메뉴 건너뛰기




Volumn 37, Issue 12, 2010, Pages 7456-7468

A novel application of a neuro-fuzzy computational technique in event-based rainfall-runoff modeling

Author keywords

Adaptive Network based Fuzzy Inference System (ANFIS); Event based; Neuro fuzzy systems; Rainfall runoff Modeling; Storm Water Management Model (SWMM)

Indexed keywords

ADAPTIVE NETWORK BASED FUZZY INFERENCE SYSTEM; EVENT-BASED; NEUROFUZZY SYSTEM; RAINFALL-RUNOFF MODELING; STORM WATER MANAGEMENT MODEL (SWMM);

EID: 77955716349     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2010.04.015     Document Type: Article
Times cited : (116)

References (47)
  • 1
    • 14544280631 scopus 로고    scopus 로고
    • RSPOP: Rough set-based pseudo-outer-product fuzzy rule identification algorithm
    • K.K. Ang, and C. Quek RSPOP: Rough set-based pseudo-outer-product fuzzy rule identification algorithm Neural Computation 17 1 2005 205 243
    • (2005) Neural Computation , vol.17 , Issue.1 , pp. 205-243
    • Ang, K.K.1    Quek, C.2
  • 2
    • 33947572974 scopus 로고    scopus 로고
    • A comparative study of artificial neural networks and neuro-fuzzy in continuous modeling of the daily and hourly behavior of runoff
    • M. Aqil, I. Kita, A. Yano, and S. Nishiyama A comparative study of artificial neural networks and neuro-fuzzy in continuous modeling of the daily and hourly behavior of runoff Journal of Hydrology 337 1-2 2007 22 34
    • (2007) Journal of Hydrology , vol.337 , Issue.12 , pp. 22-34
    • Aqil, M.1    Kita, I.2    Yano, A.3    Nishiyama, S.4
  • 3
    • 2542581537 scopus 로고    scopus 로고
    • Hortons' perceptual model of infiltration process
    • K. Beven Robert E. Hortons' perceptual model of infiltration process Hydrological Processes 18 17 2004 3447 3460
    • (2004) Hydrological Processes , vol.18 , Issue.17 , pp. 3447-3460
    • Beven, K.1    Robert, E.2
  • 5
    • 11044233103 scopus 로고    scopus 로고
    • Hybrid neural network-finite element river flow model
    • L.H.C. Chua, and K.-P. Holz Hybrid neural network-finite element river flow model Journal of Hydraulic Engineering 131 1 2005 52 59
    • (2005) Journal of Hydraulic Engineering , vol.131 , Issue.1 , pp. 52-59
    • Chua, L.H.C.1    Holz, K.-P.2
  • 8
    • 0027306481 scopus 로고
    • Artificial neural networks as unit hydrograph applications
    • ASCE New York
    • A.T. Hjelmfelt, and M. Wang Artificial neural networks as unit hydrograph applications Proceedings of the engrg. hydrol. 1993 ASCE New York 754 759
    • (1993) Proceedings of the Engrg. Hydrol. , pp. 754-759
    • Hjelmfelt, A.T.1    Wang, M.2
  • 12
    • 33748913014 scopus 로고    scopus 로고
    • Comparison of different efficiency criteria for hydrological model assessment
    • P. Krause, D.P. Boyle, and F. Base Comparison of different efficiency criteria for hydrological model assessment Advances Geosciences 5 2005 89 97
    • (2005) Advances Geosciences , vol.5 , pp. 89-97
    • Krause, P.1    Boyle, D.P.2    Base, F.3
  • 15
    • 34249723182 scopus 로고    scopus 로고
    • A novel generic Hebbian ordering-based approach fuzzy rule base reduction approach to Mamdani neuro-fuzzy system
    • F. Liu, C. Quek, and G.S. Ng A novel generic Hebbian ordering-based approach fuzzy rule base reduction approach to Mamdani neuro-fuzzy system Neural Computation 19 6 2007 1656 1680
    • (2007) Neural Computation , vol.19 , Issue.6 , pp. 1656-1680
    • Liu, F.1    Quek, C.2    Ng, G.S.3
  • 18
    • 39749188209 scopus 로고    scopus 로고
    • Comparison of artificial neural network and regression models in the prediction of urban storm water quality
