메뉴 건너뛰기




Volumn 52, Issue 3, 2007, Pages 414-431

Timing error correction procedure applied to neural network rainfall-runoff modelling

Author keywords

Hydrological forecasting; Neural networks; Rainfall runoff modelling; River Ouse; Timing errors

Indexed keywords

COMPUTER SIMULATION; ERROR CORRECTION; FORECASTING; HYDROLOGY; MEAN SQUARE ERROR; NEURAL NETWORKS;

EID: 34249794005     PISSN: 02626667     EISSN: None     Source Type: Journal    
DOI: 10.1623/hysj.52.3.414     Document Type: Article
Times cited : (51)

References (55)
  • 1
    • 0034254196 scopus 로고    scopus 로고
    • Comparing neural network and autoregressive moving average techniques for the provision of continuous river flow forecasts in two contrasting catchments
    • Abrahart, R. J. & See, L. M. (2000) Comparing neural network and autoregressive moving average techniques for the provision of continuous river flow forecasts in two contrasting catchments. Hydrol. Processes 14(11/12), 2157-2172.
    • (2000) Hydrol. Processes , vol.14 , Issue.11-12 , pp. 2157-2172
    • Abrahart, R.J.1    See, L.M.2
  • 2
    • 0036698601 scopus 로고    scopus 로고
    • Multi-model data fusion for river flow forecasting: An evaluation of six alternative methods based on two contrasting catchments
    • Abrahart, R. J. & See, L. M. (2002) Multi-model data fusion for river flow forecasting: an evaluation of six alternative methods based on two contrasting catchments. Hydrol. Earth System Sci. 6(4), 655-670.
    • (2002) Hydrol. Earth System Sci , vol.6 , Issue.4 , pp. 655-670
    • Abrahart, R.J.1    See, L.M.2
  • 3
    • 0035117652 scopus 로고    scopus 로고
    • Modelling sediment transfer in Malawi: Comparing backpropagation neural network solutions against a multiple linear regression benchmark using small data sets
    • Abrahart, R. J. & White, S. M. (2001) Modelling sediment transfer in Malawi: comparing backpropagation neural network solutions against a multiple linear regression benchmark using small data sets. Phys. Chem. Earth (B) 26(1), 19-24.
    • (2001) Phys. Chem. Earth (B) , vol.26 , Issue.1 , pp. 19-24
    • Abrahart, R.J.1    White, S.M.2
  • 4
    • 0035044111 scopus 로고    scopus 로고
    • Neural networks in civil engineering: 1989-2000
    • Adeli, H. (2001) Neural networks in civil engineering: 1989-2000. Computer-Aided Civil and Infrastructure Engng 16(2), 126-142.
    • (2001) Computer-Aided Civil and Infrastructure Engng , vol.16 , Issue.2 , pp. 126-142
    • Adeli, H.1
  • 5
    • 0034174396 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology. II: Hydrologic applications
    • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology
    • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology (2000) Artificial neural networks in hydrology. II: Hydrologic applications. J. Hydrol. Engng ASCE 5(2), 124-137.
    • (2000) J. Hydrol. Engng ASCE , vol.5 , Issue.2 , pp. 124-137
  • 6
    • 0032821643 scopus 로고    scopus 로고
    • Hydrograph prediction - how much skill?
    • SRef-ID: 1607-7938/hess/ 1999-3-305
    • Beran, M. (1999) Hydrograph prediction - how much skill? Hydrol. Earth System Sci. 3(2), 305-307. SRef-ID: 1607-7938/hess/ 1999-3-305.
    • (1999) Hydrol. Earth System Sci , vol.3 , Issue.2 , pp. 305-307
    • Beran, M.1
  • 7
    • 0033309515 scopus 로고    scopus 로고
    • Neural networks in materials science
    • Bhadeshia, H. K. D. H. (1999) Neural networks in materials science. ISIJ International 39(10), 966-979.
    • (1999) ISIJ International , vol.39 , Issue.10 , pp. 966-979
    • Bhadeshia, H.K.D.H.1
  • 8
    • 19944401912 scopus 로고    scopus 로고
    • Data-driven modelling in the context of sediment transport
    • Bhattachatya, B., Price, R. K. & Solomatine, D. P. (2005) Data-driven modelling in the context of sediment transport. Phys. Chem. Earth 30(4/5), 297-302.
