메뉴 건너뛰기




Volumn 13, Issue 9, 2009, Pages 1555-1566

Classification of hydro-meteorological conditions and multiple artificial neural networks for streamflow forecasting

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL NEURAL NETWORK; FLOW PATTERN; HYDROGRAPH; HYDROMETEOROLOGY; PARAMETERIZATION; RAINFALL-RUNOFF MODELING; STREAMFLOW;

EID: 72049104241     PISSN: 10275606     EISSN: 16077938     Source Type: Journal    
DOI: 10.5194/hess-13-1555-2009     Document Type: Article
Times cited : (57)

References (54)
  • 1
    • 0034254196 scopus 로고    scopus 로고
    • Comparing neural network and autoregressive moving average techniques for the provision of continuous river flow forecasts in two contrasting catchments
    • Abrahart, R. J. and See, L.: Comparing neural network and autoregressive moving average techniques for the provision of continuous river flow forecasts in two contrasting catchments, Hydrol. Process., 14(11), 2157-2172, 2000.
    • (2000) Hydrol. Process , vol.14 , Issue.11 , pp. 2157-2172
    • Abrahart, R.J.1    See, L.2
  • 2
    • 0036698601 scopus 로고    scopus 로고
    • Multi-model data fusion for river flow forecasting: An evaluation of six alternative methods based on two contrasting catchments
    • Abrahart, R. J. and See, L.: Multi-model data fusion for river flow forecasting: an evaluation of six alternative methods based on two contrasting catchments, Hydrol. Earth Syst. Sci., 6, 655-670, 2002, http://www.hydrol-earth- syst-sci.net/6/655/2002/.
    • (2002) Hydrol. Earth Syst. Sci , vol.6 , pp. 655-670
    • Abrahart, R.J.1    See, L.2
  • 3
    • 1442291113 scopus 로고    scopus 로고
    • Impact of the length of observed records on the performance of ANN and of conceptual parsimonious rainfall-runoff forecasting models
    • Anctil, F., Perrin, Ch., and Andreassian V.: Impact of the length of observed records on the performance of ANN and of conceptual parsimonious rainfall-runoff forecasting models, Environ. Modell. Softw., 19, 357-368, 2004.
    • (2004) Environ. Modell. Softw. , vol.19 , pp. 357-368
    • Anctil, F.1    Perrin, Ch.2    Andreassian, V.3
  • 4
    • 0034174280 scopus 로고    scopus 로고
    • ASCE task committee on application of artificial neural networks in hydrology: Artificial neural networks in hydrology. I: Preliminary concepts
    • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology: Artificial neural networks in hydrology. I: preliminary concepts, J. Hydrol. Eng., 5, 115-123, 2000a.
    • (2000) J. Hydrol. Eng , vol.5 , pp. 115-123
  • 5
    • 0034174396 scopus 로고    scopus 로고
    • ASCE task committee on application of artificial neural networks in hydrology: Artificial neural networks in hydrology II: Hydrologic applications
    • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology: Artificial neural networks in hydrology II: hydrologic applications, J. Hydrol. Eng. 5, 124-137. 2000b.
    • (2000) J. Hydrol. Eng. , vol.5 , pp. 124-137
  • 6
    • 35348971404 scopus 로고    scopus 로고
    • Comparison of self-organizing maps classification approach with cluster and principal components analysis for large environmental data sets
    • Astel, A., Tsakovski, S., Barbieri, P., and Simeonov, V.: Comparison of self-organizing maps classification approach with cluster and principal components analysis for large environmental data sets, Water Res., 41(19), 4566-4578, 2007.
