메뉴 건너뛰기




Volumn 26, Issue 3, 1999, Pages 293-304

Prévision hydrologique par réseaux de neurones artificiels : État de l'art

Author keywords

Artificial neural networks; Hydrological forecasting; Multilayer perceptrons; Stochastic models

Indexed keywords

APPROXIMATION THEORY; FORECASTING; HYDROLOGY; RANDOM PROCESSES; STATISTICAL METHODS;

EID: 0032829433     PISSN: 03151468     EISSN: None     Source Type: Journal    
DOI: 10.1139/l98-069     Document Type: Article
Times cited : (115)

References (134)
  • 1
    • 0016355478 scopus 로고
    • A new look at the statistical model identification
    • Akaike, H. 1974. A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6) : 716-723.
    • (1974) IEEE Transactions on Automatic Control , vol.19 , Issue.6 , pp. 716-723
    • Akaike, H.1
  • 2
    • 0342506462 scopus 로고    scopus 로고
    • Application of neural network technique to rainfall-runoff modelling
    • Asaad, Y.S. 1997. Application of neural network technique to rainfall-runoff modelling. Journal of Hydrology (Amsterdam), 199 : 272-294.
    • (1997) Journal of Hydrology (Amsterdam) , vol.199 , pp. 272-294
    • Asaad, Y.S.1
  • 4
    • 0001160588 scopus 로고
    • What size net gives valid generalization?
    • Baum, E., et Haussler, D. 1989. What size net gives valid generalization? Neural Computation, 1(1) : 151-160.
    • (1989) Neural Computation , vol.1 , Issue.1 , pp. 151-160
    • Baum, E.1    Haussler, D.2
  • 7
    • 0027838478 scopus 로고
    • Application of artificial neural networks in hydrological modeling: A case study of runoff simulation of a himalayan basin
    • Buch, A.M., Mazumdar, H.S., et Pandey, P.C. 1993. Application of artificial neural networks in hydrological modeling: a case study of runoff simulation of a himalayan basin. Proceedings of the International Joint Conference on Neural Networks, Vol. 1, pp. 971-974.
    • (1993) Proceedings of the International Joint Conference on Neural Networks , vol.1 , pp. 971-974
    • Buch, A.M.1    Mazumdar, H.S.2    Pandey, P.C.3
  • 8
    • 0005172629 scopus 로고    scopus 로고
    • Statistical analysis of complex systems in biomedicine
    • Éditeurs: D. Fisher et H.S. Lenz. Springer-Verlag
    • Burke, H.B. 1996. Statistical analysis of complex systems in biomedicine. Dans Learning from data. Lectures notes in statistics. Éditeurs: D. Fisher et H.S. Lenz. Springer-Verlag, 112 : 251-258.
    • (1996) Dans Learning from Data. Lectures Notes in Statistics , vol.112 , pp. 251-258
    • Burke, H.B.1
  • 9
    • 0026954346 scopus 로고
    • Forecasting the behavior of multivariate time series using neural networks
    • Chakraborty, K., Mehrotra, K., Mohan, C.K., et Ranka, S. 1992. Forecasting the behavior of multivariate time series using neural networks. Neural Networks, 5 : 961-970.
    • (1992) Neural Networks , vol.5 , pp. 961-970
    • Chakraborty, K.1    Mehrotra, K.2    Mohan, C.K.3    Ranka, S.4
  • 10
    • 0017167312 scopus 로고
    • Selective stabilization of developing synapses as a mechanism for the specification of neural networks
    • Changeux, J.P., et Danchin, A. 1976. Selective stabilization of developing synapses as a mechanism for the specification of neural networks. Nature (London), 264 : 705-712.
    • (1976) Nature (London) , vol.264 , pp. 705-712
    • Changeux, J.P.1    Danchin, A.2
  • 11
    • 0027840475 scopus 로고
    • Rainfall prediction of geostationary meteorological satellite images using artificial neural network
    • Chen, T., et Takagi, M. 1993. Rainfall prediction of geostationary meteorological satellite images using artificial neural network. International Geoscience and Remote Sensing Symposium, 3 : 1247-1249.
