메뉴 건너뛰기




Volumn 19, Issue 2, 2006, Pages 236-247

Symbiotic adaptive neuro-evolution applied to rainfall-runoff modelling in northern England

Author keywords

[No Author keywords available]

Indexed keywords

BACKPROPAGATION; ERROR ANALYSIS; FUNCTIONS; MATHEMATICAL MODELS; PRECIPITATION (METEOROLOGY); RUNOFF;

EID: 33645996016     PISSN: 08936080     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neunet.2006.01.009     Document Type: Article
Times cited : (37)

References (50)
  • 1
    • 0034254196 scopus 로고    scopus 로고
    • Comparing neural network and autoregressive moving average techniques for the provision of continuous river flow forecasts in two contrasting catchments
    • Abrahart R.J., and See L. Comparing neural network and autoregressive moving average techniques for the provision of continuous river flow forecasts in two contrasting catchments. Hydrological Processes 14 (2000) 2157-2172
    • (2000) Hydrological Processes , vol.14 , pp. 2157-2172
    • Abrahart, R.J.1    See, L.2
  • 2
    • 0036698601 scopus 로고    scopus 로고
    • Multi-model data fusion for river flow forecasting: An evaluation of six alternative methods based on two contrasting catchments
    • Abrahart R.J., and See L. Multi-model data fusion for river flow forecasting: An evaluation of six alternative methods based on two contrasting catchments. Hydrology and Earth System Sciences 6 (2002) 655-670
    • (2002) Hydrology and Earth System Sciences , vol.6 , pp. 655-670
    • Abrahart, R.J.1    See, L.2
  • 3
    • 0742267129 scopus 로고    scopus 로고
    • Using pruning algorithms and genetic algorithms to optimise network architectures and forecasting inputs in a neural network rainfall-runoff model
    • Abrahart R.J., See L., and Kneale P.E. Using pruning algorithms and genetic algorithms to optimise network architectures and forecasting inputs in a neural network rainfall-runoff model. Journal of Hydroinformatics 1 (1999) 103-114
    • (1999) Journal of Hydroinformatics , vol.1 , pp. 103-114
    • Abrahart, R.J.1    See, L.2    Kneale, P.E.3
  • 4
    • 4644274685 scopus 로고    scopus 로고
    • Runoff modelling through back propagation artificial neural network with variable rainfall-runoff data
    • Agarwal A., and Singh R.D. Runoff modelling through back propagation artificial neural network with variable rainfall-runoff data. Water Resources Management 18 (2004) 285-300
    • (2004) Water Resources Management , vol.18 , pp. 285-300
    • Agarwal, A.1    Singh, R.D.2
  • 6
    • 0034174280 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology. I. Preliminary Concepts
    • ASCE. Artificial neural networks in hydrology. I. Preliminary Concepts. Journal of Hydrologic Engineering 5 (2000) 115-123
    • (2000) Journal of Hydrologic Engineering , vol.5 , pp. 115-123
    • ASCE1
  • 7
    • 0034174396 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology. II. Hydrologic applications
    • ASCE. Artificial neural networks in hydrology. II. Hydrologic applications. ASCE Journal of Hydrologic Engineering 5 (2000) 124-137
    • (2000) ASCE Journal of Hydrologic Engineering , vol.5 , pp. 124-137
    • ASCE1
  • 9
  • 11
    • 10644295753 scopus 로고    scopus 로고
    • Input determination for neural network models in water resources applications. Part 1-background and methodology
