메뉴 건너뛰기




Volumn 14, Issue 3, 2010, Pages 603-612

An experiment on the evolution of an ensemble of neural networks for streamflow forecasting

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL NEURAL NETWORK; CONFIDENCE INTERVAL; ENSEMBLE FORECASTING; EXPERIMENTAL STUDY; PERFORMANCE ASSESSMENT; STREAMFLOW;

EID: 77950360747     PISSN: 10275606     EISSN: 16077938     Source Type: Journal    
DOI: 10.5194/hess-14-603-2010     Document Type: Article
Times cited : (31)

References (50)
  • 1
    • 0034254196 scopus 로고    scopus 로고
    • Comparing neural network and autoregressive moving average technique for the prevision of continuous river flow forecasts in two contrasting catchments
    • Abrahart, R. J. and See, L.: Comparing neural network and autoregressive moving average technique for the prevision of continuous river flow forecasts in two contrasting catchments, Hydrol. Process., 14, 2157-2172, 2000.
    • (2000) Hydrol. Process. , vol.14 , pp. 2157-2172
    • Abrahart, R.J.1    See, L.2
  • 2
    • 60949114528 scopus 로고    scopus 로고
    • A neural network experiment on the simulation of daily nitrate-nitrogen and suspended sediment fluxes from a small agricultural catchment
    • Anctil, F., Filion, M., and Tournebize, J.: A neural network experiment on the simulation of daily nitrate-nitrogen and suspended sediment fluxes from a small agricultural catchment, Ecol. Model., 220, 879-887, 2009.
    • (2009) Ecol. Model. , vol.220 , pp. 879-887
    • Anctil, F.1    Filion, M.2    Tournebize, J.3
  • 3
    • 0346973088 scopus 로고    scopus 로고
    • On a new multivariate two-sample test
    • Baringhaus, L. and Franz, C.: On a new multivariate two-sample test, J. Multivariate Anal., 88, 190-206, 2004.
    • (2004) J. Multivariate Anal. , vol.88 , pp. 190-206
    • Baringhaus, L.1    Franz, C.2
  • 4
    • 33847624519 scopus 로고    scopus 로고
    • An integrated hydrologic Bayesian multimodel combination framework: Confronting input, parameter, and model structural uncertainty in hydrologic prediction
    • DOI 10.1029/2005WR004745
    • Ajami, N., Duan, Q., and Sorooshian, S.: An integrated hydrologic Bayesian multimodel combination framework: Confronting input, parameter, and model structural uncertainty in hydrologic prediction, Water Resour. Res., 43, W01403, doi:10.1029/2005WR004745, 2007. (Pubitemid 46364281)
    • (2007) Water Resources Research , vol.43 , Issue.1
    • Ajami, N.K.1    Duan, Q.2    Sorooshian, S.3
  • 5
    • 14344261493 scopus 로고    scopus 로고
    • Generalisation for neural networks through data sampling and training procedures, with applications to streamflow predictions
    • Anctil, F. and Lauzon, N.: Generalisation for neural networks through data sampling and training procedures, with applications to streamflow predictions, Hydrol. Earth Syst. Sci., 8, 940-958, 2004, http://www.hydrol- earth-syst-sci.net/8/940/2004/.
    • (2004) Hydrol. Earth Syst. Sci. , vol.8 , pp. 940-958
    • Anctil, F.1    Lauzon, N.2
  • 6
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictor
    • Breiman, L.: Bagging predictor, Mach. Learn., 24, 123-140, 1996.
    • (1996) Mach. Learn. , vol.24 , pp. 123-140
    • Breiman, L.1
  • 7
    • 0032688155 scopus 로고    scopus 로고
    • River flood forecasting with neural network model
    • Campolo, M., Andreussi, P., and Soldati, A.: River flood forecasting with neural network model, Water Resour. Res., 35, 1191-1197, 1999.