    • (1993) International Geoscience and Remote Sensing Symposium , vol.3 , pp. 1247-1249
    • Chen, T.1    Takagi, M.2
  • 13
    • 0029733768 scopus 로고    scopus 로고
    • Gradient radial basis function networks for nonlinear and nonstationnary time series prediction
    • Chng, E.S., Chen, S., et Mulgrew, B. 1996. Gradient radial basis function networks for nonlinear and nonstationnary time series prediction. IEEE Transactions on Neural Networks, 7(1) : 190-194.
    • (1996) IEEE Transactions on Neural Networks , vol.7 , Issue.1 , pp. 190-194
    • Chng, E.S.1    Chen, S.2    Mulgrew, B.3
  • 14
    • 0031932822 scopus 로고    scopus 로고
    • Using neural networks to assess the influence of changing seasonal climates in modifying discharge, dissolved organic carbon, and nitrogen export in eastern Canadian rivers
    • Clair, T.A., et Ehrman, J.M. 1998. Using neural networks to assess the influence of changing seasonal climates in modifying discharge, dissolved organic carbon, and nitrogen export in eastern Canadian rivers. Water Resources Research, 34(3) : 447-455.
    • (1998) Water Resources Research , vol.34 , Issue.3 , pp. 447-455
    • Clair, T.A.1    Ehrman, J.M.2
  • 16
  • 19
    • 0002837834 scopus 로고
    • Statistical analysis of time series: Some recent developments
    • Cox, D.R. 1981. Statistical analysis of time series: some recent developments. Scandinavian Journal of Statistics, 8 : 93-115.
    • (1981) Scandinavian Journal of Statistics , vol.8 , pp. 93-115
    • Cox, D.R.1
  • 20
    • 0027705673 scopus 로고
    • Drought estimation with neural networks
    • Crespo, J.L., et Mora, E. 1993. Drought estimation with neural networks. Advances in Engineering Software, 18(3) : 167-170.
    • (1993) Advances in Engineering Software , vol.18 , Issue.3 , pp. 167-170
    • Crespo, J.L.1    Mora, E.2
  • 22
    • 0024861871 scopus 로고
    • Approximation by superpositions of a sigmoidal function
    • Cybenko, G. 1989. Approximation by superpositions of a sigmoidal function. Mathematical Control Signals Systems, 2 : 303-314.
    • (1989) Mathematical Control Signals Systems , vol.2 , pp. 303-314
    • Cybenko, G.1
  • 24
    • 0008612441 scopus 로고
    • Utilisation d'un réseau neuronal pour l'étude de la propagation d'une onde de crue dans un canal
    • Darius, D., Courivaud, J.M., et Dedecker, L. 1993. Utilisation d'un réseau neuronal pour l'étude de la propagation d'une onde de crue dans un canal. Journal of Hydraulic Research, 31(2) : 161-169.
    • (1993) Journal of Hydraulic Research , vol.31 , Issue.2 , pp. 161-169
    • Darius, D.1    Courivaud, J.M.2    Dedecker, L.3
  • 26
    • 0029673615 scopus 로고    scopus 로고
    • Modélisation de la relation pluie-débit par les réseaux connexionnistes et le filtre de Kalman
    • Dimopoulos, L, Lek, S., et Lauga, J. 1996. Modélisation de la relation pluie-débit par les réseaux connexionnistes et le filtre de Kalman. Journal des sciences hydrologiques, 42(2) : 179-193.
    • (1996) Journal Des Sciences Hydrologiques , vol.42 , Issue.2 , pp. 179-193
    • Dimopoulos, L.1    Lek, S.2    Lauga, J.3
  • 28
    • 26444565569 scopus 로고
    • Finding structure in time
    • Elman, J.L. 1990. Finding structure in time. Cognitive Science, 14 : 179-211.