    • (2007) Water Res , vol.41 , Issue.19 , pp. 4566-4578
    • Astel, A.1    Tsakovski, S.2    Barbieri, P.3    Simeonov, V.4
  • 7
    • 10644295753 scopus 로고    scopus 로고
    • Input determination for neural network models in water resources applications. Part 1-background and methodology
    • Bowden, G. J., Dandy G. C., and Maier, H. R.: Input determination for neural network models in water resources applications. Part 1-background and methodology, J. Hydrol., 301, 75-92, 2005
    • (2005) J. Hydrol , vol.301 , pp. 75-92
    • Bowden, G.J.1    Dandy, G.C.2    Maier, H.R.3
  • 8
    • 0037087735 scopus 로고    scopus 로고
    • An evaluation of a traditional and a neural net modelling approach to flood forecasting for an upland catchment
    • Cameron, D., Kneale, P., and See, L.: An evaluation of a traditional and a neural net modelling approach to flood forecasting for an upland catchment, Hydrol. Process., 16, 1033-1046, 2002.
    • (2002) Hydrol. Process , vol.16 , pp. 1033-1046
    • Cameron, D.1    Kneale, P.2    See, L.3
  • 9
    • 0032688155 scopus 로고    scopus 로고
    • River flood forecasting with neural network model
    • Campolo, M., Andreussi, P., and Soldati, A.: River flood forecasting with neural network model,Water Resour. Res., 35(4), 1191-1197, 1999.
    • (1999) Water Resour. Res , vol.35 , Issue.4 , pp. 1191-1197
    • Campolo, M.1    Andreussi, P.2    Soldati, A.3
  • 10
    • 34249775808 scopus 로고    scopus 로고
    • Baseflow separation techniques for modular artificial neural networks modelling in flow forecasting
    • Corzo, G. A. and Solomatine, D. P.: Baseflow separation techniques for modular artificial neural networks modelling in flow forecasting, Hydrolog. Sci. J., 52(3), 491-507, 2007.
    • (2007) Hydrolog. Sci. J. , vol.52 , Issue.3 , pp. 491-507
    • Corzo, G.A.1    Solomatine, D.P.2
  • 11
    • 0035876630 scopus 로고    scopus 로고
    • Improving extreme hydrologic events forecasting using a new criterion for artificial neural network selection
    • Coulibaly, P., Bob́ee, B., and Anctil, F.: Improving extreme hydrologic events forecasting using a new criterion for artificial neural network selection, Hydrol. Process., 15, 1533-1536, 2001.
    • (2001) Hydrol. Process , vol.15 , pp. 1533-1536
    • Coulibaly, P.1    Bob́ee, B.2    Anctil, F.3
  • 12
    • 0032005702 scopus 로고    scopus 로고
    • An artificial neural network approach to rainfall-runoff modeling
    • Dawson, C. W. and Wilby, R.: An artificial neural network approach to rainfall-runoff modeling, Hydrolog. Sci. J., 43(1), 47-65, 1998.
    • (1998) Hydrolog. Sci. J. , vol.43 , Issue.1 , pp. 47-65
    • Dawson, C.W.1    Wilby, R.2
  • 13
    • 34249810384 scopus 로고    scopus 로고
    • Multi-objective performance comparison of an artificial neural network and a conceptual rainfall-runoff model
    • DOI 10.1623/hysj.52.3.397
    • de Vos, N. J. and Rientjes, T. H. M.: Multi-objective performance comparison of an artificial neural network and a conceptual rainfall-runoff model, Hydrolog. Sci. J., 52(3), 397-413, doi:10.1623/hysj.52.3.397, 2007. (Pubitemid 46851530)
    • (2007) Hydrological Sciences Journal , vol.52 , Issue.3 , pp. 397-413
    • De Vos, N.J.1    Rientjes, T.H.M.2
  • 14
    • 53849113979 scopus 로고    scopus 로고
    • Multiobjective training of artificial neural networks for rainfall-runoff modeling
    • doi:10.1029/2007WR006734
    • de Vos, N. J. and Rientjes, T. H. M.: Multiobjective training of artificial neural networks for rainfall-runoff modeling, Water Resour. Res., 44, W08434, doi:10.1029/2007WR006734, 2008.