    • (2005) Phys. Chem. Earth , vol.30 , Issue.4-5 , pp. 297-302
    • Bhattachatya, B.1    Price, R.K.2    Solomatine, D.P.3
  • 9
    • 0000413222 scopus 로고
    • Applications of artificial neural networks in process engineering
    • Bulsari, A. B. (1994) Applications of artificial neural networks in process engineering. J. Systems Engng 4(3), 131-170.
    • (1994) J. Systems Engng , vol.4 , Issue.3 , pp. 131-170
    • Bulsari, A.B.1
  • 10
    • 0038240745 scopus 로고    scopus 로고
    • Artificial neural network approach to flood forecasting in the River
    • Campolo, M., Soldati, A. & Andreussi, P. (2003) Artificial neural network approach to flood forecasting in the River Arno. Hydrol. Sci. J. 48(3), 381-398.
    • (2003) Arno. Hydrol. Sci. J , vol.48 , Issue.3 , pp. 381-398
    • Campolo, M.1    Soldati, A.2    Andreussi, P.3
  • 11
    • 0034145096 scopus 로고    scopus 로고
    • Forecasting summertime surface-level ozone concentrations in the Lower Fraser Valley of British Columbia: An ensemble neural network approach
    • Cannon, A. J. & Lord, E. R. (2000) Forecasting summertime surface-level ozone concentrations in the Lower Fraser Valley of British Columbia: an ensemble neural network approach. J. Air & Waste Manage. Assoc. 50(3), 322-339.
    • (2000) J. Air & Waste Manage. Assoc , vol.50 , Issue.3 , pp. 322-339
    • Cannon, A.J.1    Lord, E.R.2
  • 12
    • 0031937545 scopus 로고    scopus 로고
    • Delayed time series predictions with neural networks
    • Conway, A. J., Macpherson, K. P. & Brown, J. C. (1998) Delayed time series predictions with neural networks. Neurocomputing 18(1/3), 81-89.
    • (1998) Neurocomputing , vol.18 , Issue.1-3 , pp. 81-89
    • Conway, A.J.1    Macpherson, K.P.2    Brown, J.C.3
  • 13
    • 0034749335 scopus 로고    scopus 로고
    • Hydrological modelling using artificial neural networks
    • Dawson, C. W. & Wilby, R. L. (2001) Hydrological modelling using artificial neural networks. Progr. Phys. Geogr. 25(1), 80-108.
    • (2001) Progr. Phys. Geogr , vol.25 , Issue.1 , pp. 80-108
    • Dawson, C.W.1    Wilby, R.L.2
  • 14
    • 33846798345 scopus 로고    scopus 로고
    • HydroTest: A web-based toolbox of statistical measures for the standardised assessment of hydrological forecasts
    • Dawson, C. W., Abrahart, R. J. & See, L. M. (2007) HydroTest: a web-based toolbox of statistical measures for the standardised assessment of hydrological forecasts. Environ. Model. Software 27, 1034-1052.
    • (2007) Environ. Model. Software , vol.27 , pp. 1034-1052
    • Dawson, C.W.1    Abrahart, R.J.2    See, L.M.3
  • 15
    • 33645996016 scopus 로고    scopus 로고
    • Symbiotic adaptive neuro-evolution applied to rainfall-runoff modelling in northern England
    • Dawson, C. W., See, L. M., Abrahart, R. J. & Heppenstall, A. J. (2006) Symbiotic adaptive neuro-evolution applied to rainfall-runoff modelling in northern England. Neural Networks 19(2), 236-247.
    • (2006) Neural Networks , vol.19 , Issue.2 , pp. 236-247
    • Dawson, C.W.1    See, L.M.2    Abrahart, R.J.3    Heppenstall, A.J.4
  • 17
    • 23744444467 scopus 로고    scopus 로고
    • Constraints of artificial neural networks for rainfall-runoff modelling: Trade-offs in hydrological state representation and model evaluation
    • SRef-ID: 1607-7938/hess /2005-9-111
    • de Vos, N. J. & Rientjes, T. H. M. (2005) Constraints of artificial neural networks for rainfall-runoff modelling: trade-offs in hydrological state representation and model evaluation. Hydrol. Earth System Sci. 9(1/2), 111-126. SRef-ID: 1607-7938/hess /2005-9-111.