    • Bowden G.J., Dandy G.C., and Maier H.R. Input determination for neural network models in water resources applications. Part 1-background and methodology. Journal of Hydrology 301 (2005) 75-92
    • (2005) Journal of Hydrology , vol.301 , pp. 75-92
    • Bowden, G.J.1    Dandy, G.C.2    Maier, H.R.3
  • 12
    • 0038240745 scopus 로고    scopus 로고
    • Artificial neural network approach to flood forecasting in the river Arno
    • Campolo M., Soldati A., and Andreussi P. Artificial neural network approach to flood forecasting in the river Arno. Hydrological Sciences Journal 48 (2003) 381-398
    • (2003) Hydrological Sciences Journal , vol.48 , pp. 381-398
    • Campolo, M.1    Soldati, A.2    Andreussi, P.3
  • 13
    • 0034749335 scopus 로고    scopus 로고
    • Hydrological modelling using artificial neural networks
    • Dawson C.W., and Wilby R.L. Hydrological modelling using artificial neural networks. Progress in Physical Geography 25 (2001) 80-108
    • (2001) Progress in Physical Geography , vol.25 , pp. 80-108
    • Dawson, C.W.1    Wilby, R.L.2
  • 14
    • 23744444467 scopus 로고    scopus 로고
    • Constraints of artificial neural networks for rainfall-runoff modelling: Trade-offs in hydrological state representation and model evaluation
    • DeVos N.J., and Rientjes T.H.M. Constraints of artificial neural networks for rainfall-runoff modelling: Trade-offs in hydrological state representation and model evaluation. Hydrology and Earth System Sciences 9 (2005) 111-126
    • (2005) Hydrology and Earth System Sciences , vol.9 , pp. 111-126
    • DeVos, N.J.1    Rientjes, T.H.M.2
  • 15
    • 9144260142 scopus 로고    scopus 로고
    • Optimal operation of artificial groundwater recharge systems considering water quality transformations
    • Eusuff M.M., and Lansey K.E. Optimal operation of artificial groundwater recharge systems considering water quality transformations. Water Resources Management 18 (2004) 379-405
    • (2004) Water Resources Management , vol.18 , pp. 379-405
    • Eusuff, M.M.1    Lansey, K.E.2
  • 16
    • 0037052898 scopus 로고    scopus 로고
    • A weather-type approach to analysing water resource drought in the Yorkshire region from 1881 to 1998
    • Fowler H.J., and Kilsby C.G. A weather-type approach to analysing water resource drought in the Yorkshire region from 1881 to 1998. Journal of Hydrology 262 (2002) 177-192
    • (2002) Journal of Hydrology , vol.262 , pp. 177-192
    • Fowler, H.J.1    Kilsby, C.G.2
  • 17
    • 0029657538 scopus 로고    scopus 로고
    • Use of a genetic algorithm combined with a local search method for the automatic calibration of conceptual rainfall-runoff models
    • Franchini M. Use of a genetic algorithm combined with a local search method for the automatic calibration of conceptual rainfall-runoff models. Hydrological Sciences Journal 41 (1996) 21-39
    • (1996) Hydrological Sciences Journal , vol.41 , pp. 21-39
    • Franchini, M.1
  • 18
    • 20844456071 scopus 로고    scopus 로고
    • Improving generalization of input-output artificial neural networks in rainfall-runoff modelling
    • Giustolisi O., and Laucelli D. Improving generalization of input-output artificial neural networks in rainfall-runoff modelling. Hydrological Sciences Journal 50 (2005) 439-457
    • (2005) Hydrological Sciences Journal , vol.50 , pp. 439-457
    • Giustolisi, O.1    Laucelli, D.2
  • 19
    • 0001956933 scopus 로고    scopus 로고
    • How well does your model fit the data?
