메뉴 건너뛰기




Volumn 374, Issue 3-4, 2009, Pages 209-222

Bootstrap based artificial neural network (BANN) analysis for hierarchical prediction of monthly runoff in Upper Damodar Valley Catchment

Author keywords

Bootstrapping; Microwatersheds; Monthly rainfall; Monthly runoff; Neural networks; Principal component analysis

Indexed keywords

ANNUAL RUNOFF; APPARENT DENSITY; AREA RATIOS; ARTIFICIAL NEURAL NETWORK; BIFURCATION RATIO; BOOTSTRAPPING; CATCHMENT AREA; CORRELATION COEFFICIENT; DATA REDUNDANCY; DRAINAGE AREA; ELONGATION RATIO; FINE SAND; INPUT VARIABLES; KEY ELEMENTS; MEAN ABSOLUTE ERROR; MICROWATERSHEDS; MONTHLY RAINFALL; MONTHLY RUNOFF; NETWORK INDICES; NORMALIZED DIFFERENCE VEGETATION INDEX; ORGANIC MATTER CONTENT; ROOT MEAN SQUARE ERRORS;

EID: 68349123741     PISSN: 00221694     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jhydrol.2009.06.003     Document Type: Article
Times cited : (57)

References (45)
  • 1
    • 33645204046 scopus 로고    scopus 로고
    • Neural network rainfall-runoff forecasting based on continuous resampling
    • Abrahart R.J. Neural network rainfall-runoff forecasting based on continuous resampling. Journal of Hydroinformatics 5 (2003) 51-61
    • (2003) Journal of Hydroinformatics , vol.5 , pp. 51-61
    • Abrahart, R.J.1
  • 2
    • 0034174280 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology I: preliminary concepts
    • ASCE Task Committee. Artificial neural networks in hydrology I: preliminary concepts. Journal of Hydrologic Engineering 5 2 (2000) 115-123
    • (2000) Journal of Hydrologic Engineering , vol.5 , Issue.2 , pp. 115-123
    • ASCE Task Committee1
  • 3
    • 0034174396 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology II: hydrologic applications
    • ASCE Task Committee. Artificial neural networks in hydrology II: hydrologic applications. Journal of Hydrologic Engineering 5 2 (2000) 124-137
    • (2000) Journal of Hydrologic Engineering , vol.5 , Issue.2 , pp. 124-137
    • ASCE Task Committee1
  • 4
    • 0031851620 scopus 로고    scopus 로고
    • Feed-forward artificial neural network model for forecasting rainfall run-off
    • Braddock R.D., Kremmer M.L., and Sanzogni L. Feed-forward artificial neural network model for forecasting rainfall run-off. Environmetrics 9 (1998) 419-432
    • (1998) Environmetrics , vol.9 , pp. 419-432
    • Braddock, R.D.1    Kremmer, M.L.2    Sanzogni, L.3
  • 5
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L. Bagging predictors. Machine Learning 24 2 (1996) 123-140
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 6
    • 0032688155 scopus 로고    scopus 로고
    • River flood forecasting with a neural network model
    • Campolo M., Andrreussi P., and Soldati A. River flood forecasting with a neural network model. Water Resources Research 35 4 (1999) 1191-1197
    • (1999) Water Resources Research , vol.35 , Issue.4 , pp. 1191-1197
    • Campolo, M.1    Andrreussi, P.2    Soldati, A.3
  • 7
    • 0036499322 scopus 로고    scopus 로고
    • Downscaling recent streamflow conditions in British Columbia, Canada using ensemble neural network models
    • Cannon AJ., and Whitfield P.H. Downscaling recent streamflow conditions in British Columbia, Canada using ensemble neural network models. Journal of Hydrology 259 (2002) 136-151
    • (2002) Journal of Hydrology , vol.259 , pp. 136-151
    • Cannon, AJ.1    Whitfield, P.H.2
  • 9
    • 0026284371 scopus 로고
    • Slope gradient and aspect effects on soil development from sandstone in Pennsylvania
    • Carter B.J., and Ciolkosz E.J. Slope gradient and aspect effects on soil development from sandstone in Pennsylvania. Geoderma 49 (1991) 199-213
    • (1991) Geoderma , vol.49 , pp. 199-213
    • Carter, B.J.1    Ciolkosz, E.J.2
  • 10
    • 0034749335 scopus 로고    scopus 로고
    • Hydrological modelling using artificial neural networks
    • Dawson C.W., and Wilby R.L. Hydrological modelling using artificial neural networks. Progress in Physical Geography 25 1 (2001) 80-108
