-neural network modeling approach to real time streamflow prediction. J. Hydrol. 245 (2001) 153-164
-
(2001)
J. Hydrol.
, vol.245
, pp. 153-164
-
-
Chang, F.J.1
Chen, Y.C.2
-
8
-
-
0036719845
-
Real-time recurrent learning neural network for stream-flow forecasting
-
Chang F.J., Chang L.C., and Huang H.L. Real-time recurrent learning neural network for stream-flow forecasting. Hydrol. Process. 16 (2002) 2577-2588
-
(2002)
Hydrol. Process.
, vol.16
, pp. 2577-2588
-
-
Chang, F.J.1
Chang, L.C.2
Huang, H.L.3
-
9
-
-
84974743850
-
Fuzzy model identification based on cluster estimation
-
Chiu S.L. Fuzzy model identification based on cluster estimation. J. Intell. Fuzzy Syst. 2 (1994) 267-278
-
(1994)
J. Intell. Fuzzy Syst.
, vol.2
, pp. 267-278
-
-
Chiu, S.L.1
-
11
-
-
0034993945
-
Artificial neural network modeling of water table depth fluctuations
-
Coulibaly P., Anctil F., Aravena R., and Bobe'e B. Artificial neural network modeling of water table depth fluctuations. Water Resour. Res. 37 (2001) 885-896
-
(2001)
Water Resour. Res.
, vol.37
, pp. 885-896
-
-
Coulibaly, P.1
Anctil, F.2
Aravena, R.3
Bobe'e, B.4
-
12
-
-
20344369583
-
Groundwater level forecasting using artificial neural networks
-
Daliakopoulos I.N., Coulibalya P., and Tsanis I.K. Groundwater level forecasting using artificial neural networks. J. Hydrol. 309 (2005) 229-240
-
(2005)
J. Hydrol.
, vol.309
, pp. 229-240
-
-
Daliakopoulos, I.N.1
Coulibalya, P.2
Tsanis, I.K.3
-
13
-
-
0038076657
-
-
The MathWorks, Inc., Massachusetts
-
Demuth H., and Beale M. Neural Network Toolbox for Use with MATLAB, Users Guide, Version 3 (1998), The MathWorks, Inc., Massachusetts
-
(1998)
Neural Network Toolbox for Use with MATLAB, Users Guide, Version 3
-
-
Demuth, H.1
Beale, M.2
-
14
-
-
20344385052
-
Applicability of neuro-fuzzy techniques in predicting ground-water vulnerability: a GIS-based sensitivity analysis
-
Dixon B. Applicability of neuro-fuzzy techniques in predicting ground-water vulnerability: a GIS-based sensitivity analysis. J. Hydrol. 309 (2004) 17-38
-
(2004)
J. Hydrol.
, vol.309
, pp. 17-38
-
-
Dixon, B.1
-
15
-
-
0345712372
-
Fuzzy rule-based approach to describe solute transport in the unsaturated zone
-
Dou C., Woldt W., and Gogardi I. Fuzzy rule-based approach to describe solute transport in the unsaturated zone. J. Hydrol. 220 (1999) 74-85
-
(1999)
J. Hydrol.
, vol.220
, pp. 74-85
-
-
Dou, C.1
Woldt, W.2
Gogardi, I.3
-
16
-
-
0026445234
-
Effective and efficient global optimization for conceptual rainfall runoff models
-
Duan Q., Sorooshian S., and Gupta V.K. Effective and efficient global optimization for conceptual rainfall runoff models. Water Resour. Res. 28 (1992) 1015-1031
-
(1992)
Water Resour. Res.
, vol.28
, pp. 1015-1031
-
-
Duan, Q.1
Sorooshian, S.2
Gupta, V.K.3
-
17
-
-
0029413797
-
Artificial neural network modelling of the rainfall-runoff process
-
Hsu K., Gupta H.V., and Sorooshian S. Artificial neural network modelling of the rainfall-runoff process. Water Resour. Res. 31 (1995) 2517-2530
-
(1995)
Water Resour. Res.
, vol.31
, pp. 2517-2530
-
-
Hsu, K.1
Gupta, H.V.2
Sorooshian, S.3
-
18
-
-
0035472003
-
River flow time series prediction with a range-dependent neural network
-
Hu T.S., Lam K.C., and Ng S.T. River flow time series prediction with a range-dependent neural network. Hydrol. Sci. J. 46 (2001) 729-745
-
(2001)
Hydrol. Sci. J.