    • D. May, and M. Sivakumar Comparison of artificial neural network and regression models in the prediction of urban storm water quality Water Environment Research 80 1 2008 4 9
    • (2008) Water Environment Research , vol.80 , Issue.1 , pp. 4-9
    • May, D.1    Sivakumar, M.2
  • 19
    • 0014776873 scopus 로고
    • River flow forecasting through conceptual models, Part 1 - A discussion of principles
    • J.E. Nash, and J.V. Sutcliffe River flow forecasting through conceptual models, Part 1 - A discussion of principles Journal of Hydrology 10 3 1970 282 290
    • (1970) Journal of Hydrology , vol.10 , Issue.3 , pp. 282-290
    • Nash, J.E.1    Sutcliffe, J.V.2
  • 20
    • 38349026537 scopus 로고    scopus 로고
    • Development of neuro-fuzzy models to account for temporal and spatial variations in a lumped rainfall-runoff model
    • A. Nasr, and M. Bruen Development of neuro-fuzzy models to account for temporal and spatial variations in a lumped rainfall-runoff model Journal of Hydrology 349 3-4 2008 277 290
    • (2008) Journal of Hydrology , vol.349 , Issue.34 , pp. 277-290
    • Nasr, A.1    Bruen, M.2
  • 21
    • 32044458602 scopus 로고    scopus 로고
    • Groundwater level forecasting in a shallow aquifer using artificial neural network approach
    • P.C. Nayak, Y.R. Satyaji Rao, and K.P. Sudheer Groundwater level forecasting in a shallow aquifer using artificial neural network approach Water Resources Management 20 1 2006 77 90
    • (2006) Water Resources Management , vol.20 , Issue.1 , pp. 77-90
    • Nayak, P.C.1    Satyaji Rao, Y.R.2    Sudheer, K.P.3
  • 22
    • 1942490118 scopus 로고    scopus 로고
    • A neuro-fuzzy computing technique for modeling hydrological time series
    • P.C. Nayak, K.P. Sudheer, D.M. Rangan, and K.S. Ramasastri A neuro-fuzzy computing technique for modeling hydrological time series Journal of Hydrology 291 1-2 2004 52 66
    • (2004) Journal of Hydrology , vol.291 , Issue.12 , pp. 52-66
    • Nayak, P.C.1    Sudheer, K.P.2    Rangan, D.M.3    Ramasastri, K.S.4
  • 24
    • 31744432525 scopus 로고    scopus 로고
    • FITSK: Online local learning with generic fuzzy input Takagi-Sugeno-Kang fuzzy framework for nonlinear estimation
    • K.H. Quah, and C. Quek FITSK: Online local learning with generic fuzzy input Takagi-Sugeno-Kang fuzzy framework for nonlinear estimation IEEE Transactions on Systems, Man and Cybernetics - Part B 35 1 2006 1 13
    • (2006) IEEE Transactions on Systems, Man and Cybernetics - Part B , vol.35 , Issue.1 , pp. 1-13
    • Quah, K.H.1    Quek, C.2
  • 26
    • 16244372094 scopus 로고    scopus 로고
    • POP-Yager: A novel self-organising fuzzy neural network based on the Yager inference
    • C. Quek, and A. Singh POP-Yager: A novel self-organising fuzzy neural network based on the Yager inference Expert Systems with Applications 29 1 2005 229 242
    • (2005) Expert Systems with Applications , vol.29 , Issue.1 , pp. 229-242
    • Quek, C.1    Singh, A.2
  • 27
    • 0035395913 scopus 로고    scopus 로고
    • A novel approach to the derivation of fuzzy membership functions using the Falcon-MART architecture
    • C. Quek, and W.L. Tung A novel approach to the derivation of fuzzy membership functions using the Falcon-MART architecture Pattern Recognition Letters 22 9 2001 941 958
    • (2001) Pattern Recognition Letters , vol.22 , Issue.9 , pp. 941-958
    • Quek, C.1    Tung, W.L.2
  • 28
    • 0036885177 scopus 로고    scopus 로고
    • Antiforgery: A novel pseudo-outer product based fuzzy neural network driven signature verification system