    • (2005) Hydrol. Earth System Sci , vol.9 , Issue.1-2 , pp. 111-126
    • de Vos, N.J.1    Rientjes, T.H.M.2
  • 19
    • 0027788805 scopus 로고
    • Unit hydrograph revisited: An alternate iterative approach to UH and effective precipitation identification
    • Duband, D., Obled, Ch. & Rodriguez, J. Y. (1993) Unit hydrograph revisited: an alternate iterative approach to UH and effective precipitation identification. J. Hydrol. 150(1), 115-149.
    • (1993) J. Hydrol , vol.150 , Issue.1 , pp. 115-149
    • Duband, D.1    Obled, C.2    Rodriguez, J.Y.3
  • 20
    • 0037052898 scopus 로고    scopus 로고
    • A weather-type approach to analysing water resource drought in the Yorkshire region from 1881 to 1998
    • Fowler, H. J. & Kilsby, C. G. (2002) A weather-type approach to analysing water resource drought in the Yorkshire region from 1881 to 1998. J. Hydrol. 262(1/4), 177-192.
    • (2002) J. Hydrol , vol.262 , Issue.1-4 , pp. 177-192
    • Fowler, H.J.1    Kilsby, C.G.2
  • 21
    • 0032146239 scopus 로고    scopus 로고
    • Artificial neural networks (the multilayer perceptron) - a review of applications in the atmospheric sciences
    • doi: 10.1016/S1352-2310(97)00447-0
    • Gardner, M. W. & Dorling S. R. (1998) Artificial neural networks (the multilayer perceptron) - a review of applications in the atmospheric sciences. Atmos. Environ. 32(14/15), 2627-2636. doi: 10.1016/S1352-2310(97)00447-0.
    • (1998) Atmos. Environ , vol.32 , Issue.14-15 , pp. 2627-2636
    • Gardner, M.W.1    Dorling, S.R.2
  • 22
    • 33745024580 scopus 로고    scopus 로고
    • Optimal design of artificial neural networks by a multi-objective strategy: Groundwater level predictions
    • Giustolisi, O. & Simeone, V. (2006) Optimal design of artificial neural networks by a multi-objective strategy: groundwater level predictions. Hydrol. Sci. J. 51(3), 502-523.
    • (2006) Hydrol. Sci. J , vol.51 , Issue.3 , pp. 502-523
    • Giustolisi, O.1    Simeone, V.2
  • 23
    • 0001956933 scopus 로고    scopus 로고
    • How well does your model fit the data?
    • Hall, M. J. (2001) How well does your model fit the data? J. Hydroinformatics 3(1), 49-55.
    • (2001) J. Hydroinformatics , vol.3 , Issue.1 , pp. 49-55
    • Hall, M.J.1
  • 24
    • 2442530447 scopus 로고    scopus 로고
    • A new method of ozone forecasting using fuzzy expert and neural network systems
    • Heo J. S. & Kim, D. S. (2004) A new method of ozone forecasting using fuzzy expert and neural network systems. Sci. Total Environ. 325(1/3), 221-237.
    • (2004) Sci. Total Environ , vol.325 , Issue.1-3 , pp. 221-237
    • Heo, J.S.1    Kim, D.S.2
  • 25
    • 0002941592 scopus 로고
    • Implicit Niching in a learning classifier system: Nature's way
    • Horn, J., Goldberg, D. E. & Deb, K. (1994) Implicit Niching in a learning classifier system: Nature's way. Evolutionary Computation 2(1), 27-66.
    • (1994) Evolutionary Computation , vol.2 , Issue.1 , pp. 27-66
    • Horn, J.1    Goldberg, D.E.2    Deb, K.3
  • 26
    • 17444385970 scopus 로고    scopus 로고
    • A modified neural network for improving river flow prediction
    • Hu, T. S., Lam, K. C. & Ng, S. T. (2005) A modified neural network for improving river flow prediction. Hydrol. Sci. J. 50(2), 299-318.
    • (2005) Hydrol. Sci. J , vol.50 , Issue.2 , pp. 299-318
    • Hu, T.S.1    Lam, K.C.2    Ng, S.T.3
  • 27
    • 4644299731 scopus 로고    scopus 로고
    • Forecasting flows in Apalachicola River using neural networks
    • doi:10.1002/hyp.1492
    • Huang, W., Xu, B. & Chad-Hilton, A. (2004) Forecasting flows in Apalachicola River using neural networks. Hydrol. Processes 18(13), 2545-2564. doi:10.1002/hyp.1492.
