메뉴 건너뛰기




Volumn 43, Issue 11, 2007, Pages

Multistep ahead streamflow forecasting: Role of calibration data in conceptual and neural network modeling

Author keywords

[No Author keywords available]

Indexed keywords

CALIBRATION; FORECASTING; NEURAL NETWORKS; REAL TIME SYSTEMS; RIVER BASIN PROJECTS;

EID: 37549066943     PISSN: 00431397     EISSN: None     Source Type: Journal    
DOI: 10.1029/2006WR005383     Document Type: Article
Times cited : (80)

References (41)
  • 1
    • 0034254196 scopus 로고    scopus 로고
    • Comparing neural network and autoregressive moving average techniques for the provision of continuous river flow forecasts in two contrasting catchments
    • Abrahart, R. J., and L. See (2000), Comparing neural network and autoregressive moving average techniques for the provision of continuous river flow forecasts in two contrasting catchments, Hydrol. Processes, 14(11), 2157-2172.
    • (2000) Hydrol. Processes , vol.14 , Issue.11 , pp. 2157-2172
    • Abrahart, R.J.1    See, L.2
  • 2
    • 0035480452 scopus 로고    scopus 로고
    • Investigating the role of saliency analysis with a neural network rainfall-runoff model
    • Abrahart, R. J., L. See, and P. E. Kneale (2001), Investigating the role of saliency analysis with a neural network rainfall-runoff model, Comput. Geosci., 27, 921-928.
    • (2001) Comput. Geosci , vol.27 , pp. 921-928
    • Abrahart, R.J.1    See, L.2    Kneale, P.E.3
  • 3
    • 0034174396 scopus 로고    scopus 로고
    • American Society of Civil Engineers (ASCE) Task Committee on Application of the Artificial Neural Networks in Hydrology (2000), Artificial neural networks in hydrology II: Hydrologic applications, J. Hydrol. Eng., 5, 124-137.
    • American Society of Civil Engineers (ASCE) Task Committee on Application of the Artificial Neural Networks in Hydrology (2000), Artificial neural networks in hydrology II: Hydrologic applications, J. Hydrol. Eng., 5, 124-137.
  • 4
    • 1442291113 scopus 로고    scopus 로고
    • Impact of the length of observed records on the performance of ANN and of conceptual parsimonious rainfall-runoff forecasting models
    • Anetil, F., C. Perrin, and V. Andreassian (2004), Impact of the length of observed records on the performance of ANN and of conceptual parsimonious rainfall-runoff forecasting models, Environ. Model. Software, 19, 357-368.
    • (2004) Environ. Model. Software , vol.19 , pp. 357-368
    • Anetil, F.1    Perrin, C.2    Andreassian, V.3
  • 5
    • 0036715707 scopus 로고    scopus 로고
    • Performance of neural networks in daily streamflow forecasting
    • Birikundavyi, S., R. Labib, H. T. Trung, and J. Rousselle (2002), Performance of neural networks in daily streamflow forecasting, J. Hydrol. Eng., 7(5), 392-398.
    • (2002) J. Hydrol. Eng , vol.7 , Issue.5 , pp. 392-398
    • Birikundavyi, S.1    Labib, R.2    Trung, H.T.3    Rousselle, J.4
  • 6
    • 0036697650 scopus 로고    scopus 로고
    • On the use of neural networks and non-parametric methods for improving real-time flood forecasting obtained through conceptual hydrologic models
    • Brath, A., A. Montanari, and E. Toth (2002), On the use of neural networks and non-parametric methods for improving real-time flood forecasting obtained through conceptual hydrologic models, Hydrol. Earth Syst. Sci., 6(4), 627-640.
    • (2002) Hydrol. Earth Syst. Sci , vol.6 , Issue.4 , pp. 627-640
    • Brath, A.1    Montanari, A.2    Toth, E.3
  • 7
    • 1942502700 scopus 로고    scopus 로고
    • Analysis of the effects of different scenarios of historical data availability on the calibration of a spatially-distributed hydrological model
    • Brath, A., A. Montanari, and E. Toth (2004), Analysis of the effects of different scenarios of historical data availability on the calibration of a spatially-distributed hydrological model, J. Hydrol., 291, 232-253.
    • (2004) J. Hydrol , vol.291 , pp. 232-253
    • Brath, A.1    Montanari, A.2    Toth, E.3
  • 8
    • 0037087735 scopus 로고    scopus 로고
    • An evaluation of a traditional and a neural net modelling approach to flood forecasting for an upland catchment
