메뉴 건너뛰기




Volumn 20, Issue 5, 2006, Pages 1201-1216

Rainfall-runoff modelling using artificial neural networks technique: A Blue Nile catchment case study

Author keywords

Distributed model; Neural networks; Rainfall; Runoff

Indexed keywords

CATCHMENTS; MATHEMATICAL MODELS; NEURAL NETWORKS; RAIN; RUNOFF; SENSITIVITY ANALYSIS;

EID: 33645158824     PISSN: 08856087     EISSN: 10991085     Source Type: Journal    
DOI: 10.1002/hyp.5932     Document Type: Article
Times cited : (78)

References (34)
  • 2
    • 0019188238 scopus 로고
    • Combining satellite and radar data for the short range forecasting of precipitation
    • Bellon A, Lovejoy S, Austin GL. 1980. Combining satellite and radar data for the short range forecasting of precipitation. Monthly Weather Review 108: 1554-1566.
    • (1980) Monthly Weather Review , vol.108 , pp. 1554-1566
    • Bellon, A.1    Lovejoy, S.2    Austin, G.L.3
  • 4
    • 0003408682 scopus 로고
    • A generalized streamflow simulation system, conceptual modeling for digital computers
    • US National Weather Service: Sacramento, CA
    • Burnash R, Ferrel R, McGuire R. 1973. A generalized streamflow simulation system, conceptual modeling for digital computers. US National Weather Service: Sacramento, CA.
    • (1973)
    • Burnash, R.1    Ferrel, R.2    McGuire, R.3
  • 5
    • 84972539015 scopus 로고
    • Neural networks: A review from a statistical perspective
    • Cheng B, Titterington D. 1994. Neural networks: a review from a statistical perspective. Statistical Science 9(1): 2-54.
    • (1994) Statistical Science , vol.9 , Issue.1 , pp. 2-54
    • Cheng, B.1    Titterington, D.2
  • 7
    • 0028416331 scopus 로고
    • Neural networks in civil engineering, I: Principles and understanding
    • Flood I, Kartam N. 1994. Neural networks in civil engineering, I: principles and understanding. Journal of Computing in Civil Engineering 8(2): 131-148.
    • (1994) Journal of Computing in Civil Engineering , vol.8 , Issue.2 , pp. 131-148
    • Flood, I.1    Kartam, N.2
  • 12
    • 0026818086 scopus 로고
    • Short term load forecasting using multilayer neural network with an adaptive learning algorithms
    • Ho KL, Hsu YY, Yang CC. 1992. Short term load forecasting using multilayer neural network with an adaptive learning algorithms. IEEE Transactions on Power Systems 7(1): 141-149.
    • (1992) IEEE Transactions on Power Systems , vol.7 , Issue.1 , pp. 141-149
    • Ho, K.L.1    Hsu, Y.Y.2    Yang, C.C.3
  • 13
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • Hornik K, Stinchcombe M, White H. 1989. Multilayer feedforward networks are universal approximators. Neural Networks 2: 359-366.
    • (1989) Neural Networks , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 14
    • 0025503458 scopus 로고
    • Constructive approximations for neural networks by sigmoidal functions
    • Jones LK. 1990. Constructive approximations for neural networks by sigmoidal functions. Proceedings of the IEEE 87(10): 1586-1589.
    • (1990) Proceedings of the IEEE , vol.87 , Issue.10 , pp. 1586-1589
    • Jones, L.K.1
  • 16
    • 33645135893 scopus 로고
    • NOAA Nile Technical Note NILE0054, Office of Hydrology, National Weather service, Silver Spring, MD
    • Koren V, Barret C, Schaake J. 1992. Nile River forecasting system models. NOAA Nile Technical Note NILE0054, Office of Hydrology, National Weather service, Silver Spring, MD.
    • (1992) Nile River Forecasting System Models
    • Koren, V.1    Barret, C.2    Schaake, J.3
  • 17
    • 33645140465 scopus 로고    scopus 로고
    • Application of the artificial neural network (ANN) in flood forecasting on a karstic catchment
    • Lihua X, Kieran M, Monomoy G. 2001. Application of the artificial neural network (ANN) in flood forecasting on a karstic catchment. In XXIX IAHR Congress Proceedings.
    • (2001) XXIX IAHR Congress Proceedings
    • Lihua, X.1    Kieran, M.2    Monomoy, G.3