    • (1999) Water Resour. Res. , vol.35 , pp. 1191-1197
    • Campolo, M.1    Andreussi, P.2    Soldati, A.3
  • 9
    • 0032829433 scopus 로고    scopus 로고
    • Hydrological forecasting with neural networks: The state of the art
    • Coulibaly, P., Anctil, F., and Bobb́ee, B.: Hydrological forecasting with neural networks: The state of the art, Can. J. Civil Eng., 26, 293-304, 1999.
    • (1999) Can. J. Civil Eng. , vol.26 , pp. 293-304
    • Coulibaly, P.1    Anctil, F.2    Bobb́ee, B.3
  • 11
    • 0024861871 scopus 로고
    • Approximation by superposition of a sigmoiddal function
    • Cybenko, G.: Approximation by superposition of a sigmoiddal function, Math. Control Signal., 2, 303-314, 1989.
    • (1989) Math. Control Signal. , vol.2 , pp. 303-314
    • Cybenko, G.1
  • 13
    • 33744970902 scopus 로고    scopus 로고
    • Model combination in neural-based forecasting
    • Freitas, P. S. A. and Rodrigues, A. J. L.: Model combination in neural-based forecasting, Eur. J. Oper. Res., 173, 801-814, 2006.
    • (2006) Eur. J. Oper. Res. , vol.173 , pp. 801-814
    • Freitas, P.S.A.1    Rodrigues, A.J.L.2
  • 14
    • 0002978642 scopus 로고    scopus 로고
    • Experiments with a new boosting algorithm
    • edited by: Saitta, L., Bari, Italy, Morgan Kaufmann, San Francisco, CA, USA
    • Freund, Y. and Shapire, R. E.: Experiments with a new boosting algorithm, in: Proc. of 13th International Conference on Machine Learning, edited by: Saitta, L., Bari, Italy, Morgan Kaufmann, San Francisco, CA, USA, 148-156, 1996.
    • (1996) Proc. of 13th International Conference on Machine Learning , pp. 148-156
    • Freund, Y.1    Shapire, R.E.2
  • 15
    • 33947274775 scopus 로고    scopus 로고
    • Strictly proper scoring rules, prediction, and estimation
    • Gneiting, T. and Raftery, A.: Strictly proper scoring rules, prediction, and estimation, J. Am. Stat. Assoc., 102, 359-378, 2007.
    • (2007) J. Am. Stat. Assoc. , vol.102 , pp. 359-378
    • Gneiting, T.1    Raftery, A.2
  • 16
    • 0000558731 scopus 로고
    • Rational decisions
    • Good, I.-J.: Rational Decisions, J. Roy. Stat. Soc. B, 14, 107-114, 1952.
    • (1952) J. Roy. Stat. Soc. B , vol.14 , pp. 107-114
    • Good, I.-J.1
  • 17
    • 0002897679 scopus 로고    scopus 로고
    • Verification of eta-RSM short-range ensemble forecasts
    • Hamill, T. and Colucci, S.: Verification of eta-RSM short-range ensemble forecasts, Mon. Weather Rev., 125, 1312-1327, 1997.
    • (1997) Mon. Weather Rev. , vol.125 , pp. 1312-1327
    • Hamill, T.1    Colucci, S.2
  • 19
    • 0034292468 scopus 로고    scopus 로고
    • Decomposition of the continuous ranked probability score for ensemble prediction systems
    • Hersbach, H.: Decomposition of the continuous ranked probability score for ensemble prediction systems, Weather Forecast., 15, 550-570, 2000.
    • (2000) Weather Forecast , vol.15 , pp. 550-570
    • Hersbach, H.1
  • 20
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • Hornik, K., Stinchcombe, M., and White, H.: Multilayer feedforward networks are universal approximators, Neural Networks, 2, 359-366, 1989.
    • (1989) Neural Networks , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 21
    • 0032466364 scopus 로고    scopus 로고
    • Applying neural network models to prediction and data analysis in meteorology and oceanography
    • Hsieh, W.-W. and Tang, B.: Applying neural network models to prediction and data analysis in meteorology and oceanography, B. Am. Meteorol. Soc., 79, 1855-1870, 1998.