    • Cameron, D., P. Kneale, and L. See (2002), An evaluation of a traditional and a neural net modelling approach to flood forecasting for an upland catchment, Hydrol. Processes, 16, 1033-1046.
    • (2002) Hydrol. Processes , vol.16 , pp. 1033-1046
    • Cameron, D.1    Kneale, P.2    See, L.3
  • 9
    • 0032688155 scopus 로고    scopus 로고
    • River flood forecasting with neural network model
    • Campolo, M., P. Andreussi, and A. Soldati (1999), River flood forecasting with neural network model, Water Resour. Res., 35(4), 1191-1197.
    • (1999) Water Resour. Res , vol.35 , Issue.4 , pp. 1191-1197
    • Campolo, M.1    Andreussi, P.2    Soldati, A.3
  • 10
    • 0034621379 scopus 로고    scopus 로고
    • Daily reservoir inflow forecasting using artificial neural networks with stopped training approach
    • Coulibaly, P., F. Anctil, and B. Bobèe (2000), Daily reservoir inflow forecasting using artificial neural networks with stopped training approach, J. Hydrol., 230, 244-257.
    • (2000) J. Hydrol , vol.230 , pp. 244-257
    • Coulibaly, P.1    Anctil, F.2    Bobèe, B.3
  • 11
    • 0032005702 scopus 로고    scopus 로고
    • An artificial neural network approach to rainfall-runoff modeling
    • Dawson, C. W., and R. Wilby (1998), An artificial neural network approach to rainfall-runoff modeling, Hydrol. Sci. J., 43(1), 47-65.
    • (1998) Hydrol. Sci. J , vol.43 , Issue.1 , pp. 47-65
    • Dawson, C.W.1    Wilby, R.2
  • 12
    • 0034749335 scopus 로고    scopus 로고
    • Hydrological modelling using artificial neural networks
    • Dawson, C. W., and R. Wilby (2001), Hydrological modelling using artificial neural networks, Prog. Phys. Geogr, 25(1), 80-108.
    • (2001) Prog. Phys. Geogr , vol.25 , Issue.1 , pp. 80-108
    • Dawson, C.W.1    Wilby, R.2
  • 13
    • 0035116580 scopus 로고    scopus 로고
    • River flow forecasting using artificial neural networks
    • Dibike, Y. B., and D. P. Solomatine (2001), River flow forecasting using artificial neural networks, Phys. Chem. Earth B, 26(1), 1-7.
    • (2001) Phys. Chem. Earth B , vol.26 , Issue.1 , pp. 1-7
    • Dibike, Y.B.1    Solomatine, D.P.2
  • 15
    • 0026445234 scopus 로고
    • Effective and efficient global optimization for conceptual rainfall-runoff models
    • Duan, Q., S. Sorooshian, and H. V. Gupta (1992), Effective and efficient global optimization for conceptual rainfall-runoff models, Water Resour. Res., 28, 1015-1031.
    • (1992) Water Resour. Res , vol.28 , pp. 1015-1031
    • Duan, Q.1    Sorooshian, S.2    Gupta, H.V.3
  • 16
    • 0029657538 scopus 로고    scopus 로고
    • Use of a genetic algorithm combined with a local search method for the automatic calibration of conceptual rainfall runoff models
    • Franchini, M. (1996), Use of a genetic algorithm combined with a local search method for the automatic calibration of conceptual rainfall runoff models, Hydrol. Sci. J., 41, 21-39.
    • (1996) Hydrol. Sci. J , vol.41 , pp. 21-39
    • Franchini, M.1
  • 17
    • 0030428424 scopus 로고    scopus 로고
    • Automatic calibration of conceptual rainfall-runoff models: Optimization algorithms, catchment conditions, and model structure
    • Gan, T. Y., and G. F. Biftu (1996), Automatic calibration of conceptual rainfall-runoff models: Optimization algorithms, catchment conditions, and model structure, Water Resour. Res., 32(12), 3513-3524.
    • (1996) Water Resour. Res , vol.32 , Issue.12 , pp. 3513-3524
    • Gan, T.Y.1    Biftu, G.F.2
  • 18
    • 1642414601 scopus 로고    scopus 로고
    • Overparametrization a major obstacle to the use of neural networks in hydrology
    • Gaume, E., and R. Gosset (2003), Overparametrization a major obstacle to the use of neural networks in hydrology, Hydrol. Earth Syst. Sci., 7(5), 693-706.
    • (2003) Hydrol. Earth Syst. Sci , vol.7 , Issue.5 , pp. 693-706
    • Gaume, E.1    Gosset, R.2
  • 19
    • 0028543366 scopus 로고
    • Training feedforward networks with the Marquardt algorithm
    • Hagan, M. T., and M. Menhaj (1994), Training feedforward networks with the Marquardt algorithm, IEEE Trans. Neural Networ., 5(6), 989-993.