    • C. Quek, and R.W. Zhou Antiforgery: A novel pseudo-outer product based fuzzy neural network driven signature verification system Pattern Recognition Letters 23 14 2002 1795 1816
    • (2002) Pattern Recognition Letters , vol.23 , Issue.14 , pp. 1795-1816
    • Quek, C.1    Zhou, R.W.2
  • 29
    • 0036899543 scopus 로고    scopus 로고
    • Artificial neural networks for daily rainfall-runoff modeling
    • M.P. Rajurkar, U.C. Kothyari, and U.C. Chaube Artificial neural networks for daily rainfall-runoff modeling Hydrological Science 47 6 2002 865 877
    • (2002) Hydrological Science , vol.47 , Issue.6 , pp. 865-877
    • Rajurkar, M.P.1    Kothyari, U.C.2    Chaube, U.C.3
  • 30
    • 0036530967 scopus 로고    scopus 로고
    • Dynamic Evolving Neural-Fuzzy Inference System (DENFIS): Online learning and application for time-series prediction
    • Q. Song, and N. Kasabov Dynamic Evolving Neural-Fuzzy Inference System (DENFIS): Online learning and application for time-series prediction IEEE Transactions on Fuzzy Systems 20 10 2000 144 154
    • (2000) IEEE Transactions on Fuzzy Systems , vol.20 , Issue.10 , pp. 144-154
    • Song, Q.1    Kasabov, N.2
  • 31
    • 0021892282 scopus 로고
    • Fuzzy identification of systems and its application to modeling and control
    • T. Takagi, and M. Sugeno Fuzzy identification of systems and its application to modeling and control IEEE Transactions on Systems Man and Cybernetics 15 1 1985 116 132
    • (1985) IEEE Transactions on Systems Man and Cybernetics , vol.15 , Issue.1 , pp. 116-132
    • Takagi, T.1    Sugeno, M.2
  • 32
    • 45749132987 scopus 로고    scopus 로고
    • Performance of rainfall-runoff models calibrated over single and continuous storm flow events
    • S.B.K. Tan, L.H.C. Chua, E.B. Shuy, E.Y. Lo, and L.W. Lim Performance of rainfall-runoff models calibrated over single and continuous storm flow events Journal of Hydrologic Engineering 13 7 2008 597 607
    • (2008) Journal of Hydrologic Engineering , vol.13 , Issue.7 , pp. 597-607
    • Tan, S.B.K.1    Chua, L.H.C.2    Shuy, E.B.3    Lo, E.Y.4    Lim, L.W.5
  • 33
    • 57949112102 scopus 로고    scopus 로고
    • Generation of total runoff hydrographs using a method derived from a digital filter algorithm
    • S.B.K. Tan, E.Y. Lo, E.B. Shuy, L.H.C. Chua, and W.H. Lim Generation of total runoff hydrographs using a method derived from a digital filter algorithm Journal Hydrologic Engineering 14 1 2009 101 106
    • (2009) Journal Hydrologic Engineering , vol.14 , Issue.1 , pp. 101-106
    • Tan, S.B.K.1    Lo, E.Y.2    Shuy, E.B.3    Chua, L.H.C.4    Lim, W.H.5
  • 34
    • 34248571919 scopus 로고    scopus 로고
    • Biologically brain-inspired genetic complementary learning for stock market and bank failure prediction
    • T.Z. Tan, C. Quek, and G.S. Ng Biologically brain-inspired genetic complementary learning for stock market and bank failure prediction Computational Intelligence 23 2 2007 236 261
    • (2007) Computational Intelligence , vol.23 , Issue.2 , pp. 236-261
    • Tan, T.Z.1    Quek, C.2    Ng, G.S.3
  • 35
    • 25844530263 scopus 로고    scopus 로고
    • GA-TSKfnn: Parameters tuning of fuzzy neural network using genetic algorithms
    • A.M. Tang, C. Quek, and G.S. Ng GA-TSKfnn: Parameters tuning of fuzzy neural network using genetic algorithms Expert Systems with Applications 29 4 2005 769 781
    • (2005) Expert Systems with Applications , vol.29 , Issue.4 , pp. 769-781
    • Tang, A.M.1    Quek, C.2    Ng, G.S.3
  • 36
    • 67349222850 scopus 로고    scopus 로고
