-
1
-
-
0034254196
-
Comparing neural network and autoregressive moving average techniques for the provision of continuous river flow forecasts in two contrasting catchments
-
Abrahart, R. J., and L. See (2000), Comparing neural network and autoregressive moving average techniques for the provision of continuous river flow forecasts in two contrasting catchments, Hydrol. Processes, 14(11), 2157-2172.
-
(2000)
Hydrol. Processes
, vol.14
, Issue.11
, pp. 2157-2172
-
-
Abrahart, R.J.1
See, L.2
-
2
-
-
0035480452
-
Investigating the role of saliency analysis with a neural network rainfall-runoff model
-
Abrahart, R. J., L. See, and P. E. Kneale (2001), Investigating the role of saliency analysis with a neural network rainfall-runoff model, Comput. Geosci., 27, 921-928.
-
(2001)
Comput. Geosci
, vol.27
, pp. 921-928
-
-
Abrahart, R.J.1
See, L.2
Kneale, P.E.3
-
3
-
-
0034174396
-
-
American Society of Civil Engineers (ASCE) Task Committee on Application of the Artificial Neural Networks in Hydrology (2000), Artificial neural networks in hydrology II: Hydrologic applications, J. Hydrol. Eng., 5, 124-137.
-
American Society of Civil Engineers (ASCE) Task Committee on Application of the Artificial Neural Networks in Hydrology (2000), Artificial neural networks in hydrology II: Hydrologic applications, J. Hydrol. Eng., 5, 124-137.
-
-
-
-
4
-
-
1442291113
-
Impact of the length of observed records on the performance of ANN and of conceptual parsimonious rainfall-runoff forecasting models
-
Anetil, F., C. Perrin, and V. Andreassian (2004), Impact of the length of observed records on the performance of ANN and of conceptual parsimonious rainfall-runoff forecasting models, Environ. Model. Software, 19, 357-368.
-
(2004)
Environ. Model. Software
, vol.19
, pp. 357-368
-
-
Anetil, F.1
Perrin, C.2
Andreassian, V.3
-
5
-
-
0036715707
-
Performance of neural networks in daily streamflow forecasting
-
Birikundavyi, S., R. Labib, H. T. Trung, and J. Rousselle (2002), Performance of neural networks in daily streamflow forecasting, J. Hydrol. Eng., 7(5), 392-398.
-
(2002)
J. Hydrol. Eng
, vol.7
, Issue.5
, pp. 392-398
-
-
Birikundavyi, S.1
Labib, R.2
Trung, H.T.3
Rousselle, J.4
-
6
-
-
0036697650
-
On the use of neural networks and non-parametric methods for improving real-time flood forecasting obtained through conceptual hydrologic models
-
Brath, A., A. Montanari, and E. Toth (2002), On the use of neural networks and non-parametric methods for improving real-time flood forecasting obtained through conceptual hydrologic models, Hydrol. Earth Syst. Sci., 6(4), 627-640.
-
(2002)
Hydrol. Earth Syst. Sci
, vol.6
, Issue.4
, pp. 627-640
-
-
Brath, A.1
Montanari, A.2
Toth, E.3
-
7
-
-
1942502700
-
Analysis of the effects of different scenarios of historical data availability on the calibration of a spatially-distributed hydrological model
-
Brath, A., A. Montanari, and E. Toth (2004), Analysis of the effects of different scenarios of historical data availability on the calibration of a spatially-distributed hydrological model, J. Hydrol., 291, 232-253.
-
(2004)
J. Hydrol
, vol.291
, pp. 232-253
-
-
Brath, A.1
Montanari, A.2
Toth, E.3
-
8
-
-
0037087735
-
An evaluation of a traditional and a neural net modelling approach to flood forecasting for an upland catchment
-
Cameron, D., P. Kneale, and L. See (2002), An evaluation of a traditional and a neural net modelling approach to flood forecasting for an upland catchment, Hydrol. Processes, 16, 1033-1046.
