메뉴 건너뛰기




Volumn 5, Issue 2, 2000, Pages 115-123

Artificial neural networks in hydrology. I: Preliminary concepts

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER SIMULATION; NEURAL NETWORKS;

EID: 0034174280     PISSN: 10840699     EISSN: None     Source Type: Journal    
DOI: 10.1061/(ASCE)1084-0699(2000)5:2(115)     Document Type: Article
Times cited : (1480)

References (55)
  • 1
    • 0000255165 scopus 로고    scopus 로고
    • Controlling hidden layer capacity through lateral connections
    • Agyepong, K., and Kothari, R. (1997). "Controlling hidden layer capacity through lateral connections." Neural Computation, 9(6), 1381-1402.
    • (1997) Neural Computation , vol.9 , Issue.6 , pp. 1381-1402
    • Agyepong, K.1    Kothari, R.2
  • 2
    • 0023563286 scopus 로고
    • A learning rule for asynchronous perceptrons with feedback in a combinatorial environment
    • Institute of Electrical and Electronics Engineers, New York
    • Almeida, L. B. (1987). "A learning rule for asynchronous perceptrons with feedback in a combinatorial environment." Proc., IEEE First Int. Conf. on Neural Networks, Institute of Electrical and Electronics Engineers, New York, 2, 609-618.
    • (1987) Proc., IEEE First Int. Conf. on Neural Networks , vol.2 , pp. 609-618
    • Almeida, L.B.1
  • 3
    • 0002610754 scopus 로고
    • Backpropagation in perceptrons with feedback
    • R. Eckmiller and Ch. von der Malsburg, eds., Springer Verlag, Berlin
    • Almeida, L. B. (1988). "Backpropagation in perceptrons with feedback." Neural computers, R. Eckmiller and Ch. von der Malsburg, eds., Springer Verlag, Berlin, 199-208.
    • (1988) Neural Computers , pp. 199-208
    • Almeida, L.B.1
  • 4
    • 0027599793 scopus 로고
    • Universal approximation bounds for superposition of a sigmoidal function
    • Barron, A. R. (1993). "Universal approximation bounds for superposition of a sigmoidal function." IEEE Trans. Information Theory, 39, 930-945.
    • (1993) IEEE Trans. Information Theory , vol.39 , pp. 930-945
    • Barron, A.R.1
  • 7
    • 0022219031 scopus 로고
    • Lumped catchment models
    • M. G. Anderson and T. P. Burt, eds., Wiley, New York
    • Blackie, J. R., and Eeles, W. O. (1985). "Lumped catchment models." Hydrological forecasting, M. G. Anderson and T. P. Burt, eds., Wiley, New York, 311-345.
    • (1985) Hydrological Forecasting , pp. 311-345
    • Blackie, J.R.1    Eeles, W.O.2
  • 8
    • 0027666858 scopus 로고
    • Neural network design using Voronoi diagrams
    • Bose, N. K., and Garga, A. K. (1993). "Neural network design using Voronoi diagrams." IEEE Trans. on Neural Networks, 4(5), 778-787.
    • (1993) IEEE Trans. on Neural Networks , vol.4 , Issue.5 , pp. 778-787
    • Bose, N.K.1    Garga, A.K.2
  • 9
    • 0028467384 scopus 로고
    • Common misconcepts about neural networks as approximators
    • Carpenter, W. C., and Barthelemy, J. (1994). "Common misconcepts about neural networks as approximators." J. Comp. in Civ. Engrg., ASCE, 8(3), 345-358.
    • (1994) J. Comp. in Civ. Engrg., ASCE , vol.8 , Issue.3 , pp. 345-358
    • Carpenter, W.C.1    Barthelemy, J.2
  • 10
    • 0002918396 scopus 로고
    • Neural networks primer I
    • Caudill, M. (1987). "Neural networks primer I." AI Expert.
    • (1987) AI Expert
    • Caudill, M.1
  • 11
    • 0008594243 scopus 로고
    • Neural networks primer II, III, IV and V
    • Caudill, M. (1988). "Neural networks primer II, III, IV and V." AI Expert.