    • A novel blood glucose regulation using TSK-FCMAC: A fuzzy CMAC based on the zero-ordered TSK fuzzy inference scheme
    • C.W. Ting, and C. Quek A novel blood glucose regulation using TSK-FCMAC: A fuzzy CMAC based on the zero-ordered TSK fuzzy inference scheme IEEE Transactions on Neural Networks 20 5 2009 856 871
    • (2009) IEEE Transactions on Neural Networks , vol.20 , Issue.5 , pp. 856-871
    • Ting, C.W.1    Quek, C.2
  • 37
    • 73949115619 scopus 로고    scopus 로고
    • EFSM - A novel online neural-fuzzy semantic memory model
    • W.L. Tung, and C. Quek eFSM - A novel online neural-fuzzy semantic memory model IEEE Transactions on Neural Networks 21 1 2010 136 157
    • (2010) IEEE Transactions on Neural Networks , vol.21 , Issue.1 , pp. 136-157
    • Tung, W.L.1    Quek, C.2
  • 39
    • 4344682658 scopus 로고    scopus 로고
    • Novel self-organising Takagi Sugeno Kang fuzzy neural networks based on ART-like clustering
    • D. Wang, C. Quek, and G.S. Ng Novel self-organising Takagi Sugeno Kang fuzzy neural networks based on ART-like clustering Neural Processing Letters 20 1 2004 39 51
    • (2004) Neural Processing Letters , vol.20 , Issue.1 , pp. 39-51
    • Wang, D.1    Quek, C.2    Ng, G.S.3
  • 40
    • 75549090905 scopus 로고    scopus 로고
    • R-POPTVR - A novel reinforcement based POPTVR Fuzzy neural network for pattern classification
    • W.C. Wong, S.Y. Cho, and C. Quek R-POPTVR - A novel reinforcement based POPTVR Fuzzy neural network for pattern classification IEEE Transactions on Neural Networks 20 11 2009 1740 1755
    • (2009) IEEE Transactions on Neural Networks , vol.20 , Issue.11 , pp. 1740-1755
    • Wong, W.C.1    Cho, S.Y.2    Quek, C.3
  • 41
    • 11944257230 scopus 로고    scopus 로고
    • Comparison of kinematic wave and nonlinear reservoir routing of urban watershed runoff
    • Y. Xiong, and C.S. Melching Comparison of kinematic wave and nonlinear reservoir routing of urban watershed runoff Journal Hydrologic Engineering 10 1 2005 39 49
    • (2005) Journal Hydrologic Engineering , vol.10 , Issue.1 , pp. 39-49
    • Xiong, Y.1    Melching, C.S.2
  • 42
    • 0035340544 scopus 로고    scopus 로고
    • A nonlinear combination of the forecasts of rainfall-runoff models by the first order Takagi-Sugeno fuzzy system
    • L.H. Xiong, A.Y. Shamseldin, and K.M. O'Conner A nonlinear combination of the forecasts of rainfall-runoff models by the first order Takagi-Sugeno fuzzy system Journal of Hydrology 245 1-4 2001 196 217
    • (2001) Journal of Hydrology , vol.245 , Issue.14 , pp. 196-217
    • Xiong, L.H.1    Shamseldin, A.Y.2    O'Conner, K.M.3
  • 43
    • 45749152410 scopus 로고    scopus 로고
    • XP Software Inc.
    • XP Software Inc. (2005). XP-SWMM User Manual.
    • (2005) XP-SWMM User Manual
  • 45
    • 0034736047 scopus 로고    scopus 로고
    • Fuzzy multi-objective function for rainfall-runoff model calibration
    • P. Yu, and T. Yang Fuzzy multi-objective function for rainfall-runoff model calibration Journal of Hydrology 238 1-2 2000 1 14
    • (2000) Journal of Hydrology , vol.238 , Issue.12 , pp. 1-14
    • Yu, P.1    Yang, T.2
  • 47
    • 0029509842 scopus 로고
    • A novel single-pass thinning algorithm and an effective set of performance criteria
    • R.W. Zhou, C. Quek, and G.S. Ng A novel single-pass thinning algorithm and an effective set of performance criteria Pattern Recognition Letters 16 12 1995 1267 1275
    • (1995) Pattern Recognition Letters , vol.16 , Issue.12 , pp. 1267-1275
    • Zhou, R.W.1    Quek, C.2    Ng, G.S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.