-
(2002)
Hydrol. Processes
, vol.16
, pp. 1033-1046
-
-
Cameron, D.1
Kneale, P.2
See, L.3
-
9
-
-
0032688155
-
River flood forecasting with neural network model
-
Campolo, M., P. Andreussi, and A. Soldati (1999), River flood forecasting with neural network model, Water Resour. Res., 35(4), 1191-1197.
-
(1999)
Water Resour. Res
, vol.35
, Issue.4
, pp. 1191-1197
-
-
Campolo, M.1
Andreussi, P.2
Soldati, A.3
-
10
-
-
0034621379
-
Daily reservoir inflow forecasting using artificial neural networks with stopped training approach
-
Coulibaly, P., F. Anctil, and B. Bobèe (2000), Daily reservoir inflow forecasting using artificial neural networks with stopped training approach, J. Hydrol., 230, 244-257.
-
(2000)
J. Hydrol
, vol.230
, pp. 244-257
-
-
Coulibaly, P.1
Anctil, F.2
Bobèe, B.3
-
11
-
-
0032005702
-
An artificial neural network approach to rainfall-runoff modeling
-
Dawson, C. W., and R. Wilby (1998), An artificial neural network approach to rainfall-runoff modeling, Hydrol. Sci. J., 43(1), 47-65.
-
(1998)
Hydrol. Sci. J
, vol.43
, Issue.1
, pp. 47-65
-
-
Dawson, C.W.1
Wilby, R.2
-
12
-
-
0034749335
-
Hydrological modelling using artificial neural networks
-
Dawson, C. W., and R. Wilby (2001), Hydrological modelling using artificial neural networks, Prog. Phys. Geogr, 25(1), 80-108.
-
(2001)
Prog. Phys. Geogr
, vol.25
, Issue.1
, pp. 80-108
-
-
Dawson, C.W.1
Wilby, R.2
-
13
-
-
0035116580
-
River flow forecasting using artificial neural networks
-
Dibike, Y. B., and D. P. Solomatine (2001), River flow forecasting using artificial neural networks, Phys. Chem. Earth B, 26(1), 1-7.
-
(2001)
Phys. Chem. Earth B
, vol.26
, Issue.1
, pp. 1-7
-
-
Dibike, Y.B.1
Solomatine, D.P.2
-
14
-
-
0003305919
-
Guidelines for predicting crop water requirements
-
Doorenbos, J., W. O. Pruitt, A. Aboukhaled, J. Damagnez, N. G. Dastane, C. van der Berg, P. E. Rijtema, O. M. Ashford, and M. Frere (1984), Guidelines for predicting crop water requirements, FAO Irrig. Drainage Pap.
-
(1984)
FAO Irrig. Drainage Pap
-
-
Doorenbos, J.1
Pruitt, W.O.2
Aboukhaled, A.3
Damagnez, J.4
Dastane, N.G.5
van der Berg, C.6
Rijtema, P.E.7
Ashford, O.M.8
Frere, M.9
-
15
-
-
0026445234
-
Effective and efficient global optimization for conceptual rainfall-runoff models
-
Duan, Q., S. Sorooshian, and H. V. Gupta (1992), Effective and efficient global optimization for conceptual rainfall-runoff models, Water Resour. Res., 28, 1015-1031.
-
(1992)
Water Resour. Res
, vol.28
, pp. 1015-1031
-
-
Duan, Q.1
Sorooshian, S.2
Gupta, H.V.3
-
16
-
-
0029657538
-
Use of a genetic algorithm combined with a local search method for the automatic calibration of conceptual rainfall runoff models
-
Franchini, M. (1996), Use of a genetic algorithm combined with a local search method for the automatic calibration of conceptual rainfall runoff models, Hydrol. Sci. J., 41, 21-39.
