메뉴 건너뛰기




Volumn 314, Issue 1-4, 2005, Pages 158-176

Calibration and validation of neural networks to ensure physically plausible hydrological modeling

Author keywords

Artificial neural networks; Calibration; Genetic algorithms; Streamflow modeling

Indexed keywords

CALIBRATION; GENETIC ALGORITHMS; HYDRAULIC MODELS; HYDROLOGY; SENSITIVITY ANALYSIS;

EID: 28444444200     PISSN: 00221694     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jhydrol.2005.03.013     Document Type: Article
Times cited : (62)

References (30)
  • 1
    • 0035036816 scopus 로고    scopus 로고
    • Neural network and hybrid model: A discussion about different modeling techniques to predict pulping degree with industrial data
    • H.C. Aguiar, and R.M. Filho Neural network and hybrid model: a discussion about different modeling techniques to predict pulping degree with industrial data Chemical Engineering Science 56 2 2001 565 570
    • (2001) Chemical Engineering Science , vol.56 , Issue.2 , pp. 565-570
    • Aguiar, H.C.1    Filho, R.M.2
  • 2
    • 0016355478 scopus 로고
    • A new look at the statistical model identification
    • H. Akaike A new look at the statistical model identification IEEE Transactions of Automatic Control 19 1974 716 723
    • (1974) IEEE Transactions of Automatic Control , vol.19 , pp. 716-723
    • Akaike, H.1
  • 4
    • 0034174280 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology. I: Preliminary concepts
    • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology
    • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology Artificial neural networks in hydrology. I: preliminary concepts Journal of Hydrologic Engineering, ASCE 5 2 2000 115 123
    • (2000) Journal of Hydrologic Engineering, ASCE , vol.5 , Issue.2 , pp. 115-123
  • 6
    • 0034749335 scopus 로고    scopus 로고
    • Hydrological modelling using artificial neural networks
    • C.W. Dawson, and R.L. Wilby Hydrological modelling using artificial neural networks Progress in Physical Geography 25 1 2001 80 108
    • (2001) Progress in Physical Geography , vol.25 , Issue.1 , pp. 80-108
    • Dawson, C.W.1    Wilby, R.L.2
  • 7
    • 0026445234 scopus 로고
    • Effective and efficient global optimization for conceptual rainfall-runoff models
    • Q. Duan, S. Sorooshian, and V. Gupta Effective and efficient global optimization for conceptual rainfall-runoff models Water Resources Research 28 4 1992 1015 1031
    • (1992) Water Resources Research , vol.28 , Issue.4 , pp. 1015-1031
    • Duan, Q.1    Sorooshian, S.2    Gupta, V.3
  • 9
    • 0032096480 scopus 로고    scopus 로고
    • Global optimization techniques for the calibration of conceptual rainfall-runoff models
    • M. Franchini, G. Galeati, and S. Berra Global optimization techniques for the calibration of conceptual rainfall-runoff models Hydrological Sciences Journal 43 3 1998 443 458
    • (1998) Hydrological Sciences Journal , vol.43 , Issue.3 , pp. 443-458
    • Franchini, M.1    Galeati, G.2    Berra, S.3
  • 10
    • 0032486440 scopus 로고    scopus 로고
    • Parameter identifiability for catchment-scale erosion modelling: A comparison of optimization algorithms
    • V.L. Freedman, V.L. Lopes, and M. Hernandez Parameter identifiability for catchment-scale erosion modelling: a comparison of optimization algorithms Journal of Hydrology 207 1-2 1998 83 97
    • (1998) Journal of Hydrology , vol.207 , Issue.1-2 , pp. 83-97
    • Freedman, V.L.1    Lopes, V.L.2    Hernandez, M.3
  • 12
    • 0030621253 scopus 로고    scopus 로고
    • Efficient subspace probabilistic parameter optimization for catchment models
    • G. Kuczera Efficient subspace probabilistic parameter optimization for catchment models Water Resources Research 33 1 1997 177 185
    • (1997) Water Resources Research , vol.33 , Issue.1 , pp. 177-185
    • Kuczera, G.1
  • 13
    • 0037142398 scopus 로고    scopus 로고
    • Hybrid neural network modeling of a full-scale industrial wastewater treatment process
    • D.S. Lee, C.O. Jeon, J.M. Park, and K.S. Chang Hybrid neural network modeling of a full-scale industrial wastewater treatment process Biotechnology and Bioengineering 78 6 2002 670 682
    • (2002) Biotechnology and Bioengineering , vol.78 , Issue.6 , pp. 670-682
    • Lee, D.S.1    Jeon, C.O.2    Park, J.M.3    Chang, K.S.4
  • 14
    • 0032855262 scopus 로고    scopus 로고
    • Empirical comparison of various methods for training feed-forward neural networks for salinity forecasting
    • H.R. Maier, and G.C. Dandy Empirical comparison of various methods for training feed-forward neural networks for salinity forecasting Water Resources Research 35 8 1999 2591 2598
    • (1999) Water Resources Research , vol.35 , Issue.8 , pp. 2591-2598
    • Maier, H.R.1    Dandy, G.C.2
  • 15
    • 0033957764 scopus 로고    scopus 로고
    • Neural networks for the prediction and forecasting of water resources variables: A review of modelling issues and applications
    • H.R. Maier, and G.C. Dandy Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications Environmental Modelling and Software 15 1 2000 101 124
    • (2000) Environmental Modelling and Software , vol.15 , Issue.1 , pp. 101-124