    • (1990) Cognitive Science , vol.14 , pp. 179-211
    • Elman, J.L.1
  • 29
    • 0003000735 scopus 로고
    • Fast learning variations on back-propagation: An empirical study
    • Éditeurs: D. Touretzky, G. Hinton et T. Sejnowski. Morgan Kaufmann, San Mateo, Californie
    • Fahlman, S.E. 1989. Fast learning variations on back-propagation: an empirical study. Dans Proceedings of the 1988 Connectionist Models Summer School (Pittsburgh). Éditeurs: D. Touretzky, G. Hinton et T. Sejnowski. Morgan Kaufmann, San Mateo, Californie, pp. 38-51.
    • (1989) Dans Proceedings of the 1988 Connectionist Models Summer School (Pittsburgh) , pp. 38-51
    • Fahlman, S.E.1
  • 30
    • 0003420910 scopus 로고
    • The cascade-correlation learning architecture
    • Carnegie Mellon University, Pittsburgh
    • Fahlman, S.E., et Lebiere, C. 1990. The cascade-correlation learning architecture. Technical Report CMU-CS-90-100, Carnegie Mellon University, Pittsburgh.
    • (1990) Technical Report CMU-CS-90-100
    • Fahlman, S.E.1    Lebiere, C.2
  • 33
    • 0002432565 scopus 로고
    • Multivariate adaptive regression splines
    • Friedman, J.H. 1991. Multivariate adaptive regression splines. Annals of Statistics, 19 : 1-142.
    • (1991) Annals of Statistics , vol.19 , pp. 1-142
    • Friedman, J.H.1
  • 34
    • 0023846591 scopus 로고
    • Neocognitron: A hierarchical neural network capable of visual pattern recognition
    • Fukushima, K. 1988. Neocognitron: a hierarchical neural network capable of visual pattern recognition. Neural Networks, 1 : 119-130.
    • (1988) Neural Networks , vol.1 , pp. 119-130
    • Fukushima, K.1
  • 38
    • 0004181390 scopus 로고
    • Addison-Wesley, Reading, Massachusetts
    • Goldberg, D. 1989. Genetic algorithms. Addison-Wesley, Reading, Massachusetts.
    • (1989) Genetic Algorithms
    • Goldberg, D.1
  • 39
    • 0029413982 scopus 로고
    • Radar and measurement of rainfall during CaPE: 26 July case study
    • Gorgucci, E., et Chandrasekar, V. 1995. Radar and measurement of rainfall during CaPE: 26 July case study. Journal of Applied Meteorology, 34 : 1570-1577.
    • (1995) Journal of Applied Meteorology , vol.34 , pp. 1570-1577
    • Gorgucci, E.1    Chandrasekar, V.2
  • 44
    • 0031191950 scopus 로고    scopus 로고
    • Neural networks and traditional time series methods: A synergistic combination in state economic forecasts
    • Hansen, J.V., et Nelson, R.D. 1997. Neural networks and traditional time series methods: a synergistic combination in state economic forecasts. IEEE Transactions on Neural Networks, 8(4) : 863-873.
    • (1997) IEEE Transactions on Neural Networks , vol.8 , Issue.4 , pp. 863-873
    • Hansen, J.V.1    Nelson, R.D.2
  • 47
    • 0029252331 scopus 로고
    • Nonlinear adaptive prediction of nonstationary signals
    • Haykin, S., et Li, L. 1995. Nonlinear adaptive prediction of nonstationary signals. IEEE Transactions on Signal Processing, 43(2) : 526-535.
    • (1995) IEEE Transactions on Signal Processing , vol.43 , Issue.2 , pp. 526-535
    • Haykin, S.1    Li, L.2
  • 51
    • 0001590282 scopus 로고
    • Deterministic Boltzmann machine learning performs steepest descent in weight-space
    • Hinton, G.E. 1989. Deterministic Boltzmann machine learning performs steepest descent in weight-space. Neural Computation, 1 : 143-150.