    • (2001) Progress in Physical Geography , vol.25 , Issue.1 , pp. 80-108
    • Dawson, C.W.1    Wilby, R.L.2
  • 11
    • 0032005702 scopus 로고    scopus 로고
    • An artificial neural network approach to rainfall-runoff modeling
    • Dawson C.W., and Wilby R. An artificial neural network approach to rainfall-runoff modeling. Hydrological Sciences Journal 43 1 (1998) 47-66
    • (1998) Hydrological Sciences Journal , vol.43 , Issue.1 , pp. 47-66
    • Dawson, C.W.1    Wilby, R.2
  • 14
    • 0026445234 scopus 로고
    • Effective and efficient global optimization for conceptual rainfall-runoff models
    • Duan Q., Sorooshian S., and Gupta V.K. Effective and efficient global optimization for conceptual rainfall-runoff models. Water Resources Research 28 4 (1992) 1015-1031
    • (1992) Water Resources Research , vol.28 , Issue.4 , pp. 1015-1031
    • Duan, Q.1    Sorooshian, S.2    Gupta, V.K.3
  • 16
    • 0034702917 scopus 로고    scopus 로고
    • Runoff analysis in humid forest catchment with artificial neural network
    • Gautam M.R., Watanbe K., and Saegusa H. Runoff analysis in humid forest catchment with artificial neural network. Journal of Hydrology 235 1 (2000) 117-136
    • (2000) Journal of Hydrology , vol.235 , Issue.1 , pp. 117-136
    • Gautam, M.R.1    Watanbe, K.2    Saegusa, H.3
  • 17
    • 0001818563 scopus 로고    scopus 로고
    • Effective and efficient modeling for streamflow forecasting
    • Govindaraju R.S., and Rao A.R. (Eds), Kluwer, Dordrecht
    • Gupta H.V., Hsu K., and Sorooshian S. Effective and efficient modeling for streamflow forecasting. In: Govindaraju R.S., and Rao A.R. (Eds). Artificial Neural Networks in Hydrology (2000), Kluwer, Dordrecht 7-22
    • (2000) Artificial Neural Networks in Hydrology , pp. 7-22
    • Gupta, H.V.1    Hsu, K.2    Sorooshian, S.3
  • 18
    • 0020971709 scopus 로고
    • Surface soil moisture variation on small agricultural watersheds
    • Hawley M.E., Jackson T.J., and McCuen R.H. Surface soil moisture variation on small agricultural watersheds. Journal of Hydrology 62 (1983) 179-200
    • (1983) Journal of Hydrology , vol.62 , pp. 179-200
    • Hawley, M.E.1    Jackson, T.J.2    McCuen, R.H.3
  • 19
    • 0032466364 scopus 로고    scopus 로고
    • Applying neural network models to prediction and data analysis in meteorology and oceanography
    • Hsieh W.W., and Tang B. Applying neural network models to prediction and data analysis in meteorology and oceanography. Bulletin of the American Meteorological Society 79 9 (1998) 1855-1870
    • (1998) Bulletin of the American Meteorological Society , vol.79 , Issue.9 , pp. 1855-1870
    • Hsieh, W.W.1    Tang, B.2
  • 20
    • 0029413797 scopus 로고
    • Artificial neural network modeling in rainfall-runoff process
    • Hsu K.-L., Gupta H.V., and Sorooshian S. Artificial neural network modeling in rainfall-runoff process. Water Resources Research 31 10 (1995) 2517-2530
    • (1995) Water Resources Research , vol.31 , Issue.10 , pp. 2517-2530
    • Hsu, K.-L.1    Gupta, H.V.2    Sorooshian, S.3
  • 21
    • 30444441291 scopus 로고    scopus 로고
    • Rainfall-runoff models using artificial neural Networks for ensemble streamflow prediction
    • Jeong D., and Kim Y.O. Rainfall-runoff models using artificial neural Networks for ensemble streamflow prediction. Hydrological Processes 19 (2005) 3819-3835
    • (2005) Hydrological Processes , vol.19 , pp. 3819-3835
    • Jeong, D.1    Kim, Y.O.2
  • 23
    • 15744372290 scopus 로고    scopus 로고
    • The terrain analysis system: a tool for hydro-geomorphic applications
    • Lindsay J.B. The terrain analysis system: a tool for hydro-geomorphic applications. Hydrological Processes 19 (2005) 1123-1130
    • (2005) Hydrological Processes , vol.19 , pp. 1123-1130
    • Lindsay, J.B.1
  • 24
    • 0033957764 scopus 로고    scopus 로고
    • Neural networks for the prediction and forecasting of water resources variables: a review of modeling issues and applications
