메뉴 건너뛰기




Volumn 48, Issue 2, 2003, Pages 163-181

Detection of conceptual model rainfall-runoff processes inside an artificial neural network

Author keywords

Artificial neural network; Emulation; England; Hidden node; River Test; Runoff

Indexed keywords

CORRELATION METHODS; DISCHARGE (FLUID MECHANICS); GROUNDWATER; NEURAL NETWORKS; RIVERS; RUNOFF; SOILS;

EID: 0037388711     PISSN: 02626667     EISSN: None     Source Type: Journal    
DOI: 10.1623/hysj.48.2.163.44699     Document Type: Article
Times cited : (164)

References (36)
  • 2
    • 0034254196 scopus 로고    scopus 로고
    • Comparing neural network and autoregressive moving average techniques for the provision of continuous river flow forecasts in two contrasting catchments
    • Abrahart, R. J. & See, L. (2000) Comparing neural network and autoregressive moving average techniques for the provision of continuous river flow forecasts in two contrasting catchments. Hydrol. Processes 14, 2157-2172.
    • (2000) Hydrol. Processes , vol.14 , pp. 2157-2172
    • Abrahart, R.J.1    See, L.2
  • 3
    • 0016355478 scopus 로고
    • A new look at the statistical model identification
    • Akaike, H. (1974) A new look at the statistical model identification. IEEE Trans. Automotive Control 19, 716-723.
    • (1974) IEEE Trans. Automotive Control , vol.19 , pp. 716-723
    • Akaike, H.1
  • 4
    • 0029484103 scopus 로고
    • A survey and critique of techniques for extracting rules from trained artificial neural networks
    • Andrews, R., Diederich, J. & Tickle, A. B. (1995) A survey and critique of techniques for extracting rules from trained artificial neural networks. Knowledge Based Systems 8, 373-389.
    • (1995) Knowledge Based Systems , vol.8 , pp. 373-389
    • Andrews, R.1    Diederich, J.2    Tickle, A.B.3
  • 5
    • 0034174280 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology. I: Preliminary concepts
    • ASCE (ASCE Task Committee on the Application of Artificial Neural Networks in Hydrology)
    • ASCE (ASCE Task Committee on the Application of Artificial Neural Networks in Hydrology) (2000a) Artificial neural networks in hydrology. I: Preliminary concepts. J. Hydrol. Engng 5, 115-123.
    • (2000) J. Hydrol. Engng , vol.5 , pp. 115-123
  • 6
    • 0034174396 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology. II: Hydrologic applications
    • ASCE (ASCE Task Committe on the Application of Artificial Neural Networks in Hydrology)
    • ASCE (ASCE Task Committe on the Application of Artificial Neural Networks in Hydrology) (2000b) Artificial neural networks in hydrology. II: Hydrologic applications. J. Hydrol. Engng 5, 124-137.
    • (2000) J. Hydrol. Engng , vol.5 , pp. 124-137
  • 7
    • 0018441920 scopus 로고
    • A physically-based variable contributing area model of basin hydrology
    • Beven, K. J. & Kirkby, M. J. (1979) A physically-based variable contributing area model of basin hydrology. Hydrol. Sci. Bull. 24, 43-69.
    • (1979) Hydrol. Sci. Bull. , vol.24 , pp. 43-69
    • Beven, K.J.1    Kirkby, M.J.2
  • 9
    • 0032961025 scopus 로고    scopus 로고
    • River flood forecasting with a neural network
    • Campolo, M., Adreussi, P. & Soldati, A. (1999) River flood forecasting with a neural network, Water Resour. Res. 35, 1191-1197.
    • (1999) Water Resour. Res. , vol.35 , pp. 1191-1197
    • Campolo, M.1    Adreussi, P.2    Soldati, A.3
  • 10
    • 0015630543 scopus 로고
    • A review of some mathematical models used in hydrology, with observations on their calibration and use
    • Clarke, R. T. (1973) A review of some mathematical models used in hydrology, with observations on their calibration and use. J. Hydrol. 19, 1-20.
    • (1973) J. Hydrol. , vol.19 , pp. 1-20
    • Clarke, R.T.1
  • 12
    • 0032005702 scopus 로고    scopus 로고
    • An artificial neural network approach to rainfall-runoff modelling