    • (1998) B. Am. Meteorol. Soc. , vol.79 , pp. 1855-1870
    • Hsieh, W.-W.1    Tang, B.2
  • 22
    • 0033100606 scopus 로고    scopus 로고
    • A method to determine the required number of neural-network training repetitions
    • Iyer, M.-S and Rhinehart, R.-R: A method to determine the required number of neural-network training repetitions, IEEE T. Neural Networ., 10, 427-432, 1999.
    • (1999) IEEE T. Neural Networ. , vol.10 , pp. 427-432
    • Iyer, M.-S.1    Rhinehart, R.-R.2
  • 24
    • 0001938874 scopus 로고
    • Neural network and its application to rainfall-runoff forecasting Korean
    • Kang, K.-W., Park, C.-Y., and Kim, J.-H.: Neural network and its application to rainfall-runoff forecasting, Korean J. Hydrosci., 4, 1-9, 1993.
    • (1993) J. Hydrosci. , vol.4 , pp. 1-9
    • Kang, K.-W.1    Park, C.-Y.2    Kim, J.-H.3
  • 26
    • 33748029144 scopus 로고    scopus 로고
    • Bayesian neural network for rainfall-runoff modeling
    • DOI 10.1029/2005WR003971
    • Khan, M. and Coulibaly, P.: Bayesian neural network for rainfall-runoff modeling, Water Resour. Res., 42, W07409, doi:10.1029/2005WR003971, 2006. (Pubitemid 44300476)
    • (2006) Water Resources Research , vol.42 , Issue.7
    • Khan, M.S.1    Coulibaly, P.2
  • 27
    • 31444455186 scopus 로고    scopus 로고
    • Bayesian training of artificial neural networks used for water resources modeling
    • DOI 10.1029/2005WR004152, W12409
    • Kingston, G., Lambert, M. F., and Maier, H.: Bayesian training of articficial neural networks used for water resources modeling, Water Resour. Res., 41, W12409, doi:10.1029/2005WR004152, 2005. (Pubitemid 43151118)
    • (2005) Water Resources Research , vol.41 , Issue.12 , pp. 1-11
    • Kingston, G.B.1    Lambert, M.F.2    Maier, H.R.3
  • 28
    • 0022841192 scopus 로고
    • Operational testing of hydrological simulation models
    • Klemeš, V.: Operational testing of hydrological simulation models, Hydrolog. Sci. J., 31(1), 13-24, 1986.
    • (1986) Hydrolog. Sci. J. , vol.31 , Issue.1 , pp. 13-24
    • Klemeš, V.1
  • 29
    • 0142230508 scopus 로고    scopus 로고
    • Probabilistic climate change projections using neural networks
    • Knutti, R., Stocker, T.-F., Joos, F., and Plattner, G.-K.: Probabilistic climate change projections using neural networks, Clim. Dynam., 21, 257-272, 2003.
    • (2003) Clim. Dynam. , vol.21 , pp. 257-272
    • Knutti, R.1    Stocker, T.-F.2    Joos, F.3    Plattner, G.-K.4
  • 30
    • 0025489075 scopus 로고
    • The Self-organizing map
    • Kohonen, T.: The Self-organizing map, Proc. IEEE, 79, 1464-1480, 1990.
    • (1990) Proc. IEEE , vol.79 , pp. 1464-1480
    • Kohonen, T.1
  • 31
    • 0031197013 scopus 로고    scopus 로고
    • Improved option pricing using articial neural networks and bootstrap methods
    • Lajbcygier, P.-R. and Connor, J.-T.: Improved option pricing using articial neural networks and bootstrap methods, Int. J. Neural Sys., 8, 457-471, 1997.