    • Hall M.J. How well does your model fit the data?. Journal of Hydroinformatics 3 (2001) 49-55
    • (2001) Journal of Hydroinformatics , vol.3 , pp. 49-55
    • Hall, M.J.1
  • 20
    • 0030373712 scopus 로고    scopus 로고
    • Groundwater optimization and parameter estimation by genetic algorithm and dual reciprocity boundary element method
    • Harrouni K.E., Ouazar D., Waiters G.A., and Cheng A.H.-D. Groundwater optimization and parameter estimation by genetic algorithm and dual reciprocity boundary element method. Engineering Analysis with Boundary Elements 18 (1996) 287-296
    • (1996) Engineering Analysis with Boundary Elements , vol.18 , pp. 287-296
    • Harrouni, K.E.1    Ouazar, D.2    Waiters, G.A.3    Cheng, A.H.-D.4
  • 21
    • 0002941592 scopus 로고
    • Implicit niching in a learning classifier system: Nature's way
    • Horn J., Goldberg D.E., and Deb K. Implicit niching in a learning classifier system: Nature's way. Evolutionary Computation 2 (1994) 27-66
    • (1994) Evolutionary Computation , vol.2 , pp. 27-66
    • Horn, J.1    Goldberg, D.E.2    Deb, K.3
  • 22
    • 0034641121 scopus 로고    scopus 로고
    • River flow prediction using artificial neural networks: Generalisation beyond the calibration range
    • Imrie C.E., Durucan S., and Korre A. River flow prediction using artificial neural networks: Generalisation beyond the calibration range. Journal of Hydrology 233 (2000) 138-153
    • (2000) Journal of Hydrology , vol.233 , pp. 138-153
    • Imrie, C.E.1    Durucan, S.2    Korre, A.3
  • 23
    • 0037340658 scopus 로고    scopus 로고
    • Comparative analysis of event based rainfall-runoff modeling techniques-deterministic, statistical, and artificial neural networks
    • Jain A., and Indurthy S.K.V.P. Comparative analysis of event based rainfall-runoff modeling techniques-deterministic, statistical, and artificial neural networks. ASCE Journal of Hydrological Engineering 8 (2003) 93-98
    • (2003) ASCE Journal of Hydrological Engineering , vol.8 , pp. 93-98
    • Jain, A.1    Indurthy, S.K.V.P.2
  • 24
    • 2442639370 scopus 로고    scopus 로고
    • Development of effective and efficient rainfall-runoff models using integration of deterministic, real-coded genetic algorithms and artificial neural network techniques
    • 10.1029/2003WR002355
    • Jain A., and Srinivasulu S. Development of effective and efficient rainfall-runoff models using integration of deterministic, real-coded genetic algorithms and artificial neural network techniques. Water Resources Research 40 (2004) W04302 10.1029/2003WR002355
    • (2004) Water Resources Research , vol.40
    • Jain, A.1    Srinivasulu, S.2
  • 26
    • 17844379254 scopus 로고    scopus 로고
    • Multiobjective calibration with Pareto preference ordering: An application to rainfall-runoff model calibration
    • (ISI:000227553700001)
    • Khu S.T., and Madsen H. Multiobjective calibration with Pareto preference ordering: An application to rainfall-runoff model calibration. Water Resources Research 41 (2005) (ISI:000227553700001)
    • (2005) Water Resources Research , vol.41
    • Khu, S.T.1    Madsen, H.2
  • 27
    • 0019227948 scopus 로고
    • Real-time forecasting with a conceptual hydrologic model: 2. Application and results
    • Kitanidis P.K., and Bras R.L. Real-time forecasting with a conceptual hydrologic model: 2. Application and results. Water Resources Research 16 (1980) 1034-1044
    • (1980) Water Resources Research , vol.16 , pp. 1034-1044
    • Kitanidis, P.K.1    Bras, R.L.2
  • 28
    • 33645964697 scopus 로고    scopus 로고
    • Kneale, P.E., See, L., Cameron, D., Kerr, P. & Merrix, R. (2000). Using a prototype neural net forecasting model for flood predictions on the Rivers Tyne and Wear. BHS Symposium, 6-8 September 2000, Newcastle.