    • (2008) Water Resour. Res. , vol.44
    • De Vos, N.J.1    Rientjes, T.H.M.2
  • 15
    • 61749084755 scopus 로고    scopus 로고
    • Selection of input variables for data driven models: An average shifted histogram partial mutual information estimator approach
    • Fernando, T. M. K. G., Maier, H. R., and Dandy, G. C.: Selection of input variables for data driven models: An average shifted histogram partial mutual information estimator approach, J. Hydrol., 367, 165-176, 2009.
    • (2009) J. Hydrol , vol.367 , pp. 165-176
    • Fernando, T.M.K.G.1    Maier, H.R.2    Dandy, G.C.3
  • 16
    • 0033578381 scopus 로고    scopus 로고
    • Applications of the self-organising feature map neural network in community data analysis
    • Foody, G.: Applications of the self-organising feature map neural network in community data analysis, Ecol. Model., 120, 97-107, 1999.
    • (1999) Ecol. Model , vol.120 , pp. 97-107
    • Foody, G.1
  • 17
    • 0030702721 scopus 로고
    • Gauss-Newton approximation to Bayesian learning
    • New York
    • Foresee, F. D. and Hagan, M. T.: Gauss-Newton approximation to Bayesian learning, IEEE IJCNN, New York, 3, 1930-1935, 1997.
    • (1930) IEEE IJCNN , vol.3 , pp. 1997
    • Foresee, F.D.1    Hagan, M.T.2
  • 18
    • 0031998129 scopus 로고    scopus 로고
    • Application example of neural networks for time series analysis: Rainfall-runoff modelling
    • Furundzic, D.: Application example of neural networks for time series analysis: rainfall-runoff modelling, Signal Process., 64, 383-396, 1998.
    • (1998) Signal Process , vol.64 , pp. 383-396
    • Furundzic, D.1
  • 19
    • 4143139874 scopus 로고    scopus 로고
    • Towards the characterization of streamflow simulation uncertainty through multimodel ensembles
    • Georgakakos, K. P., Seo, D., Gupta, H., Schaake, J., and Butts, M. B.: Towards the characterization of streamflow simulation uncertainty through multimodel ensembles, J. Hydrol., 298, 222-241, 2004.
    • (2004) J. Hydrol , vol.298 , pp. 222-241
    • Georgakakos, K.P.1    Seo, D.2    Gupta, H.3    Schaake, J.4    Butts, M.B.5
  • 20
    • 35448991280 scopus 로고    scopus 로고
    • Hydrologic data exploration and river flow forecasting of a humid tropical river basin using artificial neural networks
    • Gopakumar R., Takara, K., and James E. J.: Hydrologic Data Exploration and River Flow Forecasting of a Humid Tropical River Basin Using Artificial Neural Networks, Water Resour. Manag., 21(11), 1915-1940, 2007.
    • (2007) Water Resour. Manag. , vol.21 , Issue.11 , pp. 1915-1940
    • Gopakumar, R.1    Takara, K.2    James, E.J.3
  • 21
    • 0031922634 scopus 로고    scopus 로고
    • Toward improved calibration of hydrologic models: Multiple and noncommensurable measures of information
    • Gupta, H. V., Sorooshian, S., and Yapo, P. O.: Toward improved calibration of hydrologic models: Multiple and noncommensurable measures of information,Water Resour. Res., 34, 751-764, 1998.
    • (1998) Water Resour. Res. , vol.34 , pp. 751-764
    • Gupta, H.V.1    Sorooshian, S.2    Yapo, P.O.3
  • 22
    • 0028543366 scopus 로고
    • Training feedforward networks with the Marquardt algorithm
    • Hagan, M. T. and Menhaj, M.: Training feedforward networks with the Marquardt algorithm, IEEET. Neural Networ., 5(6), 989-993, 1994.