    • (1997) Int. J. Neural Sys. , vol.8 , pp. 457-471
    • Lajbcygier, P.-R.1    Connor, J.-T.2
  • 32
    • 0000873069 scopus 로고
    • A Method for the solution of certain non-linear problems in least squares
    • Levenberg, K.: A Method for the solution of certain non-linear problems in least squares, Q. Appl. Math., 2, 164-168, 1944.
    • (1944) Q. Appl. Math. , vol.2 , pp. 164-168
    • Levenberg, K.1
  • 33
    • 0002704818 scopus 로고
    • A pratctical Bayesian framework for backpropagation networks
    • Mackay, D.: A pratctical Bayesian framework for backpropagation networks, Neural Comput., 4, 448-472, 1992.
    • (1992) Neural Comput , vol.4 , pp. 448-472
    • MacKay, D.1
  • 34
    • 0033957764 scopus 로고    scopus 로고
    • Neural Networks for the prediction and forecasting of water resources variables: A review of modeling issues and applications
    • Maier, H.-R. and Dandy, G.-C.: Neural Networks for the prediction and forecasting of water resources variables: A review of modeling issues and applications, Environ. Modell. and Softw., 15, 101-124, 2000.
    • (2000) Environ. Modell. and Softw. , vol.15 , pp. 101-124
    • Maier, H.-R.1    Dandy, G.-C.2
  • 35
    • 0000169232 scopus 로고
    • An algorithm for least-squares estimation of nonlinear parameters
    • Marquardt, D.: An algorithm for least-squares estimation of nonlinear parameters, SIAM J. Appl. Math., 11, 431-441, 1963.
    • (1963) SIAM J. Appl. Math. , vol.11 , pp. 431-441
    • Marquardt, D.1
  • 37
    • 0035505634 scopus 로고    scopus 로고
    • Confidence estimation methods for neural networks: A practical comparison
    • Papadopoulos, G. and Edwards, P.-J.: Confidence estimation methods for neural networks: A practical comparison, IEEE T. Neural Network., 12, 1278-1287, 2001.
    • (2001) IEEE T. Neural Network. , vol.12 , pp. 1278-1287
    • Papadopoulos, G.1    Edwards, P.-J.2
  • 38
    • 11144273669 scopus 로고
    • The perceptron: A probabilistic model for information storage and organization in the brain
    • Rosenblatt, F.: The perceptron: A probabilistic model for information storage and organization in the brain, Psychol. Rev., 65, 386-408, 1958.
    • (1958) Psychol. Rev. , vol.65 , pp. 386-408
    • Rosenblatt, F.1
  • 39
    • 0036612028 scopus 로고    scopus 로고
    • Evaluating probabilistic forecasts using information theory
    • Roulston, M.-S. and Smith, L.-A.: Evaluating probabilistic forecasts using information theory, Mon. Weather Rev., 130, 1653-1660, 2002.
    • (2002) Mon. Weather Rev. , vol.130 , pp. 1653-1660
    • Roulston, M.-S.1    Smith, L.-A.2
  • 40
    • 33745780111 scopus 로고    scopus 로고
    • Experiments with Asa- Boost.RT, an improved boosting scheme for regression
    • Shrestha, D.-L. and Solomatine, D.-P.: Experiments with Asa- Boost.RT, an improved boosting scheme for regression, Neural Comput., 18(7), 1678-1710, 2006.
    • (2006) Neural Comput , vol.18 , Issue.7 , pp. 1678-1710
    • Shrestha, D.-L.1    Solomatine, D.-P.2
  • 41
    • 33645987256 scopus 로고    scopus 로고
    • Machine learning approaches for estimation of prediction interval for the model output
    • Shrestha, D.-L. and Solomatine, D.-P.: Machine learning approaches for estimation of prediction interval for the model output, Neural Networks, 19, 225-235, 2006.
    • (2006) Neural Networks , vol.19 , pp. 225-235
    • Shrestha, D.-L.1    Solomatine, D.-P.2
  • 42
    • 34047254142 scopus 로고    scopus 로고
    • Suitability of different neural networks in daily flow forecasting
    • Singh, P. and Deo, M.: Suitability of different neural networks in daily flow forecasting, Appl. Soft Comput., 7, 968-978, 2007.