    • (1988) AI Expert
    • Caudill, M.1
  • 12
    • 0002904828 scopus 로고
    • Neural networks primer VI, VII and VIII
    • Caudill, M. (1989). "Neural networks primer VI, VII and VIII." AI Expert.
    • (1989) AI Expert
    • Caudill, M.1
  • 13
    • 0026837224 scopus 로고
    • A machine leaning method for generation of a neural network architecture: A continuous ID3 algorithm
    • Cios, K. J., and Liu, N. (1992). "A machine leaning method for generation of a neural network architecture: a continuous ID3 algorithm.IEEE Trans. on Neural Networks, 3(2), 280-291.
    • (1992) IEEE Trans. on Neural Networks , vol.3 , Issue.2 , pp. 280-291
    • Cios, K.J.1    Liu, N.2
  • 14
    • 0022264509 scopus 로고
    • Effect of spatial variability of effective rainfall on direct runoff by a geomorphological approach
    • Corradini, C., and Singh, V. P. (1985). "Effect of spatial variability of effective rainfall on direct runoff by a geomorphological approach." J. Hydrol., Amsterdam, 81, 27-43.
    • (1985) J. Hydrol., Amsterdam , vol.81 , pp. 27-43
    • Corradini, C.1    Singh, V.P.2
  • 15
    • 26444565569 scopus 로고
    • Finding structure in time
    • Elman, J. L. (1990). "Finding structure in time." Cognitive Sci., 14, 179-211.
    • (1990) Cognitive Sci. , vol.14 , pp. 179-211
    • Elman, J.L.1
  • 16
    • 0000155950 scopus 로고
    • The cascade-correlation learning architecture
    • D. S. Touretzky, ed., Morgan Kaufmann, San Mateo, Calif.
    • Fahlman, S. E., and Lebiere, C. (1990). "The cascade-correlation learning architecture." Advances in neural information processing systems 2, D. S. Touretzky, ed., Morgan Kaufmann, San Mateo, Calif., 524-532.
    • (1990) Advances in Neural Information Processing Systems 2 , pp. 524-532
    • Fahlman, S.E.1    Lebiere, C.2
  • 17
    • 0003420910 scopus 로고
    • The cascade-correlation learning architecture
    • Carnegie Mellon University, Pittsburgh, Pa
    • Fahlman, S. E., and Lebiere, C. (1991). "The cascade-correlation learning architecture." CMU Tech. Rep. CMU-CS-90-100, Carnegie Mellon University, Pittsburgh, Pa.
    • (1991) CMU Tech. Rep. CMU-CS-90-100
    • Fahlman, S.E.1    Lebiere, C.2
  • 19
    • 0000615669 scopus 로고
    • Function minimization by conjugate gradient
    • Fletcher, R., and Reeves, C. M. (1964). "Function minimization by conjugate gradient." Comp. J., 7, 149-154.
    • (1964) Comp. J. , vol.7 , pp. 149-154
    • Fletcher, R.1    Reeves, C.M.2
  • 20
    • 0014602617 scopus 로고
    • Blueprint for a physically-based digital simulated hydrologic response model
    • Freeze, R. A., and Harlan, R. L. (1969). "Blueprint for a physically-based digital simulated hydrologic response model." J. Hydrol., Amsterdam, 9, 237-258.
    • (1969) J. Hydrol., Amsterdam , vol.9 , pp. 237-258
    • Freeze, R.A.1    Harlan, R.L.2
  • 21
    • 0027007868 scopus 로고
    • Rainfall forecasting in space and time using a neural network
    • French, M. N., Krajewski, W. F., and Cuykendal, R. R. (1992). "Rainfall forecasting in space and time using a neural network." J. Hydrol., Amsterdam, 137, 1-37.
    • (1992) J. Hydrol., Amsterdam , vol.137 , pp. 1-37
    • French, M.N.1    Krajewski, W.F.2    Cuykendal, R.R.3
  • 22
    • 0001809812 scopus 로고
    • Three constructive algorithms for network learning
    • Cognitive Science Society, Ann Arbor, Mich.
