메뉴 건너뛰기




Volumn 13, Issue 9, 2009, Pages 1619-1634

Combining semi-distributed process-based and data-driven models in flow simulation: A case study of the Meuse river basin

Author keywords

[No Author keywords available]

Indexed keywords

ACCURACY ASSESSMENT; ARTIFICIAL NEURAL NETWORK; FLOW MODELING; FLOW PATTERN; FORECASTING METHOD; PERFORMANCE ASSESSMENT; RIVER BASIN;

EID: 77951856333     PISSN: 10275606     EISSN: 16077938     Source Type: Journal    
DOI: 10.5194/hess-13-1619-2009     Document Type: Article
Times cited : (45)

References (43)
  • 1
    • 0036698601 scopus 로고    scopus 로고
    • Multi-model data fusion for river flow forecasting: An evaluation of six alternative methods based on two contrasting catchments
    • Abrahart, R. J. and See, L.: Multi-model data fusion for river flow forecasting: an evaluation of six alternative methods based on two contrasting catchments, Hydrol. Earth Syst. Sci., 6,655-670, 2002, http://www.hydrol-earth- syst-sci.net/6/655/2002/.
    • (2002) Hydrol. Earth Syst. Sci. , vol.6 , pp. 655-670
    • Abrahart, R.J.1    See, L.2
  • 2
    • 11144345954 scopus 로고    scopus 로고
    • An exploration of artificial neural network rainfall-runoff forecasting combined with wavelet decomposition
    • Anctil, F. and Tape, D. G.: An exploration of artificial neural network rainfall-runoff forecasting combined with wavelet decomposition, J. Environ. Eng. Sci, 3(1), S121-S128, 2004.
    • (2004) J. Environ. Eng. Sci , vol.3 , Issue.1
    • Anctil, F.1    Tape, D.G.2
  • 3
    • 14944379773 scopus 로고    scopus 로고
    • Task committee on application of artificial neural networks in hydrology, artificial neural networks in hydrology. II: Hydrologic application
    • ASCE
    • ASCE: Task Committee on Application of Artificial Neural Networks in Hydrology, Artificial Neural Networks in Hydrology. II: Hydrologic Application, J. Hydrol. Eng., 5, 124-136, 2000.
    • (2000) J. Hydrol. Eng. , vol.5 , pp. 124-136
  • 4
    • 33749475783 scopus 로고    scopus 로고
    • Detecting the influence of land use changes on discharges and floods in the Meuse River Basin - The predictive power of a ninety-year rainfall-runoff relation?
    • Ashagrie, A. G., de Laat, P. J., de Wit, M. J., Tu, M., and Uhlen-brook, S.: Detecting the influence of land use changes on discharges and floods in the Meuse River Basin - the predictive power of a ninety-year rainfall-runoff relation?, Hydrol. Earth Syst. Sci., 10, 691-701, 2006, http://www.hydrol-earth- syst-sci.net/10/691/2006/. (Pubitemid 44521391)
    • (2006) Hydrology and Earth System Sciences , vol.10 , Issue.5 , pp. 691-701
    • Ashagrie, A.G.1    De Laat, P.J.M.2    De Wit, M.J.M.3    Tu, M.4    Uhlenbrook, S.5
  • 6
    • 0015573239 scopus 로고
    • Development of a conceptual deterministic rainfall-runoff model
    • Bergström, S. and Forsman, A.: Development of a conceptual deterministic rainfall-runoff model, Nord. Hydrol., 4, 147-170, 1973.
    • (1973) Nord. Hydrol. , vol.4 , pp. 147-170
    • Bergström, S.1    Forsman, A.2
  • 7
    • 0036538002 scopus 로고    scopus 로고
    • Modelling the effects of spatial and temporal resolution of rainfall and basin model on extreme river discharge
    • Booij, M. J.: Modelling the effects of spatial and temporal resolution of rainfall and basin model on extreme river discharge, Hydrolog. Sci. J., 47, 307-320, 2002.
    • (2002) Hydrolog. Sci. J. , vol.47 , pp. 307-320
    • Booij, M.J.1
  • 8
    • 14644390927 scopus 로고    scopus 로고
    • Impact of climate change on river flooding assessed with different spatial model resolutions
    • Booij, M. J.: Impact of climate change on river flooding assessed with different spatial model resolutions, J. Hydrol., 303, 176-198, 2005.
    • (2005) J. Hydrol. , vol.303 , pp. 176-198
    • Booij, M.J.1
  • 9
    • 10644295753 scopus 로고    scopus 로고