    • (2007) Appl. Soft Comput. , vol.7 , pp. 968-978
    • Singh, P.1    Deo, M.2
  • 43
    • 7044235251 scopus 로고    scopus 로고
    • A new test for multivariate normality
    • Sźekely, G.J. and Rizzo, M.L.: A New Test for Multivariate Normality, J. Multivariate Anal., 93, 58-80, 2005.
    • (2005) J. Multivariate Anal. , vol.93 , pp. 58-80
    • Sźekely, G.J.1    Rizzo, M.L.2
  • 44
    • 0001963841 scopus 로고    scopus 로고
    • Evaluation of probabilistic prediction systems
    • Shinfield Park, Reading, Berkshire
    • Talagrand, O., Vautard, R., and Strauss, B.: Evaluation of probabilistic prediction systems., ECMWF Workshop on Predictability, Shinfield Park, Reading, Berkshire, 1-25, 1997.
    • (1997) ECMWF Workshop on Predictability , pp. 1-25
    • Talagrand, O.1    Vautard, R.2    Strauss, B.3
  • 45
    • 0033167344 scopus 로고    scopus 로고
    • Rainfall-runoff modeling using artificial neural networks
    • Tokar, A.-S. and Johnson, P.-A.: Rainfall-runoff modeling using artificial neural networks, J. Hydrol. Eng., 4, 232-239, 1999
    • (1999) J. Hydrol. Eng. , vol.4 , pp. 232-239
    • Tokar, A.-S.1    Johnson, P.-A.2
  • 46
    • 10644287862 scopus 로고    scopus 로고
    • Artificial neural network technique for rainfall forecasting applied to the São Paulo region
    • Valverde Raḿrez, M.-C., De Campos Velho, H.-F., and Ferreira, N.-J.: Artificial neural network technique for rainfall forecasting applied to the São Paulo region, J. Hydrol. 301(1-4), 146-162, 2005
    • (2005) J. Hydrol. , vol.301 , Issue.1-4 , pp. 146-162
    • Valverde Ramírez, M.-C.1    De Campos Velho, H.-F.2    Ferreira, N.-J.3
  • 47
    • 77950356756 scopus 로고    scopus 로고
    • An evaluation of the Canadian global meteorological ensemble prediction system for short-term hydrological forecasting
    • Fortin, V., and Anctil, F.: An evaluation of the Canadian global meteorological ensemble prediction system for short-term hydrological forecasting, Hydrol. Earth Syst. Sci., 13, 2221-2231, 2009, http://www.hydrol- earth-syst-sci.net/13/2221/2009/.
    • (2009) Hydrol. Earth Syst. Sci. , vol.13 , pp. 2221-2231
    • Fortin, V.1    Anctil, F.2
  • 48
    • 34447309549 scopus 로고    scopus 로고
    • Comparison of ensemble-MOS methods using GFS reforecasts
    • Wilks, D. and Hamill, T.: Comparison of ensemble-MOS methods using GFS reforecasts, Mon.Weather Rev., 135, 2379-2390, 2007.
    • (2007) Mon.Weather Rev. , vol.135 , pp. 2379-2390
    • Wilks, D.1    Hamill, T.2
  • 50
    • 62949213977 scopus 로고    scopus 로고
    • Estimating uncertainty of streamflow simulation using Bayesian neural networks
    • doi:10.1029/2008WR00730
    • Zhang, X., Liang, F., Srinivasan, R., and Van Liev, M.: Estimating uncertainty of streamflow simulation using Bayesian neural networks, Water Resour. Res., 45, W02403, doi:10.1029/2008WR00730, 2009.
    • (2009) Water Resour. Res. , vol.45
    • Zhang, X.1    Liang, F.2    Srinivasan, R.3    Van Liev, M.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.