    • Gallant, S. I. (1986). "Three constructive algorithms for network learning." Proc., 8th Ann. Conf. of the Cognitive Sci. Soc., Cognitive Science Society, Ann Arbor, Mich., 652-660.
    • (1986) Proc., 8th Ann. Conf. of the Cognitive Sci. Soc. , pp. 652-660
    • Gallant, S.I.1
  • 23
    • 0020897403 scopus 로고
    • On the formulation of an analytical approach to hydrologic response and similarity at the basin scale
    • Gupta, V. K., and Waymire, E. (1983). "On the formulation of an analytical approach to hydrologic response and similarity at the basin scale." J. Hydrol., Amsterdam, 65, 95-123.
    • (1983) J. Hydrol., Amsterdam , vol.65 , pp. 95-123
    • Gupta, V.K.1    Waymire, E.2
  • 24
    • 0001234705 scopus 로고
    • Second order derivatives for networks pruning: Optimal brain surgeon
    • MIT Press, Cambridge, Mass.
    • Hassibi, B., and Stork, D. G. (1993). "Second order derivatives for networks pruning: optimal brain surgeon." Proc., Neural Information Processing Sys. 4, MIT Press, Cambridge, Mass., 164-171.
    • (1993) Proc., Neural Information Processing Sys. 4 , pp. 164-171
    • Hassibi, B.1    Stork, D.G.2
  • 27
    • 0020118274 scopus 로고
    • Neural networks and physical systems with emergent collective computational abilities
    • Hopfield, J. J. (1982). "Neural networks and physical systems with emergent collective computational abilities." Proc., Nat. Academy of Scientists, 19, 2554-2558.
    • (1982) Proc., Nat. Academy of Scientists , vol.19 , pp. 2554-2558
    • Hopfield, J.J.1
  • 28
    • 0034174352 scopus 로고    scopus 로고
    • Artificial neural networks in remote sensing of hydrologic processes
    • Islam, S., and Kothari, R. (2000). "Artificial neural networks in remote sensing of hydrologic processes." J. Hydrologic Engrg., ASCE, 5(2), 138-144.
    • (2000) J. Hydrologic Engrg., ASCE , vol.5 , Issue.2 , pp. 138-144
    • Islam, S.1    Kothari, R.2
  • 29
    • 0025447562 scopus 로고
    • A simple procedure for pruning back propagation trained neural networks
    • Karnin, E. D. (1990). "A simple procedure for pruning back propagation trained neural networks." IEEE Trans. Neural Networks, 1, 239-242.
    • (1990) IEEE Trans. Neural Networks , vol.1 , pp. 239-242
    • Karnin, E.D.1
  • 31
    • 0025489075 scopus 로고
    • The self organizing map
    • Kohonen, T. (1990). "The self organizing map." Proc. IEEE, 78, 1464-1480.
    • (1990) Proc. IEEE , vol.78 , pp. 1464-1480
    • Kohonen, T.1
  • 32
    • 0029767278 scopus 로고    scopus 로고
    • On lateral connections in feed-forward neural networks
    • Institute of Electrical and Electronics Engineers, New York
    • Kothari, R., and Agyepong, K. (1996). "On lateral connections in feed-forward neural networks." Proc., IEEE Int. Conf. on Neural Networks, Institute of Electrical and Electronics Engineers, New York, 13-18.
    • (1996) Proc., IEEE Int. Conf. on Neural Networks , pp. 13-18
    • Kothari, R.1    Agyepong, K.2
  • 33
    • 0031375734 scopus 로고    scopus 로고
    • Induced specialization of context units for temporal pattern recognition and reproduction
    • J. Principe, L. Gile, N. Morgan, and E. Wilson, eds., Institute of Electrical and Electronics Engineers, New York
    • Kothari, R., and Agyepong, K. (1997). "Induced specialization of context units for temporal pattern recognition and reproduction." Proc., IEEE Neural Networks for signal Processing VII, J. Principe, L. Gile, N. Morgan, and E. Wilson, eds., Institute of Electrical and Electronics Engineers, New York, 131-140.