    • (1989) Neural Computation , vol.1 , pp. 143-150
    • Hinton, G.E.1
  • 52
    • 0026980087 scopus 로고
    • How neural networks learn from experience
    • Hinton, G.E. 1992. How neural networks learn from experience. Scientific American, 267 : 145-151.
    • (1992) Scientific American , vol.267 , pp. 145-151
    • Hinton, G.E.1
  • 55
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • Hornik, K., Stinchcombe, M., et White, H. 1989. Multilayer feedforward networks are universal approximators. Neural Networks, 2(5) : 359-366.
    • (1989) Neural Networks , vol.2 , Issue.5 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 56
    • 0029413797 scopus 로고
    • Artificial neural network modeling of the rainfall-rainoff process
    • Hsu, K.L., Gupta, H.V., et Sorooshian, S. 1995. Artificial neural network modeling of the rainfall-rainoff process. Water Resources Research, 31(10) : 2517-2530.
    • (1995) Water Resources Research , vol.31 , Issue.10 , pp. 2517-2530
    • Hsu, K.L.1    Gupta, H.V.2    Sorooshian, S.3
  • 57
    • 0031399333 scopus 로고    scopus 로고
    • Precipitation estimation from remotely sensed information using artificial neural networks
    • Hsu, K.L., Gao, X., Sorooshian, S., et Gupta, H.V. 1998. Precipitation estimation from remotely sensed information using artificial neural networks. Journal of Applied Meteorology, 36 : 1176-1190.
    • (1998) Journal of Applied Meteorology , vol.36 , pp. 1176-1190
    • Hsu, K.L.1    Gao, X.2    Sorooshian, S.3    Gupta, H.V.4
  • 58
    • 33749306848 scopus 로고
    • Application of the Adaline system to weather forecasting. Thèse de diplôme en génie électrique
    • Stanford Electric Laboratories, Stanford, Californie
    • Hu, M.J.C. 1964. Application of the Adaline system to weather forecasting. Thèse de diplôme en génie électrique. Rapport technique 6775-1, Stanford Electric Laboratories, Stanford, Californie.
    • (1964) Rapport Technique 6775-1
    • Hu, M.J.C.1
  • 59
    • 0031411637 scopus 로고    scopus 로고
    • Neural network in the ice-correction of discharge observations
    • Huttunen, M., Vehviläinen, B., et Ukkonen, E. 1997. Neural network in the ice-correction of discharge observations. Nordic Hydrology, 28(4/5) : 283-296.
    • (1997) Nordic Hydrology , vol.28 , Issue.4-5 , pp. 283-296
    • Huttunen, M.1    Vehviläinen, B.2    Ukkonen, E.3
  • 62
    • 0031105908 scopus 로고    scopus 로고
    • A Bayesian approach to model selection in hierarchical mixtures-of-experts architectures
    • Jacobs, R.A., Peng, F., et Tanner, M.A. 1997. A Bayesian approach to model selection in hierarchical mixtures-of-experts architectures. Neural Networks, 10(2) : 231-241.
    • (1997) Neural Networks , vol.10 , Issue.2 , pp. 231-241
    • Jacobs, R.A.1    Peng, F.2    Tanner, M.A.3
  • 63
    • 0026925677 scopus 로고
    • Self-learning fuzzy controllers based on temporal back propagation
    • Jang, J.S.R. 1992. Self-learning fuzzy controllers based on temporal back propagation. IEEE Transactions on Neural Netwoks, 3(5) : 714-723.
    • (1992) IEEE Transactions on Neural Netwoks , vol.3 , Issue.5 , pp. 714-723
    • Jang, J.S.R.1
  • 66
    • 0031188039 scopus 로고    scopus 로고
    • ANNSTLF-a neural network-based electric load forecasting system
    • Khotanzad, A., Rohani, R.A., et Lu, T.L. 1997. ANNSTLF-a neural network-based electric load forecasting system. IEEE Transactions on Neural Networks, 8(4) : 835-845.