    • (2004) Hydrol. Processes , vol.18 , Issue.13 , pp. 2545-2564
    • Huang, W.1    Xu, B.2    Chad-Hilton, A.3
  • 28
    • 2442639370 scopus 로고    scopus 로고
    • Development of effective and efficient rainfall-runoff models using integration of deterministic, real-coded genetic algorithms and artificial neural network techniques
    • doi:10.1029/2003WR002355
    • Jain, A. & Srinivasulu, S. (2004) Development of effective and efficient rainfall-runoff models using integration of deterministic, real-coded genetic algorithms and artificial neural network techniques. Water Resour. Res. 40(4), W04302, doi:10.1029/2003WR002355.
    • (2004) Water Resour. Res , vol.40 , Issue.4
    • Jain, A.1    Srinivasulu, S.2
  • 30
    • 33746832391 scopus 로고    scopus 로고
    • Adaptive neural-based fuzzy inference system (ANFIS) approach for modelling hydrological time series
    • Keskin, M. E., Taylan, D. & Terzi, Ö. (2006) Adaptive neural-based fuzzy inference system (ANFIS) approach for modelling hydrological time series. Hydrol. Sci. J. 51(4), 588-598.
    • (2006) Hydrol. Sci. J , vol.51 , Issue.4 , pp. 588-598
    • Keskin, M.E.1    Taylan, D.2    Terzi, O.3
  • 31
    • 10244249159 scopus 로고    scopus 로고
    • Multi-layer perceptrons with Levenberg-Marquardt training algorithm for suspended sediment concentration prediction and estimation
    • Kişi, O. (2004) Multi-layer perceptrons with Levenberg-Marquardt training algorithm for suspended sediment concentration prediction and estimation. Hydrol. Sci. J. 49(6), 1025-1040.
    • (2004) Hydrol. Sci. J , vol.49 , Issue.6 , pp. 1025-1040
    • Kişi, O.1
  • 32
    • 23044459648 scopus 로고    scopus 로고
    • Suspended sediment estimation using neuro-fuzzy and neural network approaches
    • Kişi, O. (2005) Suspended sediment estimation using neuro-fuzzy and neural network approaches. Hydrol. Sci. J. 50(4), 683-696.
    • (2005) Hydrol. Sci. J , vol.50 , Issue.4 , pp. 683-696
    • Kişi, O.1
  • 33
    • 0030162087 scopus 로고    scopus 로고
    • Rainfall-runoff modelling of the Ouse basin, North Yorkshire: An application of a physically-based distributed model
    • Kuchment, L. S., Demidov, V. N., Naden, P. S., Cooper, D. M. & Broadhurst, P. (1996) Rainfall-runoff modelling of the Ouse basin, North Yorkshire: an application of a physically-based distributed model. J. Hydrol. 181(1/4), 323-342.
    • (1996) J. Hydrol , vol.181 , Issue.1-4 , pp. 323-342
    • Kuchment, L.S.1    Demidov, V.N.2    Naden, P.S.3    Cooper, D.M.4    Broadhurst, P.5
  • 34
    • 0030619215 scopus 로고    scopus 로고
    • The hydrology of the Humber Catchment
    • Law, M., Wass, P. & Grimshaw, D. (1997) The hydrology of the Humber Catchment. Sci. Total Environ. 194/195, 119-128.
    • (1997) Sci. Total Environ , vol.194-195 , pp. 119-128
    • Law, M.1    Wass, P.2    Grimshaw, D.3
  • 35
    • 0034739246 scopus 로고    scopus 로고
    • Automatic calibration of a conceptual rainfall-runoff model using multiple objectives
    • Madsen, H. (2000) Automatic calibration of a conceptual rainfall-runoff model using multiple objectives. J. Hydrol. 235, 276-288.
    • (2000) J. Hydrol , vol.235 , pp. 276-288
    • Madsen, H.1
  • 36
    • 0033957764 scopus 로고    scopus 로고
    • Neural networks for the prediction and forecasting of water resources variables: A review of modelling issues and applications
    • Maier, H. R. & Dandy, G. C. (2000) Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications. Environ. Model. Software 15(1), 101-124.