  • 29
    • 0030162087 scopus 로고    scopus 로고
    • Rainfall-runoff modelling of the Ouse basin, North Yorkshire: An application of a physically-based distributed model
    • Kuchment L.S., Demidov V.N., Naden P.S., Cooper D.M., and Broadhurst P. Rainfall-runoff modelling of the Ouse basin, North Yorkshire: An application of a physically-based distributed model. Journal of Hydrology 181 (1996) 323-342
    • (1996) Journal of Hydrology , vol.181 , pp. 323-342
    • Kuchment, L.S.1    Demidov, V.N.2    Naden, P.S.3    Cooper, D.M.4    Broadhurst, P.5
  • 30
    • 21344450695 scopus 로고    scopus 로고
    • Time series forecasting by combining the radial basis function network and self-organizing map
    • Lin G.F., and Chen L.H. Time series forecasting by combining the radial basis function network and self-organizing map. Hydrological Processes 19 (2005) 1925-1937
    • (2005) Hydrological Processes , vol.19 , pp. 1925-1937
    • Lin, G.F.1    Chen, L.H.2
  • 31
    • 0034739246 scopus 로고    scopus 로고
    • Automatic calibration of a conceptual rainfall-runoff model using multiple objectives
    • Madsen H. Automatic calibration of a conceptual rainfall-runoff model using multiple objectives. Journal of Hydrology 235 (2000) 276-288
    • (2000) Journal of Hydrology , vol.235 , pp. 276-288
    • Madsen, H.1
  • 32
    • 0037300813 scopus 로고    scopus 로고
    • Parameter estimation in distributed hydrological catchment modelling using automatic calibration with multiple objectives
    • Madsen H. Parameter estimation in distributed hydrological catchment modelling using automatic calibration with multiple objectives. Advances in Water Resources 26 (2003) 205-216
    • (2003) Advances in Water Resources , vol.26 , pp. 205-216
    • Madsen, H.1
  • 33
    • 0033957764 scopus 로고    scopus 로고
    • Neural networks for the prediction and forecasting of water resources variables: A review of modelling issues and applications
    • Maier H.R., and Dandy G.C. Neural networks for the prediction and forecasting of water resources variables: A review of modelling issues and applications. Environmental Modelling and Software 15 (2000) 101-124
    • (2000) Environmental Modelling and Software , vol.15 , pp. 101-124
    • Maier, H.R.1    Dandy, G.C.2
  • 34
    • 10444270597 scopus 로고    scopus 로고
    • Forming neural networks through efficient and adaptive coevolution
    • Moriarty D.E., and Miikkulainen R. Forming neural networks through efficient and adaptive coevolution. Evolutionary Computation 5 (1998) 373-399
    • (1998) Evolutionary Computation , vol.5 , pp. 373-399
    • Moriarty, D.E.1    Miikkulainen, R.2
  • 36
    • 0014776873 scopus 로고
    • River flow forecasting through conceptual models, I: A discussion of principles
    • Nash J.E., and Sutcliffe J.V. River flow forecasting through conceptual models, I: A discussion of principles. Journal of Hydrology 10 (1970) 398-409
    • (1970) Journal of Hydrology , vol.10 , pp. 398-409
    • Nash, J.E.1    Sutcliffe, J.V.2
  • 37
    • 33646007084 scopus 로고    scopus 로고
    • Potter, M. A. (1997). The design and analysis of a computational model of cooperative coevolution. Unpublished PhD thesis: George Mason University.
  • 38
    • 0347135926 scopus 로고    scopus 로고
    • Modeling of the daily rainfall-runoff relationship with artificial neural network
    • Rajurkar M., Kothyari U., and Chaube U. Modeling of the daily rainfall-runoff relationship with artificial neural network. Journal of Hydrology 285 (2004) 96-113
    • (2004) Journal of Hydrology , vol.285 , pp. 96-113
    • Rajurkar, M.1    Kothyari, U.2    Chaube, U.3
  • 39
    • 0346037047 scopus 로고    scopus 로고
    • Calibration of rainfall-runoff models using global optimization
    • Sardinas J.G., and Pedreira M.D.J. Calibration of rainfall-runoff models using global optimization. Ingenieria Hidraulica en Mexico 18 (2003) 55-73
    • (2003) Ingenieria Hidraulica en Mexico , vol.18 , pp. 55-73
    • Sardinas, J.G.1    Pedreira, M.D.J.2
  • 40
    • 0033381989 scopus 로고    scopus 로고
    • Applying soft computing approaches to river level forecasting