, vol.46
, pp. 729-745
-
-
Hu, T.S.1
Lam, K.C.2
Ng, S.T.3
-
19
-
-
0034641121
-
River flow prediction using artificial neural networks: generalisation beyond the calibration range
-
Imrie C.E., Durucan S., and Korre A. River flow prediction using artificial neural networks: generalisation beyond the calibration range. J. Hydrol. 233 (2000) 138-153
-
(2000)
J. Hydrol.
, vol.233
, pp. 138-153
-
-
Imrie, C.E.1
Durucan, S.2
Korre, A.3
-
20
-
-
1542287371
-
Identification of physical processes inherent in artificial neural network rainfall-runoff models
-
Jain A., Sudheer K.P., and Srinivasulu S. Identification of physical processes inherent in artificial neural network rainfall-runoff models. Hydrol. Process. 118 (2004) 571-581
-
(2004)
Hydrol. Process.
, vol.118
, pp. 571-581
-
-
Jain, A.1
Sudheer, K.P.2
Srinivasulu, S.3
-
21
-
-
0003446302
-
-
The Mathworks, Inc., Natick, MA
-
Jang J.S.R., and Gulley N. The Fuzzy Logic Toolbox for Use with MATLAB (1995), The Mathworks, Inc., Natick, MA
-
(1995)
The Fuzzy Logic Toolbox for Use with MATLAB
-
-
Jang, J.S.R.1
Gulley, N.2
-
23
-
-
0032434569
-
Localized precipitation forecasts from a numerical weather prediction model using artificial neural networks
-
Kuligowski R., and Barros A.P. Localized precipitation forecasts from a numerical weather prediction model using artificial neural networks. Weather Forecast. 13 (1998) 1195-1205
-
(1998)
Weather Forecast.
, vol.13
, pp. 1195-1205
-
-
Kuligowski, R.1
Barros, A.P.2
-
24
-
-
2542447559
-
River flow forecasting using recurrent neural networks
-
Kumar D.N., Raju K.S., and Sathish T. River flow forecasting using recurrent neural networks. Water Resour. Mange. 18 (2004) 143-161
-
(2004)
Water Resour. Mange.
, vol.18
, pp. 143-161
-
-
Kumar, D.N.1
Raju, K.S.2
Sathish, T.3
-
25
-
-
0035104376
-
An application of artificial neural networks for rainfall forecasting
-
Luk K.C., Ball J.E., and Sharma A. An application of artificial neural networks for rainfall forecasting. Math. Computer Modell. 33 (2001) 683-693
-
(2001)
Math. Computer Modell.
, vol.33
, pp. 683-693
-
-
Luk, K.C.1
Ball, J.E.2
Sharma, A.3
-
26
-
-
0034737033
-
A study of optimal model lag and spatial inputs to artificial neural network for rainfall forecasting
-
Luk K.C., Ball J.E., and Sharma A. A study of optimal model lag and spatial inputs to artificial neural network for rainfall forecasting. J. Hydrol. 227 (2000) 56-65
-
(2000)
J. Hydrol.
, vol.227
, pp. 56-65
-
-
Luk, K.C.1
Ball, J.E.2
Sharma, A.3
-
27
-
-
0000234257
-
The evidence framework applied to classification networks
-
MacKay D. The evidence framework applied to classification networks. Neural Comput. 4 (1992) 720-736
-
(1992)
Neural Comput.
, vol.4
, pp. 720-736
-
-
MacKay, D.1
-
28
-
-
0032301756
-
Predicting a chaotic time series using a fuzzy neural network
-
Maguire L.P., Roche B., McGinnity T.T., and McDaid L.J. Predicting a chaotic time series using a fuzzy neural network. Inf. Sci. 112 (1998) 125-136
-
(1998)
Inf. Sci.
, vol.112
, pp. 125-136
-
-
Maguire, L.P.1
Roche, B.2
McGinnity, T.T.3
McDaid, L.J.4
-
29
-
-
0033957764
-
Neural networks for the predictions and forecasting of water resources variables: review of modeling issues and applications
-
Maier H., and Dandy G. Neural networks for the predictions and forecasting of water resources variables: review of modeling issues and applications. Environ. Modell. Software 15 (2000) 101-124
-
(2000)
Environ. Modell. Software
, vol.15
, pp. 101-124
-
-
Maier, H.1
Dandy, G.2
-
30
-
-
0346846648
-
Artificial neural network mode.ling of hydrogen storage properties of Mg-based Alloys
-
Malinova T., and Guo Z.X. Artificial neural network mode.ling of hydrogen storage properties of Mg-based Alloys. Mater. Sci. Eng. A 365 (2004) 219-227
-
(2004)
Mater. Sci. Eng. A
, vol.365
, pp. 219-227
-
-
Malinova, T.1
Guo, Z.X.2
-
31
-
-
1942490118
-
A neuro-fuzzy computing technique for modeling hydrological time series
-
Nayak P.C., Sudheer K.P., Rangan D.M., and Ramasastri K.S. A neuro-fuzzy computing technique for modeling hydrological time series. J. Hydrol. 291 (2004) 52-66
-
(2004)