    • (1997) IEEE Transactions on Neural Networks , vol.8 , Issue.4 , pp. 835-845
    • Khotanzad, A.1    Rohani, R.A.2    Lu, T.L.3
  • 68
    • 0003527079 scopus 로고
    • Springer-Verlag, Berlin
    • e éd. Springer-Verlag, Berlin.
    • (1987) e Éd.
    • Kohonen, T.1
  • 70
    • 0001006264 scopus 로고
    • Backpropagation in hydrological time series forecasting
    • Time series analysis in hydrology and environmental engineering. Éditeurs: K.W. Hipel, A.I. McLeod, U.S. Panu, et V.P. Singh. Kluwer Academic Publishers, Dordrecht, Hollande
    • Lachtermacher, G., et Fuller, J.D. 1994. Backpropagation in hydrological time series forecasting. Dans Stochastic and statistical methods in hydrology and enviromental engineering. Time series analysis in hydrology and environmental engineering. Éditeurs: K.W. Hipel, A.I. McLeod, U.S. Panu, et V.P. Singh. Kluwer Academic Publishers, Dordrecht, Hollande, pp. 229-242.
    • (1994) Dans Stochastic and Statistical Methods in Hydrology and Enviromental Engineering , pp. 229-242
    • Lachtermacher, G.1    Fuller, J.D.2
  • 71
    • 0030456043 scopus 로고    scopus 로고
    • A hybrid expert system and neural network approach to environmental modelling: GIS applications in the RAISON systems. HydroGIS: application of geographic information system in hydrology and water resources management
    • IAHS Publications
    • Lam, D., et Swayne, D. 1996. A hybrid expert system and neural network approach to environmental modelling: GIS applications in the RAISON systems. HydroGIS: application of geographic information system in hydrology and water resources management. Proceedings of the Vienna Conference (April 1996), IAHS Publications, 235 : 685-693.
    • (1996) Proceedings of the Vienna Conference (April 1996) , vol.235 , pp. 685-693
    • Lam, D.1    Swayne, D.2
  • 73
    • 0030241497 scopus 로고    scopus 로고
    • Hybrid neural network models for bankruptcy predictions
    • Lee, K.C., Han, L, et Kwon, Y. 1996. Hybrid neural network models for bankruptcy predictions. Decision Support Systems, 18 : 63-72.
    • (1996) Decision Support Systems , vol.18 , pp. 63-72
    • Lee, K.C.1    Han, L.2    Kwon, Y.3
  • 74
    • 0002091779 scopus 로고
    • Hydrologie forecasting
    • Éditeur: D.R. Maidment. McGraw-Hill, New York
    • Lettenmaier, O.P., et Wood, E.F. 1993. Hydrologie forecasting. Dans Handbook of hydrology. Éditeur: D.R. Maidment. McGraw-Hill, New York.
    • (1993) Dans Handbook of Hydrology
    • Lettenmaier, O.P.1    Wood, E.F.2
  • 75
    • 78649633935 scopus 로고
    • Nonlinear modeling of time series using multivariate adaptive regression splines (MARS)
    • Lewis, P.A.W., et Stevens, J.C. 1991. Nonlinear modeling of time series using multivariate adaptive regression splines (MARS). Journal of the American Statistical Association, 87 : 864-877.
    • (1991) Journal of the American Statistical Association , vol.87 , pp. 864-877
    • Lewis, P.A.W.1    Stevens, J.C.2
  • 77
    • 0345707469 scopus 로고
    • Regional estimation of floods for ungaged catchments with neural networks. 9th Congress of the Asian and Pacific Division of the International Association for Hydraulic Research, Singapour
    • Asian Pacific Division -International Association for Hydraulic Research, Singapour
    • Liong, S.Y., Nguyen, V.T.V, Chan, W.T., et Chia, Y.S. 1994. Regional estimation of floods for ungaged catchments with neural networks. 9th Congress of the Asian and Pacific Division of the International Association for Hydraulic Research, Singapour. Comptes rendus. Vol. 1. Asian Pacific Division -International Association for Hydraulic Research, Singapour, pp. 372-378.