    • Maier, H.R.1    Dandy, G.C.2
  • 17
    • 0000238336 scopus 로고
    • A simplex method for function minimization
    • 1965
    • J.A. Nelder, R. Mead, and A. 1965 A simplex method for function minimization Computer Journal 7 4 1965 308 313
    • (1965) Computer Journal , vol.7 , Issue.4 , pp. 308-313
    • Nelder, J.A.1    Mead, R.2
  • 18
    • 0037102687 scopus 로고    scopus 로고
    • Illuminating the 'black box': A randomization approach for understanding variable contributions in artificial neural networks
    • J.D. Olden, and D.A. Jackson Illuminating the 'black box': a randomization approach for understanding variable contributions in artificial neural networks Ecological Modelling 154 1-2 2002 135 150
    • (2002) Ecological Modelling , vol.154 , Issue.1-2 , pp. 135-150
    • Olden, J.D.1    Jackson, D.A.2
  • 19
    • 3242721368 scopus 로고    scopus 로고
    • An accurate comparison of methods for quantifying variable importance in artificial neural networks using simulated data
    • J.D. Olden, M.K. Joy, and R.G. Death An accurate comparison of methods for quantifying variable importance in artificial neural networks using simulated data Ecological Modelling 178 3-4 2004 389 397
    • (2004) Ecological Modelling , vol.178 , Issue.3-4 , pp. 389-397
    • Olden, J.D.1    Joy, M.K.2    Death, R.G.3
  • 20
    • 0000646059 scopus 로고
    • Learning internal representations by error backpropagation
    • D.E. Rumelhart J.L. McClelland MIT Press Cambridge
    • D.E. Rumelhart, G.E. Hinton, and R.J. Williams D.E. Rumelhart J.L. McClelland Learning internal representations by error backpropagation Parallel Distributed Processing 1986 MIT Press Cambridge
    • (1986) Parallel Distributed Processing
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 22
    • 0034508915 scopus 로고    scopus 로고
    • Reliable classification using neural networks: A genetic algorithm and backpropagation comparison
    • R.S. Sexton, and R.E. Dorsey Reliable classification using neural networks: a genetic algorithm and backpropagation comparison Decision Support Systems 30 1 2000 11 22
    • (2000) Decision Support Systems , vol.30 , Issue.1 , pp. 11-22
    • Sexton, R.S.1    Dorsey, R.E.2
  • 23
    • 0034316975 scopus 로고    scopus 로고
    • Comparative evaluation of genetic algorithm and backpropagation for training neural networks
    • R.S. Sexton, and J.N.D. Gupta Comparative evaluation of genetic algorithm and backpropagation for training neural networks Information Sciences 129 1-4 2000 45 59
    • (2000) Information Sciences , vol.129 , Issue.1-4 , pp. 45-59
    • Sexton, R.S.1    Gupta, J.N.D.2
  • 24
    • 0031898654 scopus 로고    scopus 로고
    • River stage forecasting using artificial neural networks
    • K. Thirumalaiah, and M.C. Deo River stage forecasting using artificial neural networks Journal of Hydrologic Engineering 3 1 1998 26 32
    • (1998) Journal of Hydrologic Engineering , vol.3 , Issue.1 , pp. 26-32
    • Thirumalaiah, K.1    Deo, M.C.2
  • 25
    • 0033105463 scopus 로고    scopus 로고
    • Probabilistic optimization for conceptual rainfall-runoff models: A comparison of the shuffled complex evolution and simulated annealing algorithms
    • M. Thyer, G. Kuczera, and B.C. Bates Probabilistic optimization for conceptual rainfall-runoff models: A comparison of the shuffled complex evolution and simulated annealing algorithms Water Resources Research 35 3 1999 767 773
    • (1999) Water Resources Research , vol.35 , Issue.3 , pp. 767-773
    • Thyer, M.1    Kuczera, G.2    Bates, B.C.3
  • 27
    • 0037388711 scopus 로고    scopus 로고
    • Detection of conceptual model rainfall-runoff processes inside an artificial neural network
    • R.L. Wilby, R.J. Abrahart, and C.W. Dawson Detection of conceptual model rainfall-runoff processes inside an artificial neural network Hydrological Sciences Journal 48 2 2003 163 181
    • (2003) Hydrological Sciences Journal , vol.48 , Issue.2 , pp. 163-181
    • Wilby, R.L.1    Abrahart, R.J.2    Dawson, C.W.3
  • 28
    • 0033362601 scopus 로고    scopus 로고
    • Evolving artificial neural networks
    • X. Yao Evolving artificial neural networks Proceedings of the IEEE 87 9 1999 1423 1447
    • (1999) Proceedings of the IEEE , vol.87 , Issue.9 , pp. 1423-1447
    • Yao, X.1
  • 29
    • 0042658013 scopus 로고    scopus 로고
    • Modeling flow and sediment transport in a river system using an artificial neural network
    • L. Yitian, and R.R. Gu Modeling flow and sediment transport in a river system using an artificial neural network Environmental Management 31 1 2003 122 134
    • (2003) Environmental Management , vol.31 , Issue.1 , pp. 122-134
    • Yitian, L.1    Gu, R.R.2
  • 30
    • 0003123930 scopus 로고    scopus 로고
    • Forecasting with artificial neural networks: The state of the art
    • G. Zhang, B.E. Patuwo, and M.Y. Hu Forecasting with artificial neural networks: the state of the art International Journal of Forecasting 14 1 1998 35 62
    • (1998) International Journal of Forecasting , vol.14 , Issue.1 , pp. 35-62
    • Zhang, G.1    Patuwo, B.E.2    Hu, M.Y.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.