J. Hydrol.
, vol.291
, pp. 52-66
-
-
Nayak, P.C.1
Sudheer, K.P.2
Rangan, D.M.3
Ramasastri, K.S.4
-
34
-
-
10644287862
-
Artificial neural network technique for rainfall forecasting applied to the Saõ Paulo region
-
Rami'rez M.C.P., Velho H.F.C., and Ferreira N.J. Artificial neural network technique for rainfall forecasting applied to the Saõ Paulo region. J. Hydrol. 301 (2005) 146-162
-
(2005)
J. Hydrol.
, vol.301
, pp. 146-162
-
-
Rami'rez, M.C.P.1
Velho, H.F.C.2
Ferreira, N.J.3
-
35
-
-
0031581547
-
Water flow modeling in the unsaturated zone with imprecise parameters using a fuzzy approach
-
Schulz K., and Huwe B. Water flow modeling in the unsaturated zone with imprecise parameters using a fuzzy approach. J. Hydrol. 201 (1997) 211-229
-
(1997)
J. Hydrol.
, vol.201
, pp. 211-229
-
-
Schulz, K.1
Huwe, B.2
-
36
-
-
0342506462
-
Application of a neural network technique to rainfall-runoff modelling
-
Shamseldin A.Y. Application of a neural network technique to rainfall-runoff modelling. J. Hydrol. 199 (1997) 272-294
-
(1997)
J. Hydrol.
, vol.199
, pp. 272-294
-
-
Shamseldin, A.Y.1
-
37
-
-
0030201218
-
Effect of data standardization on neural network training
-
Shanker M., Hu M.Y., and Hung M.S. Effect of data standardization on neural network training. Int. J. Mange. Sci. 24 (1996) 385-397
-
(1996)
Int. J. Mange. Sci.
, vol.24
, pp. 385-397
-
-
Shanker, M.1
Hu, M.Y.2
Hung, M.S.3
-
38
-
-
0029416249
-
Neural network models of the rainfall-runoff process
-
Smith J., and Eli R.N. Neural network models of the rainfall-runoff process. J. Water Resour. Plan. Manage. 121 (1995) 499-508
-
(1995)
J. Water Resour. Plan. Manage.
, vol.121
, pp. 499-508
-
-
Smith, J.1
Eli, R.N.2
-
40
-
-
0037197571
-
A data-driven algorithm for constructing artificial neural network rainfall-runoff models
-
Sudheer K.P., Gosain A.K., and Ramasastri K.S. A data-driven algorithm for constructing artificial neural network rainfall-runoff models. Hydrol. Process. 16 (2002) 1325-1330
-
(2002)
Hydrol. Process.
, vol.16
, pp. 1325-1330
-
-
Sudheer, K.P.1
Gosain, A.K.2
Ramasastri, K.S.3
-
41
-
-
0033167344
-
Rainfall-runoff modelling using artificial neural networks
-
Tokar A.S., and Johnson P.A. Rainfall-runoff modelling using artificial neural networks. J. Hydrol. Eng. 4 (1999) 232-239
-
(1999)
J. Hydrol. Eng.
, vol.4
, pp. 232-239
-
-
Tokar, A.S.1
Johnson, P.A.2
-
42
-
-
27944507998
-
-
Valenca, M., Ludermir, T., 2000. Monthly streamflow forecasting using an neural fuzzy network model. In: Proceedings of the Sixth Brazilian Symposium on Neural Networks 6, pp. 117-119.
-
-
-
-
43
-
-
11144347859
-
Comparison of data-driven Takagi-Sugeno models of rainfall-discharge dynamics
-
Vernieuwe H., Georgieva O., Baets B.D., Pauwels V.R.N., Verhoest N.E.C., and Troch P.D. Comparison of data-driven Takagi-Sugeno models of rainfall-discharge dynamics. J. Hydrol. 302 (2005) 173-186
-
(2005)
J. Hydrol.
, vol.302
, pp. 173-186
-
-
Vernieuwe, H.1
Georgieva, O.2
Baets, B.D.3
Pauwels, V.R.N.4
Verhoest, N.E.C.5
Troch, P.D.6
-
44
-
-
0035340544
-
A nonlinear combination of the forecasts of rainfall-runoff models by the first order Takagi-Sugeno fuzzy system
-
Xiong L.H., Shamseldin A.Y., and O'Connor K.M. A nonlinear combination of the forecasts of rainfall-runoff models by the first order Takagi-Sugeno fuzzy system. J. Hydrol. 245 (2001) 196-217
-
(2001)
J. Hydrol.
, vol.245
, pp. 196-217
-
-
Xiong, L.H.1
Shamseldin, A.Y.2
O'Connor, K.M.3
-
45
-
-
0033019602
-
Short-term streamflow forecasting using artificial neural networks
-
Zealand C., Burn D.H., and Simonovic S.P. Short-term streamflow forecasting using artificial neural networks. J. Hydrol. 214 (1999) 32-48
-
(1999)
J. Hydrol.
, vol.214
, pp. 32-48
-
-
Zealand, C.1
Burn, D.H.2
Simonovic, S.P.3
|