    • (1994) IEEE Trans. Neural Networ , vol.5 , Issue.6 , pp. 989-993
    • Hagan, M.T.1    Menhaj, M.2
  • 20
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • Hornik, K., M. Stinchcombe, and H. White (1989), Multilayer feedforward networks are universal approximators, Neural Networks, 2, 359-366.
    • (1989) Neural Networks , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 21
    • 0029413797 scopus 로고
    • Artificial Neural network modeling of the rainfall-runoff process
    • Hsu, K., H. V. Gupta, and S. Sorooshian (1995), Artificial Neural network modeling of the rainfall-runoff process, Water Resour. Res., 31(10), 2517-2530.
    • (1995) Water Resour. Res , vol.31 , Issue.10 , pp. 2517-2530
    • Hsu, K.1    Gupta, H.V.2    Sorooshian, S.3
  • 22
    • 0036998831 scopus 로고    scopus 로고
    • Self-organizing linear output map (SOLO): An artificial neural network suitable for hydrologic modeling and analysis
    • doi:10.1029/2001WR000795
    • Hsu, K., H. V. Gupta, X. Gao, S. Sorooshian, and B. Imam (2002), Self-organizing linear output map (SOLO): An artificial neural network suitable for hydrologic modeling and analysis, Water Resour. Res., 38(12), 1302, doi:10.1029/2001WR000795.
    • (2002) Water Resour. Res , vol.38 , Issue.12 , pp. 1302
    • Hsu, K.1    Gupta, H.V.2    Gao, X.3    Sorooshian, S.4    Imam, B.5
  • 23
    • 0037340658 scopus 로고    scopus 로고
    • Comparative analysis of event based rainfall-runoff modeling techniques-deterministic, statistical, and artificial neural networks
    • Jain, A., and S. K. V. P. Indurthy (2003), Comparative analysis of event based rainfall-runoff modeling techniques-deterministic, statistical, and artificial neural networks, J. Hydrol. Eng., 8(2), 1-6.
    • (2003) J. Hydrol. Eng , vol.8 , Issue.2 , pp. 1-6
    • Jain, A.1    Indurthy, S.K.V.P.2
  • 24
    • 0026613410 scopus 로고
    • River flow forecasting. Part 5. Applications of a conceptual model
    • Kachroo, R. K. (1992), River flow forecasting. Part 5. Applications of a conceptual model, J. Hydrol., 133, 141-178.
    • (1992) J. Hydrol , vol.133 , pp. 141-178
    • Kachroo, R.K.1
  • 25
    • 1542646171 scopus 로고    scopus 로고
    • A comparison of nonlinear flood forecasting methods
    • doi: 10.1029/2002WR001551
    • Laio, F., A. Porporato, R. Revelli, and L. Ridolfi (2003), A comparison of nonlinear flood forecasting methods, Water Resour. Res., 39(5), 1129, doi: 10.1029/2002WR001551.
    • (2003) Water Resour. Res , vol.39 , Issue.5 , pp. 1129
    • Laio, F.1    Porporato, A.2    Revelli, R.3    Ridolfi, L.4
  • 26
    • 0032920124 scopus 로고    scopus 로고
    • Evaluating the use of 'goodness-of-fit' measures in hydrologic and hydroclimatic model validation
    • Legates, D. R., and G. J. McCabe (1999), Evaluating the use of 'goodness-of-fit' measures in hydrologic and hydroclimatic model validation, Water Resour. Res., 35, 233-241.
    • (1999) Water Resour. Res , vol.35 , pp. 233-241
    • Legates, D.R.1    McCabe, G.J.2
  • 27
    • 0037442430 scopus 로고    scopus 로고
    • Checking a process-based catchment model by artificial neural networks
    • Lischeid, G., and S. Uhlenbrook (2003), Checking a process-based catchment model by artificial neural networks, Hydrol. Processes, 17, 265-277.
    • (2003) Hydrol. Processes , vol.17 , pp. 265-277
    • Lischeid, G.1    Uhlenbrook, S.2
  • 28
    • 0033957764 scopus 로고    scopus 로고
    • Neural networks for the prediction and forecasting of water resources variables: A review of modeling issues and applications
    • Maier, H., and G. Dandy (2000), Neural networks for the prediction and forecasting of water resources variables: A review of modeling issues and applications, Environ. Model. Software, 15(1), 101-104.
    • (2000) Environ. Model. Software , vol.15 , Issue.1 , pp. 101-104
    • Maier, H.1    Dandy, G.2
  • 29
    • 0029663621 scopus 로고    scopus 로고
    • The use of artificial neural networks for the prediction of water quality parameters