    • Dawson, C. W. & Wilby, R. L. (1998) An artificial neural network approach to rainfall-runoff modelling. Hydrol. Sci. J. 43(1), 47-66.
    • (1998) Hydrol. Sci. J. , vol.43 , Issue.1 , pp. 47-66
    • Dawson, C.W.1    Wilby, R.L.2
  • 13
    • 0033512986 scopus 로고    scopus 로고
    • A comparison of artificial neural networks used for river flow forecasting
    • Dawson, C. W. & Wilby, R. L. (1999) A comparison of artificial neural networks used for river flow forecasting. Hydrol. Earth System Sci. 3, 529-540.
    • (1999) Hydrol. Earth System Sci. , vol.3 , pp. 529-540
    • Dawson, C.W.1    Wilby, R.L.2
  • 14
    • 0034749335 scopus 로고    scopus 로고
    • Hydrological modelling using artificial neural networks
    • Dawson, C. W. & Wilby, R. L. (2001) Hydrological modelling using artificial neural networks. Progr. Phys. Geogr. 25, 80-108.
    • (2001) Progr. Phys. Geogr. , vol.25 , pp. 80-108
    • Dawson, C.W.1    Wilby, R.L.2
  • 15
    • 0032681761 scopus 로고    scopus 로고
    • Applications of artificial neural networks to the generation of wave equations from hydraulic data
    • Dibike, Y., Minns, A. W. & Abbott, M. B. (1999) Applications of artificial neural networks to the generation of wave equations from hydraulic data. J. Hydraul. Res. 37, 81-97.
    • (1999) J. Hydraul. Res. , vol.37 , pp. 81-97
    • Dibike, Y.1    Minns, A.W.2    Abbott, M.B.3
  • 18
    • 0029413797 scopus 로고
    • Artificial neural network modelling of the rainfall-runoff process
    • Hsu, J.-L., Gupta, II. V. & Sorooshian, S. (1995) Artificial neural network modelling of the rainfall-runoff process. Water Resour. Res. 31, 2517-2530.
    • (1995) Water Resour. Res. , vol.31 , pp. 2517-2530
    • Hsu, J.-L.1    Gupta V., II.2    Sorooshian, S.3
  • 19
    • 0035472003 scopus 로고    scopus 로고
    • River flow time series prediction with a range-dependent neural network
    • Hu, T. S., Lam, K. C. & Ng, S. T. (2001) River flow time series prediction with a range-dependent neural network. Hydrol. Sci. J. 46(5), 729-245.
    • (2001) Hydrol. Sci. J. , vol.46 , Issue.5 , pp. 245-729
    • Hu, T.S.1    Lam, K.C.2    Ng, S.T.3
  • 20
    • 0343459174 scopus 로고    scopus 로고
    • Data-based mechanistic modelling and forecasting of hydrological systems
    • Lees, M. J. (2000) Data-based mechanistic modelling and forecasting of hydrological systems. J. Hydroinformatics 2, 15-34.
    • (2000) J. Hydroinformatics , vol.2 , pp. 15-34
    • Lees, M.J.1
  • 21
    • 0029663621 scopus 로고    scopus 로고
    • The use of artificial neural networks for the prediction of water quality parameters
    • Maier, H. R. & Dandy, G. C. (1996) The use of artificial neural networks for the prediction of water quality parameters. Water Resour. Res. 32, 1013-1022.
    • (1996) Water Resour. Res. , vol.32 , pp. 1013-1022
    • Maier, H.R.1    Dandy, G.C.2
  • 22
    • 0033957764 scopus 로고    scopus 로고
    • Neural networks for the prediction and forecasting of water resources variables: A review of modelling issues and applications
    • Maier, H. R. & Dandy, G. C. (2000) Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications. Environ. Modelling Software 15, 101-123.
    • (2000) Environ. Modelling Software , vol.15 , pp. 101-123
    • Maier, H.R.1    Dandy, G.C.2
  • 23
    • 0025691153 scopus 로고
    • Hydrological aspects of the development and rapid decay of the 1989 drought
    • Marsh, T. J. & Monkhouse, R. A. (1990) Hydrological aspects of the development and rapid decay of the 1989 drought. Weather 45, 290-299.
    • (1990) Weather , vol.45 , pp. 290-299
    • Marsh, T.J.1    Monkhouse, R.A.2
  • 24
    • 84977733040 scopus 로고
    • Drought in the United Kingdom, 1988-92
    • Marsh, T. J. & Monkhouse, R. A. (1993) Drought in the United Kingdom, 1988-92. Weather 48, 15-22.