    • (1994) IEEET. Neural Networ , vol.5 , Issue.6 , pp. 989-993
    • Hagan, M.T.1    Menhaj, M.2
  • 23
    • 0242475332 scopus 로고    scopus 로고
    • An unsupervised hierarchical dynamic selforganizing approach to cancer class discovery and marker gene identification in microarray data (supplementary information on "dynamic SOM with hexagonal structure for data mining"
    • Hsu, A. L. and Halgamuge, S. K.: An unsupervised hierarchical dynamic selforganizing approach to cancer class discovery and marker gene identification in microarray data (supplementary information on "Dynamic SOM with hexagonal structure for data mining"), Bioinformatics, 19(16), 2131-2140, 2003.
    • (2003) Bioinformatics , vol.19 , Issue.16 , pp. 2131-2140
    • Hsu, A.L.1    Halgamuge, S.K.2
  • 24
    • 0036998831 scopus 로고    scopus 로고
    • Selforganizing linear output map (SOLO): An artificial neural network suitable for hydrologic modeling and analysis
    • doi:10.1029/2001WR000795
    • Hsu, K., Gupta, H. V., Gao, X., Sorooshian, S., and Imam, B.: Selforganizing linear output map (SOLO): An artificial neural network suitable for hydrologic modeling and analysis, Water Resour. Res., 38(12), 1302, doi:10.1029/2001WR000795, 2002.
    • (2002) Water Resour. Res , vol.38 , Issue.12 , pp. 1302
    • Hsu, K.1    Gupta, H.V.2    Gao, X.3    Sorooshian, S.4    Imam, B.5
  • 25
    • 1542287371 scopus 로고    scopus 로고
    • Identification of physical processes inherent in artificial neural network rainfall runoff models
    • Jain, A., Sudheer, K. P., and Srinivasulu, S.: Identification of physical processes inherent in artificial neural network rainfall runoff models, Hydrol. Process., 18, 571-581, 2004.
    • (2004) Hydrol. Process , vol.18 , pp. 571-581
    • Jain, A.1    Sudheer, K.P.2    Srinivasulu, S.3
  • 26
    • 28844473522 scopus 로고    scopus 로고
    • Integrated approach to model decomposed flow hydrograph using artificial neural network and conceptual techniques
    • Jain, A. and Srinivasulu, S.: Integrated approach to model decomposed flow hydrograph using artificial neural network and conceptual techniques, J. Hydrol., 317, 291-306, 2006.
    • (2006) J. Hydrol , vol.317 , pp. 291-306
    • Jain, A.1    Srinivasulu, S.2
  • 27
    • 40749144865 scopus 로고    scopus 로고
    • Review of the selforganizing map (SOM) approach in water resources: Analysis, modelling and application
    • Kalteh, A. M., Hjorth, P., and Berndtsson, R.: Review of the selforganizing map (SOM) approach in water resources: Analysis, modelling and application, Environ. Modell. Softw. 23, 835-845, 2008.
    • (2008) Environ. Modell. Softw , vol.23 , pp. 835-845
    • Kalteh, A.M.1    Hjorth, P.2    Berndtsson, R.3
  • 28
    • 33748029144 scopus 로고    scopus 로고
    • Bayesian neural network for rainfall-runoff modeling
    • DOI 10.1029/2005WR003971
    • Khan, M. S. and Coulibaly, P.: Bayesian neural network for rainfall-runoff modeling, Water Resour. Res., 42(7), W07409, doi:10.1029/2005WR003971, 2006. (Pubitemid 44300476)
    • (2006) Water Resources Research , vol.42 , Issue.7
    • Khan, M.S.1    Coulibaly, P.2
  • 29
    • 0020068152 scopus 로고
    • Self-organized formation of topologically correct feature maps
    • Kohonen, T.: Self-organized formation of topologically correct feature maps, Biol. Cybern., 43, 59-69, 1982.
    • (1982) Biol. Cybern. , vol.43 , pp. 59-69
    • Kohonen, T.1
  • 30
    • 0003410791 scopus 로고    scopus 로고
    • (third edn.), Springer, Berlin, Germany
    • Kohonen, T.: Self-Organizing Maps (third edn.), Springer, Berlin, Germany, 2001.