-
(1996)
Hydrol. Sci. J
, vol.41
, pp. 21-39
-
-
Franchini, M.1
-
17
-
-
0030428424
-
Automatic calibration of conceptual rainfall-runoff models: Optimization algorithms, catchment conditions, and model structure
-
Gan, T. Y., and G. F. Biftu (1996), Automatic calibration of conceptual rainfall-runoff models: Optimization algorithms, catchment conditions, and model structure, Water Resour. Res., 32(12), 3513-3524.
-
(1996)
Water Resour. Res
, vol.32
, Issue.12
, pp. 3513-3524
-
-
Gan, T.Y.1
Biftu, G.F.2
-
18
-
-
1642414601
-
Overparametrization a major obstacle to the use of neural networks in hydrology
-
Gaume, E., and R. Gosset (2003), Overparametrization a major obstacle to the use of neural networks in hydrology, Hydrol. Earth Syst. Sci., 7(5), 693-706.
-
(2003)
Hydrol. Earth Syst. Sci
, vol.7
, Issue.5
, pp. 693-706
-
-
Gaume, E.1
Gosset, R.2
-
19
-
-
0028543366
-
Training feedforward networks with the Marquardt algorithm
-
Hagan, M. T., and M. Menhaj (1994), Training feedforward networks with the Marquardt algorithm, IEEE Trans. Neural Networ., 5(6), 989-993.
-
(1994)
IEEE Trans. Neural Networ
, vol.5
, Issue.6
, pp. 989-993
-
-
Hagan, M.T.1
Menhaj, M.2
-
20
-
-
0024880831
-
Multilayer feedforward networks are universal approximators
-
Hornik, K., M. Stinchcombe, and H. White (1989), Multilayer feedforward networks are universal approximators, Neural Networks, 2, 359-366.
-
(1989)
Neural Networks
, vol.2
, pp. 359-366
-
-
Hornik, K.1
Stinchcombe, M.2
White, H.3
-
21
-
-
0029413797
-
Artificial Neural network modeling of the rainfall-runoff process
-
Hsu, K., H. V. Gupta, and S. Sorooshian (1995), Artificial Neural network modeling of the rainfall-runoff process, Water Resour. Res., 31(10), 2517-2530.
-
(1995)
Water Resour. Res
, vol.31
, Issue.10
, pp. 2517-2530
-
-
Hsu, K.1
Gupta, H.V.2
Sorooshian, S.3
-
22
-
-
0036998831
-
Self-organizing linear output map (SOLO): An artificial neural network suitable for hydrologic modeling and analysis
-
doi:10.1029/2001WR000795
-
Hsu, K., H. V. Gupta, X. Gao, S. Sorooshian, and B. Imam (2002), Self-organizing linear output map (SOLO): An artificial neural network suitable for hydrologic modeling and analysis, Water Resour. Res., 38(12), 1302, doi:10.1029/2001WR000795.
-
(2002)
Water Resour. Res
, vol.38
, Issue.12
, pp. 1302
-
-
Hsu, K.1
Gupta, H.V.2
Gao, X.3
Sorooshian, S.4
Imam, B.5
-
23
-
-
0037340658
-
Comparative analysis of event based rainfall-runoff modeling techniques-deterministic, statistical, and artificial neural networks
-
Jain, A., and S. K. V. P. Indurthy (2003), Comparative analysis of event based rainfall-runoff modeling techniques-deterministic, statistical, and artificial neural networks, J. Hydrol. Eng., 8(2), 1-6.
-
(2003)
J. Hydrol. Eng
, vol.8
, Issue.2
, pp. 1-6
-
-
Jain, A.1
Indurthy, S.K.V.P.2
-
24
-
-
0026613410
-
River flow forecasting. Part 5. Applications of a conceptual model
-
Kachroo, R. K. (1992), River flow forecasting. Part 5. Applications of a conceptual model, J. Hydrol., 133, 141-178.
-
(1992)
J. Hydrol
, vol.133
, pp. 141-178
-
-
Kachroo, R.K.1
-
25
-
-
1542646171
-
A comparison of nonlinear flood forecasting methods
-
doi: 10.1029/2002WR001551
-
Laio, F., A. Porporato, R. Revelli, and L. Ridolfi (2003), A comparison of nonlinear flood forecasting methods, Water Resour. Res., 39(5), 1129, doi: 10.1029/2002WR001551.