    • (1994) Comptes Rendus , vol.1 , pp. 372-378
    • Liong, S.Y.1    Nguyen, V.T.V.2    Chan, W.T.3    Chia, Y.S.4
  • 79
    • 0029663621 scopus 로고    scopus 로고
    • The use of artificial neural networks for the prediction of water quality parameters
    • Maier, H.R., et Dandy, G.C. 1996. The use of artificial neural networks for the prediction of water quality parameters. Water Resources Research, 32(4) : 1013-1022.
    • (1996) Water Resources Research , vol.32 , Issue.4 , pp. 1013-1022
    • Maier, H.R.1    Dandy, G.C.2
  • 80
    • 0031096422 scopus 로고    scopus 로고
    • Modelling cyanobacteria (bluegreen algae) in the River Murray using artificial neural networks
    • Maier, H.R., et Dandy, G.C. 1997. Modelling cyanobacteria (bluegreen algae) in the River Murray using artificial neural networks. Mathematics and Computers in Simulation, 43(3-6) 377-386.
    • (1997) Mathematics and Computers in Simulation , vol.43 , Issue.3-6 , pp. 377-386
    • Maier, H.R.1    Dandy, G.C.2
  • 82
  • 83
    • 51249194645 scopus 로고
    • A logical calculus of the ideas imminent in nervous activity
    • McCulloch, W.S., et Pitts, W. 1943. A logical calculus of the ideas imminent in nervous activity. Bulletin of Mathematical Biophysics, 5 : 115-133.
    • (1943) Bulletin of Mathematical Biophysics , vol.5 , pp. 115-133
    • McCulloch, W.S.1    Pitts, W.2
  • 85
    • 0028544395 scopus 로고
    • Network information criterion-determining the number of hidden units for an artificial neural network model
    • Murata, N.M., Yoshizawa, S., et Amari, S. 1994. Network information criterion-determining the number of hidden units for an artificial neural network model. IEEE Transactions on Neural Networks, 5(6) : 865-872.
    • (1994) IEEE Transactions on Neural Networks , vol.5 , Issue.6 , pp. 865-872
    • Murata, N.M.1    Yoshizawa, S.2    Amari, S.3
  • 87
    • 0020464111 scopus 로고
    • A simplified neuron model as a principal component analyser
    • Oja, E. 1982. A simplified neuron model as a principal component analyser. Journal of Mathematical Biology, 15 : 267-273
    • (1982) Journal of Mathematical Biology , vol.15 , pp. 267-273
    • Oja, E.1
  • 88
    • 0016320662 scopus 로고
    • Some recent advances in time series modelling
    • Parzen, E. 1974. Some recent advances in time series modelling. IEEE Transactions on Automatic Control, AC-19 : 723-729.
    • (1974) IEEE Transactions on Automatic Control , vol.AC-19 , pp. 723-729
    • Parzen, E.1
  • 89
    • 33846446220 scopus 로고
    • Restart procedures for the conjugate gradient method
    • Powell, M.J.D. 1977. Restart procedures for the conjugate gradient method. Mathematical Programming, 12 : 241-254.
    • (1977) Mathematical Programming , vol.12 , pp. 241-254
    • Powell, M.J.D.1
  • 90
    • 0030130727 scopus 로고    scopus 로고
    • A quantitative study of experimental evaluations of neural networklearning algorithms: Current research practice
    • Prechelt, L. 1996. A quantitative study of experimental evaluations of neural networklearning algorithms: current research practice. Neural Networks, 9(3) : 457-462.
    • (1996) Neural Networks , vol.9 , Issue.3 , pp. 457-462
    • Prechelt, L.1
  • 91
    • 0028277023 scopus 로고
    • Stock performance modeling using neural networks: A comparative study with regression models
    • Refenes, A.N., Zapranis A., et Francis G. 1994. Stock performance modeling using neural networks: a comparative study with regression models. Neural Networks, 7(2) : 375-388.
