메뉴 건너뛰기




Volumn 23, Issue 2, 2010, Pages 283-294

Data splitting for artificial neural networks using SOM-based stratified sampling

Author keywords

Artificial neural networks; Cross validation; Data splitting; Self organizing maps; Stratified sampling

Indexed keywords

ARTIFICIAL NEURAL NETWORK; BIAS AND VARIANCE; CROSS VALIDATION; DATA SETS; DATA SPLITTING; ERROR SAMPLING; FUNCTION APPROXIMATION; HIGH QUALITY; LARGE DATASETS; MODEL PERFORMANCE; NONUNIFORM; RANDOM SAMPLING; SAMPLE SIZES; STATISTICAL DIFFERENCES; STRATIFIED SAMPLING; VARIABLE MODEL;

EID: 74149090502     PISSN: 08936080     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neunet.2009.11.009     Document Type: Article
Times cited : (206)

References (37)
  • 1
    • 14344261493 scopus 로고    scopus 로고
    • Generalisation for neural networks through data sampling and training procedures, with applications to stream flow predictions
    • Anctil F., and Lauzon N. Generalisation for neural networks through data sampling and training procedures, with applications to stream flow predictions. Hydology and Earth System Sciences 8 5 (2004) 940-958
    • (2004) Hydology and Earth System Sciences , vol.8 , Issue.5 , pp. 940-958
    • Anctil, F.1    Lauzon, N.2
  • 3
    • 10644295753 scopus 로고    scopus 로고
    • Input determination for neural network models in water resources applications. Part 1 - background and methodology
    • Bowden G.J., Dandy G.C., and Maier H.R. Input determination for neural network models in water resources applications. Part 1 - background and methodology. Journal of Hydrology 301 1-4 (2005) 75-92
    • (2005) Journal of Hydrology , vol.301 , Issue.1-4 , pp. 75-92
    • Bowden, G.J.1    Dandy, G.C.2    Maier, H.R.3
  • 4
    • 0036221122 scopus 로고    scopus 로고
    • Optimal division of data for neural network models in water resources applications
    • Bowden G.J., Maier H.R., and Dandy G.C. Optimal division of data for neural network models in water resources applications. Water Resources Research 38 2 (2002) 1-11
    • (2002) Water Resources Research , vol.38 , Issue.2 , pp. 1-11
    • Bowden, G.J.1    Maier, H.R.2    Dandy, G.C.3
  • 5
    • 33745337472 scopus 로고    scopus 로고
    • Forecasting chlorine residuals in a water distribution system using a general regression neural network
    • Bowden G.J., Nixon J.B., Dandy G.C., Maier H.R., and Holmes M. Forecasting chlorine residuals in a water distribution system using a general regression neural network. Mathematical and Computer Modelling 44 5-6 (2006) 469-484
    • (2006) Mathematical and Computer Modelling , vol.44 , Issue.5-6 , pp. 469-484
    • Bowden, G.J.1    Nixon, J.B.2    Dandy, G.C.3    Maier, H.R.4    Holmes, M.5
  • 8
    • 0036790872 scopus 로고    scopus 로고
    • Statistical tools to assess the reliability of self-organizing maps
    • deBodt E., Cottrell M., and Verleysen M. Statistical tools to assess the reliability of self-organizing maps. Neural Networks 15 (2002) 967-978
    • (2002) Neural Networks , vol.15 , pp. 967-978
    • deBodt, E.1    Cottrell, M.2    Verleysen, M.3
  • 9
    • 0031735568 scopus 로고    scopus 로고
    • Neural networks in multivariate calibration
    • Despagne F., and Massart D.L. Neural networks in multivariate calibration. Analyst 123 (1998) 157-178
    • (1998) Analyst , vol.123 , pp. 157-178
    • Despagne, F.1    Massart, D.L.2
  • 11
    • 35048852704 scopus 로고    scopus 로고
    • Improving decision tree performance through induction- and cluster-based stratified sampling
    • Springer-Verlag, Exeter, UK
    • Gill A.A., Smith G.D., and Bagnall A.J. Improving decision tree performance through induction- and cluster-based stratified sampling. Intelligent data engineering and automated learning (2004), Springer-Verlag, Exeter, UK 339-344
    • (2004) Intelligent data engineering and automated learning , pp. 339-344
    • Gill, A.A.1    Smith, G.D.2    Bagnall, A.J.3
  • 12
    • 0037406313 scopus 로고    scopus 로고
    • Validation indices for graph clustering
    • Gunter S., and Bunke H. Validation indices for graph clustering. Pattern Recognition Letters 24 (2003) 1107-1113
    • (2003) Pattern Recognition Letters , vol.24 , pp. 1107-1113
    • Gunter, S.1    Bunke, H.2
  • 15
    • 84894887900 scopus 로고
    • Computer aided design of experiments
    • Kennard R.W., and Stone L. Computer aided design of experiments. Technometrics 11 (1969) 137-148
    • (1969) Technometrics , vol.11 , pp. 137-148
    • Kennard, R.W.1    Stone, L.2
  • 16
    • 74149094249 scopus 로고    scopus 로고
    • Kingston, G.B. (2006). Bayesian artificial neural networks in water resources engineering. Ph.d., The University of Adelaide
    • Kingston, G.B. (2006). Bayesian artificial neural networks in water resources engineering. Ph.d., The University of Adelaide