-
(2003)
Water Resour. Res
, vol.39
, Issue.5
, pp. 1129
-
-
Laio, F.1
Porporato, A.2
Revelli, R.3
Ridolfi, L.4
-
26
-
-
0032920124
-
Evaluating the use of 'goodness-of-fit' measures in hydrologic and hydroclimatic model validation
-
Legates, D. R., and G. J. McCabe (1999), Evaluating the use of 'goodness-of-fit' measures in hydrologic and hydroclimatic model validation, Water Resour. Res., 35, 233-241.
-
(1999)
Water Resour. Res
, vol.35
, pp. 233-241
-
-
Legates, D.R.1
McCabe, G.J.2
-
27
-
-
0037442430
-
Checking a process-based catchment model by artificial neural networks
-
Lischeid, G., and S. Uhlenbrook (2003), Checking a process-based catchment model by artificial neural networks, Hydrol. Processes, 17, 265-277.
-
(2003)
Hydrol. Processes
, vol.17
, pp. 265-277
-
-
Lischeid, G.1
Uhlenbrook, S.2
-
28
-
-
0033957764
-
Neural networks for the prediction and forecasting of water resources variables: A review of modeling issues and applications
-
Maier, H., and G. Dandy (2000), Neural networks for the prediction and forecasting of water resources variables: A review of modeling issues and applications, Environ. Model. Software, 15(1), 101-104.
-
(2000)
Environ. Model. Software
, vol.15
, Issue.1
, pp. 101-104
-
-
Maier, H.1
Dandy, G.2
-
29
-
-
0029663621
-
The use of artificial neural networks for the prediction of water quality parameters
-
Maier, H. R., and G. C. Dandy (1996), The use of artificial neural networks for the prediction of water quality parameters, Water Resour. Res., 32(4), 1013-1022.
-
(1996)
Water Resour. Res
, vol.32
, Issue.4
, pp. 1013-1022
-
-
Maier, H.R.1
Dandy, G.C.2
-
30
-
-
0030159380
-
Artificial neural networks as rainfall runoff models
-
Minns, A. W., and M. J. Hall (1996), Artificial neural networks as rainfall runoff models, Hydrol. Sci., 41, 399-417.
-
(1996)
Hydrol. Sci
, vol.41
, pp. 399-417
-
-
Minns, A.W.1
Hall, M.J.2
-
31
-
-
0014776873
-
River flow forecasting through conceptual models, 1. A discussion of principles
-
Nash, J. E., and J. V. Sutcliffe (1970), River flow forecasting through conceptual models, 1. A discussion of principles, J. Hydrol., 10, 282-290.
-
(1970)
J. Hydrol
, vol.10
, pp. 282-290
-
-
Nash, J.E.1
Sutcliffe, J.V.2
-
32
-
-
0031284786
-
A combined deterministic and self-adaptive stochastic algorithm for streamflow forecasting with application to catchments of the Upper Murray Basin, Australia
-
Schreider, S., S. Yu, A. J. Jakeman, B. G. Dyer, and R. I. Francis (1997), A combined deterministic and self-adaptive stochastic algorithm for streamflow forecasting with application to catchments of the Upper Murray Basin, Australia, Environ. Model. Software, 12(1), 93-104.
-
(1997)
Environ. Model. Software
, vol.12
, Issue.1
, pp. 93-104
-
-
Schreider, S.1
Yu, S.2
Jakeman, A.J.3
Dyer, B.G.4
Francis, R.I.5
-
33
-
-
0037565156
-
Model trees as an alternative to neural networks in rainfall-runoff modelling
-
Solomatine, D. P., and K. N. Dulal (2003), Model trees as an alternative to neural networks in rainfall-runoff modelling, Hydrol. Sci. J., 48(3) 399-411.