    • (2001) Self-Organizing Maps
    • Kohonen, T.1
  • 31
    • 0032920124 scopus 로고    scopus 로고
    • Evaluating the use of 'goodnessof- fit' measures in hydrologic and hydroclimatic model validation
    • Legates, D.R. and McCabe, G.J.: Evaluating the use of 'goodnessof- fit' measures in hydrologic and hydroclimatic model validation, Water Resour. Res., 35, 233-241, 1999.
    • (1999) Water Resour. Res , vol.35 , pp. 233-241
    • Legates, D.R.1    McCabe, G.J.2
  • 32
    • 0034739246 scopus 로고    scopus 로고
    • Automatic calibration of a conceptual rainfall-runoff model using multiple objectives
    • Madsen, H.: Automatic calibration of a conceptual rainfall-runoff model using multiple objectives, J. Hydrol., 235, 267-288, 2000.
    • (2000) J. Hydrol , vol.235 , pp. 267-288
    • Madsen, H.1
  • 33
    • 0033957764 scopus 로고    scopus 로고
    • Neural networks for the prediction and forecasting of water resources variables: A review of modeling issues and applications
    • Maier, H. and Dandy, G.: Neural networks for the prediction and forecasting of water resources variables: A review of modeling issues and applications, Environ. Modell. Softw., 15(1), 101-104, 2000.
    • (2000) Environ. Modell. Softw , vol.15 , Issue.1 , pp. 101-104
    • Maier, H.1    Dandy, G.2
  • 34
    • 0030572617 scopus 로고    scopus 로고
    • A comparison of SOM neural network and hierarchical clustering methods
    • Mangiameli, P., Chen, S. K., and West, D.: A comparison of SOM neural network and hierarchical clustering methods, Eur. J. Oper. Res., 93, 402-417, 1996.
    • (1996) Eur. J. Oper. Res. , vol.93 , pp. 402-417
    • Mangiameli, P.1    Chen, S.K.2    West, D.3
  • 35
    • 0030159380 scopus 로고    scopus 로고
    • Artificial neural networks as rainfall runoff models
    • Minns, A. W. and Hall, M. J.: Artificial neural networks as rainfall runoff models, Hydrolog. Sci. J., 41, 399-417, 1996.
    • (1996) Hydrolog. Sci. J. , vol.41 , pp. 399-417
    • Minns, A.W.1    Hall, M.J.2
  • 36
    • 3142538909 scopus 로고    scopus 로고
    • Improved streamflow forecasting using self-organizing radial basis function artificial neural networks
    • Moradkhani, H., Hsu, K., Gupta, H. V., and Sorooshian, S: Improved streamflow forecasting using self-organizing radial basis function artificial neural networks, J. Hydrol., 295, 246-262, 2004.
    • (2004) J. Hydrol. , vol.295 , pp. 246-262
    • Moradkhani, H.1    Hsu, K.2    Gupta, H.V.3    Sorooshian, S.4
  • 37
    • 33845600932 scopus 로고    scopus 로고
    • Cluster-based hydrologic prediction using genetic-algorithm trained neural networks
    • Parasuraman, K. and Elshorbagy, A.: Cluster-based hydrologic prediction using genetic-algorithm trained neural networks, J. Hydrol. Eng., 12(1), 52-62, 2007.
    • (2007) J. Hydrol. Eng. , vol.12 , Issue.1 , pp. 52-62
    • Parasuraman, K.1    Elshorbagy, A.2
  • 38
    • 0036698155 scopus 로고    scopus 로고
    • Comparison of different forms of the multi-layer feed-forward neural network method used for river flow forecasting
    • Shamseldin, A. Y., Nasr, A. E., and O'Connor, K. M.: Comparison of different forms of the Multi-layer Feed-Forward Neural Network method used for river flow forecasting, Hydrol. Earth Syst. Sci., 6, 671-684, 2002, http://www.hydrol-earth-syst-sci.net/6/671/2002/.