  • 19
    • 34250432638 scopus 로고
    • Recent advances on some aspects of stratified sample design. A review of the literature
    • Kpedekpo G.M.K. Recent advances on some aspects of stratified sample design. A review of the literature. Metrika 20 1 (1973) 54-64
    • (1973) Metrika , vol.20 , Issue.1 , pp. 54-64
    • Kpedekpo, G.M.K.1
  • 20
    • 0031701777 scopus 로고    scopus 로고
    • A bootstrap evaluation of the effect of data splitting on financial time series
    • LeBaron B., and Weigend A.S. A bootstrap evaluation of the effect of data splitting on financial time series. IEEE Transactions on Neural Networks 9 1 (1998) 213-220
    • (1998) IEEE Transactions on Neural Networks , vol.9 , Issue.1 , pp. 213-220
    • LeBaron, B.1    Weigend, A.S.2
  • 21
    • 0033957764 scopus 로고    scopus 로고
    • Application of neural networks to forecasting of surface water quality variables: Issues, applications and challenges
    • Maier H.R., and Dandy G.C. Application of neural networks to forecasting of surface water quality variables: Issues, applications and challenges. Environmental Modelling & Software 15 1 (2000) 101-124
    • (2000) Environmental Modelling & Software , vol.15 , Issue.1 , pp. 101-124
    • Maier, H.R.1    Dandy, G.C.2
  • 23
    • 77951183310 scopus 로고    scopus 로고
    • Development of artificial neural networks for water quality modelling and analysis
    • Hanrahan G. (Ed), ILM Publications, London, UK
    • May R.J., Maier H.R., and Dandy G.C. Development of artificial neural networks for water quality modelling and analysis. In: Hanrahan G. (Ed). Modelling of pollutants in complex environmental systems. Vol. 1 (2009), ILM Publications, London, UK 27-62
    • (2009) Modelling of pollutants in complex environmental systems. Vol. 1 , pp. 27-62
    • May, R.J.1    Maier, H.R.2    Dandy, G.C.3
  • 24
    • 0020764322 scopus 로고
    • Multivarite stratified sampling by optimization
    • Mulvey J.M. Multivarite stratified sampling by optimization. Management Science 29 6 (1983) 715-724
    • (1983) Management Science , vol.29 , Issue.6 , pp. 715-724
    • Mulvey, J.M.1
  • 26
    • 74149093927 scopus 로고    scopus 로고
    • Reeves, R. R., & Taylor, S. J. (1998). Selection of training data for neural networks by a genetic algorithm. In Fifth international conference on parallel problem solving from nature, Amsterdam
    • Reeves, R. R., & Taylor, S. J. (1998). Selection of training data for neural networks by a genetic algorithm. In Fifth international conference on parallel problem solving from nature, Amsterdam
  • 27
    • 74149093454 scopus 로고    scopus 로고
    • Sarle, W. (1997). Neural network FAQ. Periodic posting to the Usenet newsgroup comp.ai.neural-nets
    • Sarle, W. (1997). Neural network FAQ. Periodic posting to the Usenet newsgroup comp.ai.neural-nets
  • 28
    • 16444364474 scopus 로고    scopus 로고
    • Data division for developing neural networks applied to geotechnical engineering
    • Shahin M., Maier H.R., and Jaksa M.B. Data division for developing neural networks applied to geotechnical engineering. Journal of Computing in Civil Engineering April (2004) 105-114
    • (2004) Journal of Computing in Civil Engineering , Issue.April , pp. 105-114
    • Shahin, M.1    Maier, H.R.2    Jaksa, M.B.3
  • 29
    • 84952126648 scopus 로고
    • Validation of regression models: Methods and examples
    • Snee R.D. Validation of regression models: Methods and examples. Technometrics 19 4 (1977) 415-428
    • (1977) Technometrics , vol.19 , Issue.4 , pp. 415-428
    • Snee, R.D.1
  • 33
    • 17944365058 scopus 로고    scopus 로고
    • Samples selection for artificial neural network training in preliminary structural design
    • Tong F., and Liu X. Samples selection for artificial neural network training in preliminary structural design. Tsinghua Science and Technology 10 2 (2005) 233-239
    • (2005) Tsinghua Science and Technology , vol.10 , Issue.2 , pp. 233-239
    • Tong, F.1    Liu, X.2
  • 34
    • 0035661275 scopus 로고    scopus 로고
    • Application of the mutual information criterion for feature selection in computer-aided diagnosis
    • Tourassi G.A., Frederick E.D., Markey M.K., and Floyd Jr C.E. Application of the mutual information criterion for feature selection in computer-aided diagnosis. Medical Physics 28 12 (2001) 2394-2402
    • (2001) Medical Physics , vol.28 , Issue.12 , pp. 2394-2402
    • Tourassi, G.A.1    Frederick, E.D.2    Markey, M.K.3    Floyd Jr, C.E.4
  • 36
    • 38049168357 scopus 로고    scopus 로고
    • SOM-based data visualization methods
    • Vesanto J. SOM-based data visualization methods. Intelligent Data Analysis 3 (1999) 111-126
    • (1999) Intelligent Data Analysis , vol.3 , pp. 111-126
    • Vesanto, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.