    • See L., and Openshaw S. Applying soft computing approaches to river level forecasting. Hydrological Sciences Journal 44 (1999) 763-778
    • (1999) Hydrological Sciences Journal , vol.44 , pp. 763-778
    • See, L.1    Openshaw, S.2
  • 41
    • 0034254025 scopus 로고    scopus 로고
    • A hybrid multi-model approach to river level forecasting
    • See L., and Openshaw S. A hybrid multi-model approach to river level forecasting. Hydrological Sciences Journal 45 (2000) 523-536
    • (2000) Hydrological Sciences Journal , vol.45 , pp. 523-536
    • See, L.1    Openshaw, S.2
  • 42
    • 0035312520 scopus 로고    scopus 로고
    • Genetic algorithms for the classification and prediction of precipitation occurrence
    • Sen Z., and Oztopal A. Genetic algorithms for the classification and prediction of precipitation occurrence. Hydrological Sciences Journal 46 (2001) 255-267
    • (2001) Hydrological Sciences Journal , vol.46 , pp. 255-267
    • Sen, Z.1    Oztopal, A.2
  • 43
    • 0342506462 scopus 로고    scopus 로고
    • Application of a neural network technique to rainfall-runoff modeling
    • Shamseldin A.Y. Application of a neural network technique to rainfall-runoff modeling. Journal of Hydrology 199 (1997) 272-294
    • (1997) Journal of Hydrology , vol.199 , pp. 272-294
    • Shamseldin, A.Y.1
  • 44
    • 0035701248 scopus 로고    scopus 로고
    • A non-linear neural network technique for updating of river flow forecasts
    • Shamseldin A.Y., and O'Connor K.M. A non-linear neural network technique for updating of river flow forecasts. Hydrology and Earth System Sciences 5 (2001) 577-597
    • (2001) Hydrology and Earth System Sciences , vol.5 , pp. 577-597
    • Shamseldin, A.Y.1    O'Connor, K.M.2
  • 45
    • 33646001795 scopus 로고    scopus 로고
    • Solomatine, D. P. (1998). Genetic and other global optimization algorithmscomparison and use in calibration problems. In proceedings of the third international conference on hydroinformatics, Copenhagen, Denmark, August 1998, (1021-1028).
  • 46
    • 0002391575 scopus 로고    scopus 로고
    • Two strategies of adaptive cluster covering with descent and their comparison to other algorithms
    • Solomatine D.P. Two strategies of adaptive cluster covering with descent and their comparison to other algorithms. Journal of Global Optimization 14 (1999) 55-78
    • (1999) Journal of Global Optimization , vol.14 , pp. 55-78
    • Solomatine, D.P.1
  • 47
    • 0033105463 scopus 로고    scopus 로고
    • Probabilistic optimization for conceptual rainfall-runoff models: A comparison of the shuffled complex evolution and simulated annealing algorithms
    • Thyer M., Kuczera G., and Bates B.C. Probabilistic optimization for conceptual rainfall-runoff models: A comparison of the shuffled complex evolution and simulated annealing algorithms. Water Resources Research 35 (1999) 767-773
    • (1999) Water Resources Research , vol.35 , pp. 767-773
    • Thyer, M.1    Kuczera, G.2    Bates, B.C.3
  • 48
    • 26444531130 scopus 로고    scopus 로고
    • Identification of rainfall-runoff models for operational applications
    • Wagener T., and McIntyre N. Identification of rainfall-runoff models for operational applications. Hydrological Sciences Journal 5 (2005) 735-751
    • (2005) Hydrological Sciences Journal , vol.5 , pp. 735-751
    • Wagener, T.1    McIntyre, N.2
  • 49
    • 0026266630 scopus 로고
    • The genetic algorithm and its application to calibration of conceptual rainfall-runoff models
    • Wang Q.J. The genetic algorithm and its application to calibration of conceptual rainfall-runoff models. Water Resources Research 27 (1991) 2467-2471
    • (1991) Water Resources Research , vol.27 , pp. 2467-2471
    • Wang, Q.J.1
  • 50
    • 0025477595 scopus 로고
    • Genetic algorithms and neural networks: Optimizing connections and connectivity
    • Whitley D., Starkweather T., and Bogart C. Genetic algorithms and neural networks: Optimizing connections and connectivity. Parallel Computing 14 (1990) 347-361
    • (1990) Parallel Computing , vol.14 , pp. 347-361
    • Whitley, D.1    Starkweather, T.2    Bogart, C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.