-
(2003)
Hydrol. Sci. J
, vol.48
, Issue.3
, pp. 399-411
-
-
Solomatine, D.P.1
Dulal, K.N.2
-
34
-
-
0034298851
-
Application of Tank, NAM, ARMA and neural network models to flood forecasting
-
Tingsanchali, T., and M. R. Gautam (2000), Application of Tank, NAM, ARMA and neural network models to flood forecasting, Hydrol. Processes, 14, 2473-2487.
-
(2000)
Hydrol. Processes
, vol.14
, pp. 2473-2487
-
-
Tingsanchali, T.1
Gautam, M.R.2
-
35
-
-
0030483015
-
The ARNO rainfall runoff model
-
Todini, E. (1996), The ARNO rainfall runoff model, J. Hydrol., 175, 339-382.
-
(1996)
J. Hydrol
, vol.175
, pp. 339-382
-
-
Todini, E.1
-
36
-
-
0034174397
-
Precipitation runoff modeling using artificial neural network and conceptual models
-
Tokar, A. S., and M. Markus (2000), Precipitation runoff modeling using artificial neural network and conceptual models, J. Hydrol. Eng., 5(2), 156-161.
-
(2000)
J. Hydrol. Eng
, vol.5
, Issue.2
, pp. 156-161
-
-
Tokar, A.S.1
Markus, M.2
-
37
-
-
37549025651
-
Use of spatially-distributed or lumped precipitation inputs in conceptual and black-box models for runoff forecasting
-
edited by A. Brath, A. Montanari, and E. Toth, pp, BIOS, Cosenza, Italy
-
Toth, E., and A. Brath (2004), Use of spatially-distributed or lumped precipitation inputs in conceptual and black-box models for runoff forecasting, in Recent Advances in Peak River Flow Modelling, Prediction and Real-Time Forecasting: Assessment of the Impacts of Land-Use and Climate Changes, edited by A. Brath, A. Montanari, and E. Toth, pp. 247-261, BIOS, Cosenza, Italy.
-
(2004)
Recent Advances in Peak River Flow Modelling, Prediction and Real-Time Forecasting: Assessment of the Impacts of Land-Use and Climate Changes
, pp. 247-261
-
-
Toth, E.1
Brath, A.2
-
38
-
-
0034694775
-
Comparison of short-term rainfall prediction models for real-time flood forecasting
-
Toth, E., A. Brath, and A. Montanari (2000), Comparison of short-term rainfall prediction models for real-time flood forecasting, J. Hydrol., 239, 132-147.
-
(2000)
J. Hydrol
, vol.239
, pp. 132-147
-
-
Toth, E.1
Brath, A.2
Montanari, A.3
-
39
-
-
84920826066
-
Simulated real-time intercomparison of hydrological models
-
World Meteorological Organization WMO, 241 pp, Geneva
-
World Meteorological Organization (WMO) (1992), Simulated real-time intercomparison of hydrological models, WMO Publ. 779, 241 pp., Geneva.
-
(1992)
WMO Publ. 779
-
-
-
40
-
-
0033019602
-
Short term stream-flow forecasting using artificial neural networks
-
Zealand, C. M., D. H. Burn, and S. P. Simonovic (1999), Short term stream-flow forecasting using artificial neural networks, J. Hydrol., 214, 32-48.
-
(1999)
J. Hydrol
, vol.214
, pp. 32-48
-
-
Zealand, C.M.1
Burn, D.H.2
Simonovic, S.P.3
-
41
-
-
0019141894
-
The Xinanjiang model
-
Zhao, R. J., Y. L. Zhuang, L. R. Fang, X. R. Liu, and Q. S. Zhang (1980), The Xinanjiang model, IAHS Publ., 129, 351-356.
-
(1980)
IAHS Publ
, vol.129
, pp. 351-356
-
-
Zhao, R.J.1
Zhuang, Y.L.2
Fang, L.R.3
Liu, X.R.4
Zhang, Q.S.5
|