    • (1994) Neural Networks , vol.7 , Issue.2 , pp. 375-388
    • Refenes, A.N.1    Zapranis, A.2    Francis, G.3
  • 92
    • 0002983776 scopus 로고
    • Statistical aspects of neural networks
    • Editeurs: O.E. Barndorff-Nielsen, J.L. Hansen et W.S. Kendall. Chapman & Hall, Londres
    • Ripley, B.D. 1993. Statistical aspects of neural networks. Dans Networks and chaos: statistical and probabilistic aspects. Editeurs: O.E. Barndorff-Nielsen, J.L. Hansen et W.S. Kendall. Chapman & Hall, Londres.
    • (1993) Dans Networks and Chaos: Statistical and Probabilistic Aspects
    • Ripley, B.D.1
  • 94
    • 11144273669 scopus 로고
    • The perceptron: A probabilistic model for information storage and organization in the brain
    • Rosenblatt, F. 1958. The perceptron: a probabilistic model for information storage and organization in the brain. Psychological Review, 65 : 386-408.
    • (1958) Psychological Review , vol.65 , pp. 386-408
    • Rosenblatt, F.1
  • 95
    • 0031193540 scopus 로고    scopus 로고
    • On topology, size and generalization of non-linear feed-forward neural networks
    • Rudolph, S. 1997. On topology, size and generalization of non-linear feed-forward neural networks. Neurocomputing, 16 : 1-22.
    • (1997) Neurocomputing , vol.16 , pp. 1-22
    • Rudolph, S.1
  • 96
    • 0000646059 scopus 로고
    • Learning internal representation by error propagation
    • MIT Press, Cambridge, Massachusetts
    • Rumelhart, D.E., Hinton, E., et Williams, J. 1986. Learning internal representation by error propagation. Dans Parallel distributed processing. Vol. 1. MIT Press, Cambridge, Massachusetts, pp. 318-362.
    • (1986) Dans Parallel Distributed Processing , vol.1 , pp. 318-362
    • Rumelhart, D.E.1    Hinton, E.2    Williams, J.3
  • 97
    • 0029663691 scopus 로고    scopus 로고
    • Fuzzy learning decomposition for the scheduling of hydroelectric power systems
    • Saad, M., Bigras, P., Turgeon, A., et Duquette, R. 1996. Fuzzy learning decomposition for the scheduling of hydroelectric power systems. Water Resources Research, 32(1) : 179-186.
    • (1996) Water Resources Research , vol.32 , Issue.1 , pp. 179-186
    • Saad, M.1    Bigras, P.2    Turgeon, A.3    Duquette, R.4
  • 98
    • 0027005152 scopus 로고
    • Real-time reservoir operation with neural nets concept
    • Computational Mechanics Publications, Southampton, Angleterre
    • Sakakima, S., Kojiri, T., et Itoh, K. 1992. Real-time reservoir operation with neural nets concept. Dans Applications of artificial intelligence in engineering VII. Computational Mechanics Publications, Southampton, Angleterre, pp. 502-514.
    • (1992) Dans Applications of Artificial Intelligence in Engineering VII , pp. 502-514
    • Sakakima, S.1    Kojiri, T.2    Itoh, K.3
  • 100
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz, G. 1978. Estimating the dimension of a model. Annals of Statistics, 6 : 461-464.
    • (1978) Annals of Statistics , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 101
    • 0000383868 scopus 로고
    • Parallel networks that learn to pronounce English text
    • Sejnovvski, T.J., et Rosenberg, C.R. 1987. Parallel networks that learn to pronounce English text. Complex Systems, 1: 145-168.