    • Input determination for neural network models in water resources applications. Part 1 - Background and methodology
    • DOI 10.1016/j.jhydrol.2004.06.021, PII S0022169404002987
    • Bowden, G. J., Dandy, G. C., and Maier, H. R.: Input determination for neural network models in water resources applications. Part 1 background and methodology, J. Hydrol., 301, 75-92, 2005. (Pubitemid 39645410)
    • (2005) Journal of Hydrology , vol.301 , Issue.1-4 , pp. 75-92
    • Bowden, G.J.1    Dandy, G.C.2    Maier, H.R.3
  • 10
    • 0036697650 scopus 로고    scopus 로고
    • Neural networks and non-parametric methods for improving real-time flood forecasting through conceptual hydrological models
    • Brath, A., Montanari, A., and Toth, E.: Neural networks and non-parametric methods for improving real-time flood forecasting through conceptual hydrological models, Hydrol. Earth Syst. Sci., 6, 627-639, 2002, http://www.hydrol-earth-syst-sci.net/6/627/2002/.
    • (2002) Hydrol. Earth Syst. Sci. , vol.6 , pp. 627-639
    • Brath, A.1    Montanari, A.2    Toth, E.3
  • 11
    • 31044455061 scopus 로고    scopus 로고
    • Integration of artificial neural networks with conceptual models in rainfall-runoff modeling
    • DOI 10.1016/j.jhydrol.2005.06.017, PII S0022169405003069
    • Chen, J. and Adams, B. J.: Integration of artificial neural networks with conceptual models in rainfall-runoff modeling, J. Hydrol., 318, 232-249, 2006. (Pubitemid 43120797)
    • (2006) Journal of Hydrology , vol.318 , Issue.1-4 , pp. 232-249
    • Chen, J.1    Adams, B.J.2
  • 12
    • 34249885607 scopus 로고    scopus 로고
    • Knowledge-based modularization and global optimization of artificial neural network models in hydrological forecasting
    • DOI 10.1016/j.neunet.2007.04.019, PII S0893608007000457, Computational Intelligence in Earth and Environmental Sciences
    • Corzo, G. and Solomatine, D.: Knowledge-based modularization and global optimization of artificial neural network models in hydrological forecasting, Neural Networks, 20, 528-536, 2007a. (Pubitemid 46874850)
    • (2007) Neural Networks , vol.20 , Issue.4 , pp. 528-536
    • Corzo, G.1    Solomatine, D.2
  • 13
    • 34249775808 scopus 로고    scopus 로고
    • Baseflow separation techniques for modular artificial neural networks modelling in flow forecasting
    • Corzo, G. A. and Solomatine, D. P.: Baseflow separation techniques for modular artificial neural networks modelling in flow forecasting, Hydrolog. Sci. J., 52, 491-507, 2007b.
    • (2007) Hydrolog. Sci. J. , vol.52 , pp. 491-507
    • Corzo, G.A.1    Solomatine, D.P.2
  • 17
    • 0035398081 scopus 로고    scopus 로고
    • Model induction with support vector machines: Introduction and applications
    • DOI 10.1061/(ASCE)0887-3801(2001)15:3(208), Reportnr 22146
    • Dibike, Y., Velickov, S., Solomatine, D., and Abbott, M.: Model Induction with Support Vector Machines: Introduction and Applications, J. Comput. Civil Eng., 15, 208-216, 2001. (Pubitemid 32583199)
    • (2001) Journal of Computing in Civil Engineering , vol.15 , Issue.3 , pp. 208-216
    • Dibike, Y.B.1    Velickov, S.2    Solomatine, D.3    Abbott, M.B.4
  • 18
    • 0032598356 scopus 로고    scopus 로고
    • Application of artificial neural networks to the simulation of a two dimensional flow
    • Dibike, Y. B. and Abbott, M. B.: Application of artificial neural networks to the simulation of a two dimensional flow, J. Hydraul. Res., 37, 435-446, 1999.
    • (1999) J. Hydraul. Res. , vol.37 , pp. 435-446
    • Dibike, Y.B.1    Abbott, M.B.2
  • 20
    • 36549018689 scopus 로고    scopus 로고
    • Soft combination of local models in a multi-objective framework
    • Fenicia, F., Solomatine, D. P., Savenije, H. H. G., and Matgen, P.: Soft combination of local models in a multi-objective framework, Hydrol. Earth Syst. Sci., 11, 1797 - 1809, 2007, http://www.hydrol-earth-syst-sci.net/11/1797/2007/. (Pubitemid 350178262)