    • (1997) Proc., IEEE Neural Networks for Signal Processing VII , pp. 131-140
    • Kothari, R.1    Agyepong, K.2
  • 34
    • 0003450580 scopus 로고
    • Constructive feedforward neural networks for regression problems: A survey
    • Hong Kong University of Science & Technology, Hong Kong
    • Kwok, T., and Yeung, D. (1995). "Constructive feedforward neural networks for regression problems: a survey." Tech. Rep., Hong Kong University of Science & Technology, Hong Kong.
    • (1995) Tech. Rep.
    • Kwok, T.1    Yeung, D.2
  • 36
    • 0026899193 scopus 로고
    • Using radial basis functions to approximate a function and its error bounds
    • Leonard J. A., Kramer, M. A., and Ungar, L. H. (1992). "Using radial basis functions to approximate a function and its error bounds." IEEE Trans. on Neural Networks, 3(4), 624-627.
    • (1992) IEEE Trans. on Neural Networks , vol.3 , Issue.4 , pp. 624-627
    • Leonard, J.A.1    Kramer, M.A.2    Ungar, L.H.3
  • 37
    • 0029663621 scopus 로고    scopus 로고
    • The use of artificial neural networks for the prediction of water quality parameters
    • Maier, H. R., and Dandy, G. C. (1996). "The use of artificial neural networks for the prediction of water quality parameters." Water Resour. Res., 32(4), 1013-1022.
    • (1996) Water Resour. Res. , vol.32 , Issue.4 , pp. 1013-1022
    • Maier, H.R.1    Dandy, G.C.2
  • 39
    • 51249194645 scopus 로고
    • A logic calculus of the ideas immanent in nervous activity
    • McCulloch, W. S., and Pitts, W. (1943). "A logic calculus of the ideas immanent in nervous activity." Bull. of Math. Biophys., 5, 115-133.
    • (1943) Bull. of Math. Biophys. , vol.5 , pp. 115-133
    • McCulloch, W.S.1    Pitts, W.2
  • 40
    • 0028176324 scopus 로고
    • Comparison of simple versus complex distributed runoff models on a midsized semiarid watershed
    • Michaud, J., and Sorooshian, S. (1994). "Comparison of simple versus complex distributed runoff models on a midsized semiarid watershed." Water Resour. Res., 30(3), 593-605.
    • (1994) Water Resour. Res. , vol.30 , Issue.3 , pp. 593-605
    • Michaud, J.1    Sorooshian, S.2
  • 41
    • 0030159380 scopus 로고    scopus 로고
    • Artificial neural networks as rainfall-runoff models
    • Minns, A. W., and Hall, M. J. (1996). "Artificial neural networks as rainfall-runoff models." Hydrological Sci., 41(3), 399-417.
    • (1996) Hydrological Sci. , vol.41 , Issue.3 , pp. 399-417
    • Minns, A.W.1    Hall, M.J.2
  • 42
    • 0000900876 scopus 로고
    • Skeletonization: A technique for trimming the fat from a network via relevance assessment
    • D. Touretzky, ed., Morgan Kaufmann, San Monteo, Calif.
    • Mozer, M. C., and Smolensky, P. (1989). "Skeletonization: a technique for trimming the fat from a network via relevance assessment." Advances in neural information processing systems 1, D. Touretzky, ed., Morgan Kaufmann, San Monteo, Calif., 107-115.
    • (1989) Advances in Neural Information Processing Systems 1 , pp. 107-115
    • Mozer, M.C.1    Smolensky, P.2
  • 43
    • 0001958391 scopus 로고
    • Study of a growth algorithm for neural networks
    • Nadal, J. P. (1989). "Study of a growth algorithm for neural networks." Int. J. Neural Sys., 1, 55-59.
    • (1989) Int. J. Neural Sys. , vol.1 , pp. 55-59
    • Nadal, J.P.1
  • 44
    • 0001765492 scopus 로고
    • Simplifying neural networks by soft weight sharing
    • Nowlan, S. J., and Hinton, G. E. (1992). "Simplifying neural networks by soft weight sharing." Neural Computation, 4, 473-493.