    • (1993) Weather , vol.48 , pp. 15-22
    • Marsh, T.J.1    Monkhouse, R.A.2
  • 25
    • 0000651776 scopus 로고    scopus 로고
    • Modelling of I-D pure advection processes using artificial neural networks
    • (ed. by V. Babovic and C. L. Larsen) (Proc. Third Int. Conf. on Hydroinformatics, Copenhagen, Denmark, 24-26 August 1998), A. A. Balkema, Rotterdam, The Netherlands
    • Minns, A. W. (1998) Modelling of I-D pure advection processes using artificial neural networks. In: Hydroinformatics 98 (ed. by V. Babovic & C. L. Larsen) (Proc. Third Int. Conf. on Hydroinformatics, Copenhagen, Denmark, 24-26 August 1998), vol. 2, 805-812. A. A. Balkema, Rotterdam, The Netherlands.
    • (1998) Hydroinformatics 98 , vol.2 , pp. 805-812
    • Minns, A.W.1
  • 26
    • 0013015416 scopus 로고    scopus 로고
    • Subsymbolic methods for data mining in hydraulic engineering
    • Minns, A. W. (2000) Subsymbolic methods for data mining in hydraulic engineering. J. Hydroinformatics 2, 3-14.
    • (2000) J. Hydroinformatics , vol.2 , pp. 3-14
    • Minns, A.W.1
  • 27
    • 0030159380 scopus 로고    scopus 로고
    • Artificial neural networks as rainfall-runoff models
    • Minns, A. W. & Hall, M. J. (1996) Artificial neural networks as rainfall-runoff models. Hydrol. Sci. J. 41(3), 339-417.
    • (1996) Hydrol. Sci. J. , vol.41 , Issue.3 , pp. 339-417
    • Minns, A.W.1    Hall, M.J.2
  • 28
    • 84981838690 scopus 로고
    • The dependence of transpiration on weather and soil conditions
    • Penman, H. L. (1949) The dependence of transpiration on weather and soil conditions. J. Soil Sci. 1, 74-89.
    • (1949) J. Soil Sci. , vol.1 , pp. 74-89
    • Penman, H.L.1
  • 29
    • 0036899543 scopus 로고    scopus 로고
    • Artificial neural networks for daily rainfall-runoff modelling
    • Rajurkar, M. P., Kothyari, U. C. & Chaube, U. C. (2002) Artificial neural networks for daily rainfall-runoff modelling. Hydrol. Sci. J. 47(6), 865-877.
    • (2002) Hydrol. Sci. J. , vol.47 , Issue.6 , pp. 865-877
    • Rajurkar, M.P.1    Kothyari, U.C.2    Chaube, U.C.3
  • 31
    • 0018015137 scopus 로고
    • Modelling by short data description
    • Rissanen, J. (1978) Modelling by short data description. Automation 14, 465-471.
    • (1978) Automation , vol.14 , pp. 465-471
    • Rissanen, J.1
  • 32
    • 0034254025 scopus 로고    scopus 로고
    • A hybrid multi-model approach to river level forecasting
    • See, L. & Openshaw, S. (2000) A hybrid multi-model approach to river level forecasting. Hydrol. Sci. J. 45(4), 523-536.
    • (2000) Hydrol. Sci. J. , vol.45 , Issue.4 , pp. 523-536
    • See, L.1    Openshaw, S.2
  • 33
    • 0036898378 scopus 로고    scopus 로고
    • Artificial neural networks for sheet sediment transport
    • Tayfur, G. (2002) Artificial neural networks for sheet sediment transport. Hydrol. Sci. J. 47(6), 879-892.
    • (2002) Hydrol. Sci. J. , vol.47 , Issue.6 , pp. 879-892
    • Tayfur, G.1
  • 35
    • 0032102635 scopus 로고    scopus 로고
    • Factors governing macrophyte status in Hampshire chalk streams: Implications for catchment management
    • Wilby, R. L., Cranston, L. E. & Darby, E. J. (1998) Factors governing macrophyte status in Hampshire chalk streams: implications for catchment management. J. Chartered Instn Water Environ. Managers 12, 179-187.
    • (1998) J. Chartered Instn Water Environ. Managers , vol.12 , pp. 179-187
    • Wilby, R.L.1    Cranston, L.E.2    Darby, E.J.3
  • 36
    • 0028179708 scopus 로고
    • A coupled synoptic-hydrological model for climate change impact assessment
    • Wilby, R. I., Greenfield, B. & Glenny, C. (1994) A coupled synoptic-hydrological model for climate change impact assessment. J. Hydrol. 153, 265-290.
    • (1994) J. Hydrol. , vol.153 , pp. 265-290
    • Wilby, R.I.1    Greenfield, B.2    Glenny, C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.