    • (2007) Hydrology and Earth System Sciences , vol.11 , Issue.6 , pp. 1797-1809
    • Fenicia, F.1    Solomatine, D.P.2    Savenije, H.H.G.3    Matgen, P.4
  • 23
    • 0026613410 scopus 로고
    • River flow forecasting. Part 2. Applications of a conceptual model
    • Kachroo, R.: River Flow Forecasting. Part 2. Applications of a conceptual model, J. Hydrol., 7(133), 141-178, 1992.
    • (1992) J. Hydrol. , vol.7 , Issue.133 , pp. 141-178
    • Kachroo, R.1
  • 24
    • 0026613406 scopus 로고
    • River flow forecasting. Part 2. Algebraic development of linear modelling techniques
    • Kachroo, R. and Liang, G.: River Flow Forecasting. Part 2. Algebraic Development of Linear Modelling Techniques, J. Hydrol., 133, 17-40, 1992.
    • (1992) J. Hydrol. , vol.133 , pp. 17-40
    • Kachroo, R.1    Liang, G.2
  • 26
    • 0000873069 scopus 로고
    • A method for the solution of certain problems in least squares
    • Levenberg, K.: A method for the solution of certain problems in least squares, Quart. Appl. Math, 2, 164-168, 1944.
    • (1944) Quart. Appl. Math , vol.2 , pp. 164-168
    • Levenberg, K.1
  • 27
    • 55749093428 scopus 로고    scopus 로고
    • Comparing model performance of the HBV and VIC models in the Rhine basin
    • IAHS, Perugia
    • Linde, A. T., Hurkans, R., Aerts, J., and Dolman, H.: Comparing model performance of the HBV and VIC models in the Rhine basin, in: Symposium HS2004 at IUGG2007, IAHS, Perugia, 278-285, 2007.
    • (2007) Symposium HS2004 at IUGG2007 , pp. 278-285
    • Linde, A.T.1    Hurkans, R.2    Aerts, J.3    Dolman, H.4
  • 28
    • 0031581519 scopus 로고    scopus 로고
    • Development and test of the distributed HBV-96 hydrological model
    • DOI 10.1016/S0022-1694(97)00041-3, PII S0022169497000413
    • Lindström, G., Johansson, B., Persson, M., Gardelin, M., and Bergtröm, S.: Development and test of the distributed HBV-96 hydrological model, J. Hydrol., 201, 272-1228, 1997. (Pubitemid 28037764)
    • (1997) Journal of Hydrology , vol.201 , Issue.1-4 , pp. 272-288
    • Lindstrom, G.1    Johansson, B.2    Persson, M.3    Gardelin, M.4    Bergstrom, S.5
  • 29
    • 0000169232 scopus 로고
    • An algorithm for least-squares estimation of nonlinear parameters
    • Marquardt, D.: An algorithm for least-squares estimation of nonlinear parameters, SIAM J. Appl. Math., 11, 431-441, 1963.
    • (1963) SIAM J. Appl. Math. , vol.11 , pp. 431-441
    • Marquardt, D.1
  • 30
    • 0006406880 scopus 로고
    • WMO/UNDP Regional Training seminar on flood forecasting, Bangkok, Thailand
    • Moore, R.: Flood forecasting techniques, Tech. rep., I. WMO/UNDP Regional Training seminar on flood forecasting, Bangkok, Thailand, 1983.
    • (1983) Flood Forecasting Techniques, Tech. Rep., i
    • Moore, R.1
  • 31
    • 0003856402 scopus 로고
    • NERC, Flood Routing Studies., Tech. rep., Natural Environment Research Council, London
    • NERC: Flood Studies Report, Vol.5: Flood Routing Studies., Tech. rep., Natural Environment Research Council, London, 1975.
    • (1975) Flood Studies Report , vol.5
  • 32
    • 33645973241 scopus 로고    scopus 로고
    • Monthly runoff simulation: Comparing and combining conceptual and neural networks models
    • Nilsson, P., Uvo, C. B., and Berndtsson, R.: Monthly runoff simulation: Comparing and combining conceptual and neural networks models, J. Hydrol., 321, 344-363, 2006.
    • (2006) J. Hydrol. , vol.321 , pp. 344-363
    • Nilsson, P.1    Uvo, C.B.2    Berndtsson, R.3
  • 33
    • 0029729395 scopus 로고    scopus 로고
    • Analytical verification of Muskingum-Cunge routing
    • Ponce, V. M., Lohani, A. K., and Scheyhing, C.: Analytical verification of Muskingum-Cunge routing, J. Hydrol., 174, 235-241, doi:10.1016/0022-1694(95) 02765-3, http://www.sciencedirect.com/science/article/B6V6C-3VW173F-3/2/ 842b6f3ce5b836f6b48ebf8347774b88, 1996. (Pubitemid 126687921)