    • (1992) Neural Computation , vol.4 , pp. 473-493
    • Nowlan, S.J.1    Hinton, G.E.2
  • 45
    • 0000442791 scopus 로고
    • Generalization of back-propagation to recurrent neural networks
    • Pineda, F. J. (1987). "Generalization of back-propagation to recurrent neural networks." Phys. Rev. Lett., 59, 2229-2232.
    • (1987) Phys. Rev. Lett. , vol.59 , pp. 2229-2232
    • Pineda, F.J.1
  • 46
    • 0001184176 scopus 로고
    • Recurrent back-propagation and the dynamical approach to adaptive neural computation
    • Pineda, F. J. (1989). "Recurrent back-propagation and the dynamical approach to adaptive neural computation." Neural Computation, 1, 161-172.
    • (1989) Neural Computation , vol.1 , pp. 161-172
    • Pineda, F.J.1
  • 47
    • 0027464578 scopus 로고
    • Neural network-screening for groundwater reclamation under uncertainty
    • Ranjithan, S., Eheart, J. W., and Rarret, Jr., J. H. (1993). "Neural network-screening for groundwater reclamation under uncertainty." Water Resour. Res., 29(3), 563-574.
    • (1993) Water Resour. Res. , vol.29 , Issue.3 , pp. 563-574
    • Ranjithan, S.1    Eheart, J.W.2    Rarret J.H., Jr.3
  • 48
    • 0027662338 scopus 로고
    • Pruning algorithm - A survey
    • Reed, R. (1993). "Pruning algorithm - a survey." IEEE Trans. Neural Networks, 4, 740-747.
    • (1993) IEEE Trans. Neural Networks , vol.4 , pp. 740-747
    • Reed, R.1
  • 49
    • 0028174533 scopus 로고
    • Optimization of groundwater remediation using artificial neural networks with parallel solute transport modeling
    • Rogers, L. L., and Dowla, F. U. (1994). "Optimization of groundwater remediation using artificial neural networks with parallel solute transport modeling." Water Resour. Res., 30(2), 457-481.
    • (1994) Water Resour. Res. , vol.30 , Issue.2 , pp. 457-481
    • Rogers, L.L.1    Dowla, F.U.2
  • 50
    • 0023586795 scopus 로고
    • Training time-dependence in neural networks
    • Institute of Electrical and Electronics Engineers, New York
    • Rohwer, R., and Forrest, B. (1987). "Training time-dependence in neural networks." Proc., IEEE 1st Int. Conf. on Neural Networks, Institute of Electrical and Electronics Engineers, New York, 2, 701-708.
    • (1987) Proc., IEEE 1st Int. Conf. on Neural Networks , vol.2 , pp. 701-708
    • Rohwer, R.1    Forrest, B.2
  • 51
    • 0000646059 scopus 로고
    • Learning internal representations by error propagation
    • MIT Press, Cambridge, Mass.
    • Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). "Learning internal representations by error propagation." Parallel distributed processing, Vol. 1, MIT Press, Cambridge, Mass., 318-362.
    • (1986) Parallel Distributed Processing , vol.1 , pp. 318-362
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 52
    • 0029416249 scopus 로고
    • Neural-network models of rainfall-runoff process
    • Smith, J., and Eli, R. N. (1995). "Neural-network models of rainfall-runoff process." J. Water Resour. Plng. and Mgmt., ASCE, 121(6), 499-508.
    • (1995) J. Water Resour. Plng. and Mgmt., ASCE , vol.121 , Issue.6 , pp. 499-508
    • Smith, J.1    Eli, R.N.2
  • 53
    • 0031898654 scopus 로고    scopus 로고
    • River stage forecasting using artificial neural networks
    • Thirumaliah, K., and Deo, M. C. (1998). "River stage forecasting using artificial neural networks." J. Hydrologic Engrg., ASCE, 3(1), 27-32.
    • (1998) J.Hydrologic Engrg., ASCE , vol.3 , Issue.1 , pp. 27-32
    • Thirumaliah, K.1    Deo, M.C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.