    • Maier, H. R., and G. C. Dandy (1996), The use of artificial neural networks for the prediction of water quality parameters, Water Resour. Res., 32(4), 1013-1022.
    • (1996) Water Resour. Res , vol.32 , Issue.4 , pp. 1013-1022
    • Maier, H.R.1    Dandy, G.C.2
  • 30
    • 0030159380 scopus 로고    scopus 로고
    • Artificial neural networks as rainfall runoff models
    • Minns, A. W., and M. J. Hall (1996), Artificial neural networks as rainfall runoff models, Hydrol. Sci., 41, 399-417.
    • (1996) Hydrol. Sci , vol.41 , pp. 399-417
    • Minns, A.W.1    Hall, M.J.2
  • 31
    • 0014776873 scopus 로고
    • River flow forecasting through conceptual models, 1. A discussion of principles
    • Nash, J. E., and J. V. Sutcliffe (1970), River flow forecasting through conceptual models, 1. A discussion of principles, J. Hydrol., 10, 282-290.
    • (1970) J. Hydrol , vol.10 , pp. 282-290
    • Nash, J.E.1    Sutcliffe, J.V.2
  • 32
    • 0031284786 scopus 로고    scopus 로고
    • A combined deterministic and self-adaptive stochastic algorithm for streamflow forecasting with application to catchments of the Upper Murray Basin, Australia
    • Schreider, S., S. Yu, A. J. Jakeman, B. G. Dyer, and R. I. Francis (1997), A combined deterministic and self-adaptive stochastic algorithm for streamflow forecasting with application to catchments of the Upper Murray Basin, Australia, Environ. Model. Software, 12(1), 93-104.
    • (1997) Environ. Model. Software , vol.12 , Issue.1 , pp. 93-104
    • Schreider, S.1    Yu, S.2    Jakeman, A.J.3    Dyer, B.G.4    Francis, R.I.5
  • 33
    • 0037565156 scopus 로고    scopus 로고
    • Model trees as an alternative to neural networks in rainfall-runoff modelling
    • Solomatine, D. P., and K. N. Dulal (2003), Model trees as an alternative to neural networks in rainfall-runoff modelling, Hydrol. Sci. J., 48(3) 399-411.
    • (2003) Hydrol. Sci. J , vol.48 , Issue.3 , pp. 399-411
    • Solomatine, D.P.1    Dulal, K.N.2
  • 34
    • 0034298851 scopus 로고    scopus 로고
    • Application of Tank, NAM, ARMA and neural network models to flood forecasting
    • Tingsanchali, T., and M. R. Gautam (2000), Application of Tank, NAM, ARMA and neural network models to flood forecasting, Hydrol. Processes, 14, 2473-2487.
    • (2000) Hydrol. Processes , vol.14 , pp. 2473-2487
    • Tingsanchali, T.1    Gautam, M.R.2
  • 35
    • 0030483015 scopus 로고    scopus 로고
    • The ARNO rainfall runoff model
    • Todini, E. (1996), The ARNO rainfall runoff model, J. Hydrol., 175, 339-382.
    • (1996) J. Hydrol , vol.175 , pp. 339-382
    • Todini, E.1
  • 36
    • 0034174397 scopus 로고    scopus 로고
    • Precipitation runoff modeling using artificial neural network and conceptual models
    • Tokar, A. S., and M. Markus (2000), Precipitation runoff modeling using artificial neural network and conceptual models, J. Hydrol. Eng., 5(2), 156-161.
    • (2000) J. Hydrol. Eng , vol.5 , Issue.2 , pp. 156-161
    • Tokar, A.S.1    Markus, M.2
  • 38
    • 0034694775 scopus 로고    scopus 로고
    • Comparison of short-term rainfall prediction models for real-time flood forecasting
    • Toth, E., A. Brath, and A. Montanari (2000), Comparison of short-term rainfall prediction models for real-time flood forecasting, J. Hydrol., 239, 132-147.
    • (2000) J. Hydrol , vol.239 , pp. 132-147
    • Toth, E.1    Brath, A.2    Montanari, A.3
  • 39
    • 84920826066 scopus 로고
    • Simulated real-time intercomparison of hydrological models
    • World Meteorological Organization WMO, 241 pp, Geneva
    • World Meteorological Organization (WMO) (1992), Simulated real-time intercomparison of hydrological models, WMO Publ. 779, 241 pp., Geneva.
    • (1992) WMO Publ. 779
  • 40
    • 0033019602 scopus 로고    scopus 로고
    • Short term stream-flow forecasting using artificial neural networks
    • Zealand, C. M., D. H. Burn, and S. P. Simonovic (1999), Short term stream-flow forecasting using artificial neural networks, J. Hydrol., 214, 32-48.
    • (1999) J. Hydrol , vol.214 , pp. 32-48
    • Zealand, C.M.1    Burn, D.H.2    Simonovic, S.P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.