메뉴 건너뛰기




Volumn 329, Issue 3-4, 2006, Pages 363-367

Particle swarm optimization training algorithm for ANNs in stage prediction of Shing Mun River

Author keywords

Artificial neural networks; Particle swarm optimization; Shing Mun River

Indexed keywords

ALGORITHMS; COST EFFECTIVENESS; FLOODS; NEURAL NETWORKS; OPTIMIZATION; STATISTICAL METHODS;

EID: 33748929857     PISSN: 00221694     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jhydrol.2006.02.025     Document Type: Article
Times cited : (298)

References (20)
  • 1
    • 0037199710 scopus 로고    scopus 로고
    • Aquifer parameters determination for large diameter wells using neural network approach
    • Balkhair K.S. Aquifer parameters determination for large diameter wells using neural network approach. Journal of Hydrology 265 1-4 (2002) 118-128
    • (2002) Journal of Hydrology , vol.265 , Issue.1-4 , pp. 118-128
    • Balkhair, K.S.1
  • 2
    • 0345257361 scopus 로고    scopus 로고
    • Short-term water level prediction using neural networks and neuro-fuzzy approach
    • Bazartseren B., Hildebrandt G., and Holz K.-P. Short-term water level prediction using neural networks and neuro-fuzzy approach. Neurocomputing 55 3-4 (2003) 439-450
    • (2003) Neurocomputing , vol.55 , Issue.3-4 , pp. 439-450
    • Bazartseren, B.1    Hildebrandt, G.2    Holz, K.-P.3
  • 4
    • 0035477222 scopus 로고    scopus 로고
    • A fifth generation numerical modelling system in coastal zone
    • Chau K.W., and Chen W. A fifth generation numerical modelling system in coastal zone. Applied Mathematical Modelling 25 10 (2001) 887-900
    • (2001) Applied Mathematical Modelling , vol.25 , Issue.10 , pp. 887-900
    • Chau, K.W.1    Chen, W.2
  • 5
    • 84943231434 scopus 로고    scopus 로고
    • Real-time prediction of water stage with artificial neural network approach
    • Chau K.W., and Cheng C.T. Real-time prediction of water stage with artificial neural network approach. Lecture Notes in Artificial Intelligence 2557 (2002) 715
    • (2002) Lecture Notes in Artificial Intelligence , vol.2557 , pp. 715
    • Chau, K.W.1    Cheng, C.T.2
  • 6
    • 0026174341 scopus 로고
    • Mathematical modelling of Shing Mun River network
    • Chau K.W., and Lee J.H.W. Mathematical modelling of Shing Mun River network. Advances in Water Resources 14 3 (1991) 106-112
    • (1991) Advances in Water Resources , vol.14 , Issue.3 , pp. 106-112
    • Chau, K.W.1    Lee, J.H.W.2
  • 7
    • 0026083839 scopus 로고
    • A microcomputer model for flood prediction with applications
    • Chau K.W., and Lee J.H.W. A microcomputer model for flood prediction with applications. Microcomputers in Civil Engineering 6 2 (1991) 109-121
    • (1991) Microcomputers in Civil Engineering , vol.6 , Issue.2 , pp. 109-121
    • Chau, K.W.1    Lee, J.H.W.2
  • 8
    • 0036464756 scopus 로고    scopus 로고
    • The particle swarm-explosion, stability, and convergence in a multidimensional complex space
    • Clerc M., and Kennedy J. The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Transactions on Evolutionary Computation 6 1 (2002) 58-73
    • (2002) IEEE Transactions on Evolutionary Computation , vol.6 , Issue.1 , pp. 58-73
    • Clerc, M.1    Kennedy, J.2
  • 10
    • 0030645460 scopus 로고    scopus 로고
    • Kennedy, J., 1997. The Particle swarm: Social adaptation of knowledge. In: Proceedings of the 1997 International Conference on Evolutionary Computation, Indianapolis, pp. 303-308.
  • 11
    • 0029535737 scopus 로고    scopus 로고
    • Kennedy, J., Eberhart, R., 1995. Particle swarm optimization. In: Proceedings of the 1995 IEEE International Conference on Neural Networks, Perth, pp. 1942-1948.
  • 12
    • 4544289385 scopus 로고    scopus 로고
    • Improving performance in pulse radar detection using Bayesian regularization for neural network training
    • Kumar P., Merchant S.N., and Desai U.B. Improving performance in pulse radar detection using Bayesian regularization for neural network training. Digital Signal Processing 14 5 (2004) 438-448
    • (2004) Digital Signal Processing , vol.14 , Issue.5 , pp. 438-448
    • Kumar, P.1    Merchant, S.N.2    Desai, U.B.3
  • 13
    • 85034860364 scopus 로고    scopus 로고
    • Improved non-linear transfer function and neural network methods of flow routing for real-time forecasting
    • Lekkas D.F., Imrie C.E., and Lees M.J. Improved non-linear transfer function and neural network methods of flow routing for real-time forecasting. Journal of Hydroinformatics 3 3 (2001) 153-164
    • (2001) Journal of Hydroinformatics , vol.3 , Issue.3 , pp. 153-164
    • Lekkas, D.F.1    Imrie, C.E.2    Lees, M.J.3
  • 15
    • 0034737033 scopus 로고    scopus 로고
    • A study of optimal model lag and spatial inputs to artificial neural network for rainfall forecasting
    • Luk K.C., Ball J.E., and Sharma A. A study of optimal model lag and spatial inputs to artificial neural network for rainfall forecasting. Journal of Hydrology 227 1-4 (2000) 56-65
    • (2000) Journal of Hydrology , vol.227 , Issue.1-4 , pp. 56-65
    • Luk, K.C.1    Ball, J.E.2    Sharma, A.3
  • 17
    • 0028988614 scopus 로고
    • Optimal field-scale groundwater remediation using neural networks and the genetic algorithm
    • Rogers L.L., Dowla F.U., and Johnson V.M. Optimal field-scale groundwater remediation using neural networks and the genetic algorithm. Environmental Science and Technology 29 5 (1995) 1145-1155
    • (1995) Environmental Science and Technology , vol.29 , Issue.5 , pp. 1145-1155
    • Rogers, L.L.1    Dowla, F.U.2    Johnson, V.M.3
  • 19
    • 28844436447 scopus 로고    scopus 로고
    • Comparison of artificial neural network and regression models for sediment loss prediction from Banha watershed in India
    • Sarangi A., and Bhattacharya A.K. Comparison of artificial neural network and regression models for sediment loss prediction from Banha watershed in India. Agricultural Water Management 78 3 (2005) 195-208
    • (2005) Agricultural Water Management , vol.78 , Issue.3 , pp. 195-208
    • Sarangi, A.1    Bhattacharya, A.K.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.