  • 18
    • 0242713814 scopus 로고
    • Computation of a synthetic streamflow record on a digital computer
    • International Association of Scientific Hydrology Publication 51. International Association of Scientific Hydrology
    • Linsley RK, Crawford N. 1960. Computation of a synthetic streamflow record on a digital computer. International Association of Scientific Hydrology Publication 51. International Association of Scientific Hydrology: 526-538.
    • (1960) , pp. 526-538
    • Linsley, R.K.1    Crawford, N.2
  • 19
    • 0002519496 scopus 로고
    • The delineation of rain areas from visible and IR satellite data
    • Lovejoy S, Austin GL. 1979. The delineation of rain areas from visible and IR satellite data. Atmosphere-Ocean 17: 77-92.
    • (1979) Atmosphere-Ocean , vol.17 , pp. 77-92
    • Lovejoy, S.1    Austin, G.L.2
  • 22
    • 0028174533 scopus 로고
    • Optimization of groundwater remediation using artificial neural networks with parallel solute transport modelling
    • Rogers LL, Dowla FU. 1994. Optimization of groundwater remediation using artificial neural networks with parallel solute transport modelling. Water Resources Research 30(2): 457-481.
    • (1994) Water Resources Research , vol.30 , Issue.2 , pp. 457-481
    • Rogers, L.L.1    Dowla, F.U.2
  • 25
    • 0029660470 scopus 로고    scopus 로고
    • Modelling water retention curves of sandy soils using neural networks
    • Schaap M, Boutton W. 1996. Modelling water retention curves of sandy soils using neural networks. Water Resources Research 32(10): 3033-3040.
    • (1996) Water Resources Research , vol.32 , Issue.10 , pp. 3033-3040
    • Schaap, M.1    Boutton, W.2
  • 26
    • 0342506462 scopus 로고    scopus 로고
    • Application of a neural network technique to rainfall-runoff modelling
    • Shamseldin AY. 1997. Application of a neural network technique to rainfall-runoff modelling. Journal of Hydrology 199: 272-294.
    • (1997) Journal of Hydrology , vol.199 , pp. 272-294
    • Shamseldin, A.Y.1
  • 27
    • 0014584010 scopus 로고
    • Continuous hydrograph synthesis with an API-type hydrologic model
    • Sittner W, Schauss CE, Munro JC. 1969. Continuous hydrograph synthesis with an API-type hydrologic model. Water Resources Research 5: 1007-1022.
    • (1969) Water Resources Research , vol.5 , pp. 1007-1022
    • Sittner, W.1    Schauss, C.E.2    Munro, J.C.3
  • 28
    • 0025593679 scopus 로고
    • Fast Adaptive Back Propagation with Good Scaling Properties
    • Tollenere T. 1990. Fast Adaptive Back Propagation with Good Scaling Properties. Neural Networks 3: 561-573.
    • (1990) Neural Networks , vol.3 , pp. 561-573
    • Tollenere, T.1
  • 30
    • 34848843602 scopus 로고
    • USDAHL-74, revised model of watershed hydrology
    • US Agricultural Research Service
    • US Agricultural Research Service. 1975. USDAHL-74, revised model of watershed hydrology. Technical Bulletin 156.
    • (1975) Technical Bulletin 156
  • 31
    • 0012246196 scopus 로고
    • HEC-1 flood hydrograph package
    • US Army Corps of Engineers. Hydrologic Engineering Centre, Davis, CA
    • US Army Corps of Engineers. 1973. HEC-1 flood hydrograph package. Users manual. Hydrologic Engineering Centre, Davis, CA.
    • (1973) Users Manual
  • 32
    • 33645142083 scopus 로고
    • US Army Corps of Engineers. Hydrologic Engineering Center, Davis, CA
    • US Army Corps of Engineers. 1976. Urban storm water runoff. STORM user's manual. Hydrologic Engineering Center, Davis, CA.
    • (1976) Urban Storm Water Runoff: STORM User's Manual
  • 34
    • 70350058436 scopus 로고    scopus 로고
    • Flood forecasting model for Huai River in China using time delay neural network
    • Xue Y. 2001. Flood forecasting model for Huai River in China using time delay neural network. In XXIX IAHR Congress Proceedings.
    • (2001) XXIX IAHR Congress Proceedings
    • Xue, Y.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.