    • Maier H., and Dandy G.C. Neural networks for the prediction and forecasting of water resources variables: a review of modeling issues and applications. Environmental Modeling and Software 15 (2000) 101-124
    • (2000) Environmental Modeling and Software , vol.15 , pp. 101-124
    • Maier, H.1    Dandy, G.C.2
  • 25
    • 0033957764 scopus 로고    scopus 로고
    • Neural networks for the prediction and forecasting of water resources variables: a review of modeling issues and applications
    • Maier H., and Dandy G.C. Neural networks for the prediction and forecasting of water resources variables: a review of modeling issues and applications. Environment Modeling Software 15 (2000) 101-124
    • (2000) Environment Modeling Software , vol.15 , pp. 101-124
    • Maier, H.1    Dandy, G.C.2
  • 26
    • 0036124445 scopus 로고    scopus 로고
    • The neuro-m method for fitting neural network parametric pedotransfer functions
    • Minasny B., and McBratney A.B. The neuro-m method for fitting neural network parametric pedotransfer functions. Soil Science Society of America Journal 66 (2002) 352-361
    • (2002) Soil Science Society of America Journal , vol.66 , pp. 352-361
    • Minasny, B.1    McBratney, A.B.2
  • 27
    • 0030159380 scopus 로고    scopus 로고
    • Artificial neural networks as rainfall-runoff models
    • Minns A.W., and Hall M.J. Artificial neural networks as rainfall-runoff models. Hydrological Sciences Journal 41 3 (1996) 399-417
    • (1996) Hydrological Sciences Journal , vol.41 , Issue.3 , pp. 399-417
    • Minns, A.W.1    Hall, M.J.2
  • 28
    • 0035518666 scopus 로고    scopus 로고
    • Spatio-temporal evolution and time-stable characteristics of soil moisture within remote sensing footprints with varying soil, slope, and vegetation
    • Mohanty B.P., and Skaggs T.H. Spatio-temporal evolution and time-stable characteristics of soil moisture within remote sensing footprints with varying soil, slope, and vegetation. Advances in Water Resources 24 9-10 (2001) 1051-1067
    • (2001) Advances in Water Resources , vol.24 , Issue.9-10 , pp. 1051-1067
    • Mohanty, B.P.1    Skaggs, T.H.2
  • 30
    • 34249999878 scopus 로고
    • The gravimetric method of soil moisture determination, part III. An examination of factors influencing soil moisture variability
    • Reynolds S.G. The gravimetric method of soil moisture determination, part III. An examination of factors influencing soil moisture variability. Journal of Hydrology 11 (1970) 288-300
    • (1970) Journal of Hydrology , vol.11 , pp. 288-300
    • Reynolds, S.G.1
  • 31
    • 0022891638 scopus 로고
    • Rotation of principal components
    • Richman M.B. Rotation of principal components. Journal of Climatology 6 (1986) 293-335
    • (1986) Journal of Climatology , vol.6 , pp. 293-335
    • Richman, M.B.1
  • 32
    • 0001857840 scopus 로고    scopus 로고
    • Streamflow forecasting based on artificial neural networks
    • Govindaraju R.S., and Ramachandra A. (Eds), Springer-Verlag, New York
    • Salas J.D., Markus M., and Tokar A.S. Streamflow forecasting based on artificial neural networks. In: Govindaraju R.S., and Ramachandra A. (Eds). Artificial Neural Networks in Hydrology (2000), Springer-Verlag, New York 23-51
    • (2000) Artificial Neural Networks in Hydrology , pp. 23-51
    • Salas, J.D.1    Markus, M.2    Tokar, A.S.3
  • 33
    • 31744438288 scopus 로고    scopus 로고
    • Performance evaluation of ANN and geomorphology-based models for runoff and sediment yield prediction for a Canadian watershed
    • Sarangi A., Madramootoo C.A., Enright P., Prasher S.O., and Patel R.M. Performance evaluation of ANN and geomorphology-based models for runoff and sediment yield prediction for a Canadian watershed. Current Science 89 12 (2005) 2022-2033
    • (2005) Current Science , vol.89 , Issue.12 , pp. 2022-2033
    • Sarangi, A.1    Madramootoo, C.A.2    Enright, P.3    Prasher, S.O.4    Patel, R.M.5
  • 35
    • 33748576907 scopus 로고    scopus 로고
    • Including topography and vegetation attributes for developing pedotransfer functions