    • (1996) Journal of Hydrology , vol.174 , Issue.3-4 , pp. 235-241
    • Ponce, V.M.1    Lohani, A.K.2    Scheyhing, C.3
  • 34
    • 0031284786 scopus 로고    scopus 로고
    • A combined deterministic and self-adaptive stochastic algorithm for streamflow forecasting with application to catchments of the Upper Murray Basin, Australia
    • PII S0266983896000505
    • Schreider, S., Jakeman, A., Dyer, B., and Francis, R.: A combined deterministic and self-adaptive stochastic algorithm for stream- flow forecasting with application to catchments of the Upper Murray Basin, Australia, Environ. Modell. Softw., 12, 93-104, 1997. (Pubitemid 28151125)
    • (1997) Environmental Modelling and Software , vol.12 , Issue.1 , pp. 93-104
    • Schreider, S.Yu.1    Jakeman, A.J.2    Dyer, B.G.3    Francis, R.I.4
  • 35
    • 0031419831 scopus 로고    scopus 로고
    • Estimation ofparameter uncertainty in the HBV model
    • Seibert, J.: Estimation ofparameter uncertainty in the HBV model, Nord. Hydrol., 28, 247-262, 1997.
    • (1997) Nord. Hydrol. , vol.28 , pp. 247-262
    • Seibert, J.1
  • 36
    • 0037565156 scopus 로고    scopus 로고
    • Model tree as an alternative to neural network in rainfall- runoffmodelling
    • Solomatine, D. P. and Dulal, K. N.: Model tree as an alternative to neural network in rainfall-runoffmodelling, Hydrolog. Sci. J., 48, 399-411, 2003.
    • (2003) Hydrolog. Sci. J. , vol.48 , pp. 399-411
    • Solomatine, D.P.1    Dulal, K.N.2
  • 37
    • 38549160710 scopus 로고    scopus 로고
    • Innovative approaches to flood forecasting using data driven and hybrid modelling
    • edited by: Liong, Phoon, and Babovic, 1639-1646, World Scientific Publishing Company, Singapore
    • Solomatine, D. P. and Price, R. K.: Innovative approaches to flood forecasting using data driven and hybrid modelling, in: 6th International Conference on Hydroinformatics, edited by: Liong, Phoon, and Babovic, 1639-1646, World Scientific Publishing Company, Singapore, 1639-1647, 2004.
    • (2004) 6th International Conference on Hydroinformatics , pp. 1639-1647
    • Solomatine, D.P.1    Price, R.K.2
  • 39
    • 84856591096 scopus 로고    scopus 로고
    • Classification of hydro-meteorological conditions and multiple artificial neural networks for streamflow forecasting
    • Toth, E.: Classification of hydro-meteorological conditions and multiple artificial neural networks for streamflow forecasting, Hydrol. Earth Syst. Sci. Discuss., 6, 897-919, 2009, http://www.hydrol-earth-syst-sci-discuss.net/6/897/ 2009/.
    • (2009) Hydrol. Earth Syst. Sci. Discuss. , vol.6 , pp. 897-919
    • Toth, E.1
  • 40
    • 37549066943 scopus 로고    scopus 로고
    • Multistep ahead streamflow forecasting: Role of calibration data in conceptual and neural network modeling
    • doi: 10.1029/2006WR005383, 2007
    • Toth, E. and Brath, A.: Multistep ahead streamflow forecasting: Role of calibration data in conceptual and neural network modeling, Water Resour. Res., 43, W11405, doi:10.1029/2006WR005383, 2007.
    • Water Resour. Res. , vol.43
    • Toth, E.1    Brath, A.2
  • 41
    • 77951867967 scopus 로고    scopus 로고
    • Detection of long-term changes in precipitation and discharge in the Meuse GIS and remote sensing in Hydrology Water resources and enviromental
    • China, Septembre, IAHS Publ.
    • Tu, M., Hall, M., and Laat, P. D.: Detection oflong-term changes in precipitation and discharge in the Meuse, GIS and remote sensing in Hydrology, Water resources and enviromental - Proceedings of the international conference of the ICGRHWE held at the Three Gorges Dam, China, Septembre 2003, IAHS Publ. 289, 2004.
    • (2003) Proceedings of the International Conference of the ICGRHWE Held at the Three Gorges Dam , vol.289
    • Tu, M.1    Hall, M.2    Laat, P.D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.