    • (2002) Hydrol. Earth Syst. Sci , vol.6 , pp. 671-684
    • Shamseldin, A.Y.1    Nasr, A.E.2    O'Connor, K.M.3
  • 39
    • 0031259688 scopus 로고    scopus 로고
    • Methods for combining the outputs of different rainfall-runoff rodels
    • Shamseldin, A. Y., O'Connor, K. M., and Liang, G. C.,: Methods for combining the outputs of different rainfall-runoff rodels, J. Hydrol., 197, 203-229, 1997.
    • (1997) J. Hydrol. , vol.197 , pp. 203-229
    • Shamseldin, A.Y.1    O'Connor, K.M.2    Liang, G.C.3
  • 40
    • 34848868092 scopus 로고    scopus 로고
    • A comparative study of three neural network forecast combination methods for simulated river flows of different rainfall-runoff models
    • Shamseldin, A. Y., O'Connor, K. M., and Nasr, A. E.: A comparative study of three neural network forecast combination methods for simulated river flows of different rainfall-runoff models, Hydrolog. Sci. J., 52(5), 896-916, 2007.
    • (2007) Hydrolog. Sci. J. , vol.52 , Issue.5 , pp. 896-916
    • Shamseldin, A.Y.1    O'Connor, K.M.2    Nasr, A.E.3
  • 41
    • 33645974258 scopus 로고    scopus 로고
    • Natural phenomena
    • natural phenomena, Neural Networks, 19, 215-224, 2006.
    • (2006) Neural Networks , vol.19 , pp. 215-224
  • 42
    • 33646175957 scopus 로고    scopus 로고
    • A SOM based 2500-isolated-farsi- word speech recognizer
    • ICANN 2005, edited by: Duch, W., Kacprzyk, J., Oja, E., and Zadrony, S., Springer- Verlag Berlin Heidelberg
    • Shirazi, J. and Menhaj, M. B.: A SOM Based 2500-Isolated-Farsi- Word Speech Recognizer, in: ICANN 2005, LNCS 3696, edited by: Duch, W., Kacprzyk, J., Oja, E., and Zadrony, S., Springer- Verlag Berlin Heidelberg, 589-595, 2005.
    • (2005) LNCS , vol.3696 , pp. 589-595
    • Shirazi, J.1    Menhaj, M.B.2
  • 44
    • 0037565156 scopus 로고    scopus 로고
    • Model trees as an alternative to neural networks in rainfall-runoff modeling
    • Solomatine, D. P. and Dulal, K. N.: Model trees as an alternative to neural networks in rainfall-runoff modelling, Hydrolog. Sci. J., 48(3), 399-411, 2003.
    • (2003) Hydrolog. Sci. J. , vol.48 , Issue.3 , pp. 399-411
    • Solomatine, D.P.1    Dulal, K.N.2
  • 45
    • 36749007877 scopus 로고    scopus 로고
    • A simplified approach to quantifying predictive and parametric uncertainty in artificial neural network hydrologic models
    • DOI 10.1029/2006WR005352
    • Srivastav, R. K., Sudheer, K. P., and Chaubey, I.: A simplified approach to quantifying predictive and parametric uncertainty in artificial neural network hydrologic models, Water Resour. Res., 23(10), W10407, doi:10.1029/2006WR005352, 2007. (Pubitemid 350210156)
    • (2007) Water Resources Research , vol.43 , Issue.10
    • Srivastav, R.K.1    Sudheer, K.P.2    Chaubey, I.3
  • 46
    • 33845307599 scopus 로고    scopus 로고
    • How effective and efficient are multiobjective evolutionary algorithms at hydrologic model calibration?
    • Tang, Y., Reed, P., and Wagener, T.: How effective and efficient are multiobjective evolutionary algorithms at hydrologic model calibration?, Hydrol. Earth Syst. Sci., 10, 289-307, 2006, http://www.hydrol-earth-syst-sci.net/10/ 289/2006/.