    • Sharma S.K., Mohanty B.P., and Zhu J. Including topography and vegetation attributes for developing pedotransfer functions. Soil Science Society of America Journal 70 (2006) 1430-1440
    • (2006) Soil Science Society of America Journal , vol.70 , pp. 1430-1440
    • Sharma, S.K.1    Mohanty, B.P.2    Zhu, J.3
  • 36
    • 6344243351 scopus 로고    scopus 로고
    • Artificial neural network ensembles and their application in pooled flood frequency analysis
    • Shu C., and Burn D.H. Artificial neural network ensembles and their application in pooled flood frequency analysis. Water Resources Research 40 9 (2004) W09301
    • (2004) Water Resources Research , vol.40 , Issue.9
    • Shu, C.1    Burn, D.H.2
  • 37
    • 36649031026 scopus 로고    scopus 로고
    • Flood frequency analysis at ungauged sites using artificial neural networks in canonical correlation analysis physiographic space
    • Shu C., and Ouarda T.B.M.J. Flood frequency analysis at ungauged sites using artificial neural networks in canonical correlation analysis physiographic space. Water Resources Research 43 7 (2007) W07438
    • (2007) Water Resources Research , vol.43 , Issue.7
    • Shu, C.1    Ouarda, T.B.M.J.2
  • 38
    • 0027503733 scopus 로고
    • Calibration of the SMA-NWSRFS conceptual rainfall-runoff model using global optimization
    • Sorooshian S., Duan Q., and Gupta V.K. Calibration of the SMA-NWSRFS conceptual rainfall-runoff model using global optimization. Water Resources Research 29 4 (1993) 1185-1194
    • (1993) Water Resources Research , vol.29 , Issue.4 , pp. 1185-1194
    • Sorooshian, S.1    Duan, Q.2    Gupta, V.K.3
  • 39
    • 0036719981 scopus 로고    scopus 로고
    • Vegetation indices to aid areal evapotranspiration estimations
    • Szilagyi J. Vegetation indices to aid areal evapotranspiration estimations. Journal of Hydrologic Engineering 7 (2002) 368-372
    • (2002) Journal of Hydrologic Engineering , vol.7 , pp. 368-372
    • Szilagyi, J.1
  • 40
    • 0033167344 scopus 로고    scopus 로고
    • Rainfall runoff modeling using artificial neural networks
    • Tokar A.S., and Johnson P.A. Rainfall runoff modeling using artificial neural networks. Journal of Hydrologic Engineering 4 3 (1999) 232-239
    • (1999) Journal of Hydrologic Engineering , vol.4 , Issue.3 , pp. 232-239
    • Tokar, A.S.1    Johnson, P.A.2
  • 41
    • 0034174397 scopus 로고    scopus 로고
    • Precipitation-runoff modeling using artificial neural networks and conceptual models
    • Tokar A.S., and Markus M. Precipitation-runoff modeling using artificial neural networks and conceptual models. Journal of Hydrologic Engineering 5 2 (2000) 156-161
    • (2000) Journal of Hydrologic Engineering , vol.5 , Issue.2 , pp. 156-161
    • Tokar, A.S.1    Markus, M.2
  • 43
    • 0034100712 scopus 로고    scopus 로고
    • Prediction of watershed runoff using Bayesian concepts and modular neural networks
    • Zhang B., and Govindaraju R.S. Prediction of watershed runoff using Bayesian concepts and modular neural networks. Water Resources Research 36 3 (2000) 753-762
    • (2000) Water Resources Research , vol.36 , Issue.3 , pp. 753-762
    • Zhang, B.1    Govindaraju, R.S.2
  • 44
    • 0037466126 scopus 로고    scopus 로고
    • Geomorphology-based artificial neural networks (GANNs) for estimation of direct runoff over watersheds
    • Zhang B., and Govindaraju R.S. Geomorphology-based artificial neural networks (GANNs) for estimation of direct runoff over watersheds. Journal of Hydrology 273 1 (2003) 18-34
    • (2003) Journal of Hydrology , vol.273 , Issue.1 , pp. 18-34
    • Zhang, B.1    Govindaraju, R.S.2
  • 45
    • 0032928495 scopus 로고    scopus 로고
    • Developing robust non-linear models through bootstrap aggregated neural networks
    • Zhang J. Developing robust non-linear models through bootstrap aggregated neural networks. Neurocomputing 25 1-3 (1999) 93-113
    • (1999) Neurocomputing , vol.25 , Issue.1-3 , pp. 93-113
    • Zhang, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.