    • (2000) Environ. Model. Software , vol.15 , Issue.1 , pp. 101-124
    • Maier, H.R.1    Dandy, G.C.2
  • 37
    • 34249815023 scopus 로고    scopus 로고
    • at Austin, USA. For software description and source code see:, Accessed 20 March 2006
    • Matuszek, C. (1998) JavaSANE v1.2. Neural Networks Research Group, University of Texas at Austin, USA. For software description and source code see: http://nn.cs.utexas.edu/pages/software/ abstracts.html#javasane (Accessed 20 March 2006).
    • (1998) JavaSANE v1.2. Neural Networks Research Group, University of Texas
    • Matuszek, C.1
  • 38
    • 0037862841 scopus 로고    scopus 로고
    • A comprehensive review for industrial applicability of artificial neural networks
    • Meireles, M. R. G., Almeida, P. E. M. & Simões, M. G. (2003) A comprehensive review for industrial applicability of artificial neural networks. IEEE Trans. Indust. Electronics 50(3), 585-601.
    • (2003) IEEE Trans. Indust. Electronics , vol.50 , Issue.3 , pp. 585-601
    • Meireles, M.R.G.1    Almeida, P.E.M.2    Simões, M.G.3
  • 40
    • 10444270597 scopus 로고    scopus 로고
    • Forming neural networks through efficient and adaptive coevolution
    • Moriarty, D. E. & Miikkulainen, R. (1997) Forming neural networks through efficient and adaptive coevolution. Evolutionary Computation 5(4), 373-399.
    • (1997) Evolutionary Computation , vol.5 , Issue.4 , pp. 373-399
    • Moriarty, D.E.1    Miikkulainen, R.2
  • 41
    • 0036611003 scopus 로고    scopus 로고
    • Prediction of sediment load concentration in rivers using artificial neural network model
    • Nagy, H. M., Watanabe, K. & Hirano, M. (2002) Prediction of sediment load concentration in rivers using artificial neural network model. J. Hydraul. Engng ASCE 128(6), 588-595.
    • (2002) J. Hydraul. Engng ASCE , vol.128 , Issue.6 , pp. 588-595
    • Nagy, H.M.1    Watanabe, K.2    Hirano, M.3
  • 43
    • 0002912409 scopus 로고
    • Neural network applications in financial asset management
    • Refenes, A. N. & Azema-Barac, M. (1994) Neural network applications in financial asset management. Neural Computing & Applications 2(1), 13-39.
    • (1994) Neural Computing & Applications , vol.2 , Issue.1 , pp. 13-39
    • Refenes, A.N.1    Azema-Barac, M.2
  • 44
    • 0033381989 scopus 로고    scopus 로고
    • See, L. M. & Openshaw, S. (1999) Applying soft computing approaches to river level forecasting. Hydrol. Sci. J. 44(5), 763-778.
    • See, L. M. & Openshaw, S. (1999) Applying soft computing approaches to river level forecasting. Hydrol. Sci. J. 44(5), 763-778.
  • 45
    • 0034254025 scopus 로고    scopus 로고
    • See, L. M. & Openshaw, S. (2000) A hybrid multi-model approach to river level forecasting. Hydrol. Sci. J. 45(4), 523-536.
    • See, L. M. & Openshaw, S. (2000) A hybrid multi-model approach to river level forecasting. Hydrol. Sci. J. 45(4), 523-536.
  • 46
    • 16444365723 scopus 로고    scopus 로고
    • Rainfall-runoff modelling using artificial neural networks: Comparison of network types
    • doi:10.1002/hyp.5581
    • Senthil Kumar, A. R., Sudheer, K. P., Jain, S. K. & Agarwal, P. K. (2005) Rainfall-runoff modelling using artificial neural networks: comparison of network types. Hydrol. Processes 19(6), 1277-1291. doi:10.1002/hyp.5581.
    • (2005) Hydrol. Processes , vol.19 , Issue.6 , pp. 1277-1291
    • Senthil Kumar, A.R.1    Sudheer, K.P.2    Jain, S.K.3    Agarwal, P.K.4
  • 47
    • 17444417458 scopus 로고    scopus 로고
    • Fuzzy optimization neural network approach for ice forecast in the Inner Mongolia reach of the Yellow River
    • Shouyou, C. & Honglan, J. (2005) Fuzzy optimization neural network approach for ice forecast in the Inner Mongolia reach of the Yellow River. Hydrol. Sci. J. 50(2), 319-330.