    • (2006) Hydrol. Earth Syst. Sci , vol.10 , pp. 289-307
    • Tang, Y.1    Reed, P.2    Wagener, T.3
  • 47
    • 37549066943 scopus 로고    scopus 로고
    • Multistep ahead streamflow forecasting: Role of calibration data in conceptual and neural network modeling
    • doi:10.1029/2006WR005383
    • Toth, E. and Brath, A.: Multistep ahead streamflow forecasting: Role of calibration data in conceptual and neural network modeling, Water Resour. Res., 43, W11405, doi:10.1029/2006WR005383, 2007.
    • (2007) Water Resour. Res. , vol.43
    • Toth, E.1    Brath, A.2
  • 48
    • 0030298951 scopus 로고    scopus 로고
    • Combining Kohonen maps with ARIMA time series models to forecast traffic flow
    • Van der Voort, M., Dougherty, M., and Watson, S.: Combining Kohonen maps with ARIMA time series models to forecast traffic flow, Transport. Res., C4(5), 307-318, 1996.
    • (1996) Transport. Res , vol.C4 , Issue.5 , pp. 307-318
    • Van Der Voort, M.1    Dougherty, M.2    Watson, S.3
  • 49
    • 1542442237 scopus 로고    scopus 로고
    • Effective and efficient algorithm for multiobjective optimization of hydrologic models
    • Vrugt, J. A., Gupta, H. V., Bastidas, L. A., Bouten, W., and Sorooshian, S.: Effective and efficient algorithm for multiobjective optimization of hydrologic models, Water Resour. Res., 39, 1-19, 2003.
    • (2003) Water Resour. Res. , vol.39 , pp. 1-19
    • Vrugt, J.A.1    Gupta, H.V.2    Bastidas, L.A.3    Bouten, W.4    Sorooshian, S.5
  • 50
    • 33646547633 scopus 로고    scopus 로고
    • Forecasting daily streamflow using hybrid ANN models
    • Wang, W., Gelder, P., Vrijling, J. K., and Ma, J.: Forecasting daily streamflow using hybrid ANN models, J. Hydrol., 324(1), 383-399, 2006.
    • (2006) J. Hydrol , vol.324 , Issue.1 , pp. 383-399
    • Wang, W.1    Gelder, P.2    Vrijling, J.K.3    Ma, J.4
  • 51
    • 0002919951 scopus 로고
    • Progress and directions in rainfall-runoff modeling
    • edited by: Jakeman, A. J., Beck, M. B., and McAleer, M. J., Wiley, Chichester
    • Wheater, H. S., Jakeman, A. J., and Beven, K. J.: Progress and directions in rainfall-runoff modelling, in: Modelling change in environmental systems, edited by: Jakeman, A. J., Beck, M. B., and McAleer, M. J., Wiley, Chichester, 101-132, 1993.
    • (1993) Modelling Change in Environmental Systems , pp. 101-132
    • Wheater, H.S.1    Jakeman, A.J.2    Beven, K.J.3
  • 53
    • 0037099572 scopus 로고    scopus 로고
    • Advances in real-time flood forecasting
    • Young, P. C.: Advances in real-time flood forecasting, Philos. T. R. Soc. Lond., 360, 1433-1450, 2002.
    • (2002) Philos. T. R. Soc. Lond. , vol.360 , pp. 1433-1450
    • Young, P.C.1
  • 54
    • 0034100712 scopus 로고    scopus 로고
    • Prediction of watershed runoff using bayesian concepts and modular neural networks
    • Zhang, B. and Govindaraju, S.: Prediction of Watershed Runoff using Bayesian Concepts and Modular Neural Networks, Water Resour. Res., 36(3), 753-762, 2000.
    • (2000) Water Resour. Res. , vol.36 , Issue.3 , pp. 753-762
    • Zhang, B.1    Govindaraju, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.