    • (2005) Hydrol. Sci. J , vol.50 , Issue.2 , pp. 319-330
    • Shouyou, C.1    Honglan, J.2
  • 48
    • 0025488820 scopus 로고
    • Neural networks in structural engineering
    • Vanluchene, R. D. & Sun, R. (1990) Neural networks in structural engineering. Microcomputers in Civil Engng 5(3), 207-215.
    • (1990) Microcomputers in Civil Engng , vol.5 , Issue.3 , pp. 207-215
    • Vanluchene, R.D.1    Sun, R.2
  • 50
    • 26444531130 scopus 로고    scopus 로고
    • Identification of rainfall-runoff models for operational applications
    • Wagener, T. & McIntyre, N. (2005) Identification of rainfall-runoff models for operational applications. Hydrol. Sci. J. 50(5), 735-751.
    • (2005) Hydrol. Sci. J , vol.50 , Issue.5 , pp. 735-751
    • Wagener, T.1    McIntyre, N.2
  • 51
    • 0037442971 scopus 로고    scopus 로고
    • Towards reduced uncertainty in conceptual rainfall-runoff modelling: Dynamic identifiability analysis
    • doi:10.1002/hyp.1135
    • Wagener, T., McIntyre, N., Lees, M. J., Wheater, H. S. & Gupta, H. V. (2003) Towards reduced uncertainty in conceptual rainfall-runoff modelling: dynamic identifiability analysis. Hydrol. Processes 17(2), 455-476. doi:10.1002/hyp.1135.
    • (2003) Hydrol. Processes , vol.17 , Issue.2 , pp. 455-476
    • Wagener, T.1    McIntyre, N.2    Lees, M.J.3    Wheater, H.S.4    Gupta, H.V.5
  • 52
    • 0000778985 scopus 로고
    • Predicting sunspots and exchange rates with connectionist networks
    • ed. by M. Casdagli & S. Eubank, Addison-Wesley, Redwood City, California, USA
    • Weigend, A. S., Huberman, B. A. & Rumelhart, D. E. (1992) Predicting sunspots and exchange rates with connectionist networks. In: Nonlinear Modeling and Forecasting (ed. by M. Casdagli & S. Eubank), 395-432. Addison-Wesley, Redwood City, California, USA.
    • (1992) Nonlinear Modeling and Forecasting , pp. 395-432
    • Weigend, A.S.1    Huberman, B.A.2    Rumelhart, D.E.3
  • 53
    • 34249794686 scopus 로고    scopus 로고
    • Operational hydrology
    • ed. by R. L. Wilby, John Wiley & Sons Ltd, Chichester, West Sussex, UK
    • Wilby, R. L. & Davies, G. (1997) Operational hydrology. In: Contemporary Hydrology (ed. by R. L. Wilby), 195-240. John Wiley & Sons Ltd, Chichester, West Sussex, UK.
    • (1997) Contemporary Hydrology , pp. 195-240
    • Wilby, R.L.1    Davies, G.2
  • 54
    • 0008400478 scopus 로고    scopus 로고
    • Neural network applications in finance: A review and analysis of literature (1990-1996)
    • doi:10.1016 /S0378-7206(98)00050-0
    • Wong, B. K. & Selvi, Y. (1998) Neural network applications in finance: a review and analysis of literature (1990-1996). Information and Management 34(3), 129-139. doi:10.1016 /S0378-7206(98)00050-0.
    • (1998) Information and Management , vol.34 , Issue.3 , pp. 129-139
    • Wong, B.K.1    Selvi, Y.2
  • 55
    • 0031125026 scopus 로고    scopus 로고
    • Neural network applications in business: A review and analysis of the literature (1988-95)
    • doi:10.1016/S0167-9236(96)00070-X
    • Wong, B. K., Bodnovich T. A. & Selvi Y. (1997) Neural network applications in business: a review and analysis of the literature (1988-95). Decision Support Systems 19(4), 301-320. doi:10.1016/S0167-9236(96)00070-X.
    • (1997) Decision Support Systems , vol.19 , Issue.4 , pp. 301-320
    • Wong, B.K.1    Bodnovich, T.A.2    Selvi, Y.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.