    • (1987) Complex Systems , vol.1 , pp. 145-168
    • Sejnovvski, T.J.1    Rosenberg, C.R.2
  • 104
    • 0345326954 scopus 로고
    • Thèse de doctorat, Département de génie électrique et informatique, Wayne State University, Detroit, Michigan
    • Song, J. 1992. Hybrid genetic/gradient learning in multi-layer artificial neural networks. Thèse de doctorat, Département de génie électrique et informatique, Wayne State University, Detroit, Michigan.
    • (1992) Hybrid Genetic/gradient Learning in Multi-layer Artificial Neural Networks
    • Song, J.1
  • 105
    • 51249183287 scopus 로고
    • Local asymptotic admissibility of a generalisation of Akaike's model selection rule
    • Stone, C.J. 1982. Local asymptotic admissibility of a generalisation of Akaike's model selection rule. Journal of the Royal Statistical Society (London), A-34 : 123-234.
    • (1982) Journal of the Royal Statistical Society (London) , vol.A-34 , pp. 123-234
    • Stone, C.J.1
  • 106
    • 0010714713 scopus 로고
    • Special issue on reinforcement learning
    • Sutton, R.S. 1992. Special issue on reinforcement learning. Machine Learning, 8 : 1-395.
    • (1992) Machine Learning , vol.8 , pp. 1-395
    • Sutton, R.S.1
  • 108
  • 109
    • 0001192762 scopus 로고
    • Some comments on the Canadian lynx data-with discussion
    • Tong, H. 1977. Some comments on the Canadian lynx data-with discussion. Journal of the Royal Statistical Society (London), A140 : 432-468.
    • (1977) Journal of the Royal Statistical Society (London) , vol.A140 , pp. 432-468
    • Tong, H.1
  • 111
  • 113
    • 0345326953 scopus 로고
    • The Scottish book: A collection of the mathematical problems
    • New Mexico
    • Ulam, S. 1957. The Scottish book: a collection of the mathematical problems. Special Issue on Dr. Ulam. Los Alamos Sciences 15, New Mexico.
    • (1957) Special Issue on Dr. Ulam. Los Alamos Sciences , vol.15
    • Ulam, S.1
  • 114
    • 0000358422 scopus 로고
    • Times series prediction using a connectionist network with internal delay lines
    • Proceeding of the NTAO Advanced Research Workshop on Comparative Time Series Analysis (Santa Fe, 1992). Éditeurs: A.S. Weigend et N.A. Gershenfeld. Addison-Wesley, Reading, Massachusetts
    • Wan, E. 1994. Times series prediction using a connectionist network with internal delay lines. Dans Time series prediction: forecasting the future and understanding the past. Proceeding of the NTAO Advanced Research Workshop on Comparative Time Series Analysis (Santa Fe, 1992). Éditeurs: A.S. Weigend et N.A. Gershenfeld. Addison-Wesley, Reading, Massachusetts, pp. 195-217.
    • (1994) Dans Time Series Prediction: Forecasting the Future and Understanding the past , pp. 195-217
    • Wan, E.1
  • 115
    • 33749284336 scopus 로고
    • Time series prediction: Forecasting the future and understanding the past
    • Weigend, A.S., et Gershenfeld, N.A. (Éditeurs.) Addison-Wesley, Reading, Massachusetts
    • Weigend, A.S., et Gershenfeld, N.A. (Éditeurs.) 1994. Time series prediction: forecasting the future and understanding the past. Proceeding of the NTAO Advanced Research Workshop on Comparative Time Series Analysis (Santa Fe, 1992), Addison-Wesley, Reading, Massachusetts.
    • (1994) Proceeding of the NTAO Advanced Research Workshop on Comparative Time Series Analysis (Santa Fe, 1992)
  • 118
    • 0031908080 scopus 로고    scopus 로고
    • A neural network approach to multiobjective optimization for water quality management in a river basin
    • Wen, C.-G., et Lee, C.-S. 1998. A neural network approach to multiobjective optimization for water quality management in a river basin. Water Resources Research, 34(3) : 427-436.
    • (1998) Water Resources Research , vol.34 , Issue.3 , pp. 427-436
    • Wen, C.-G.1    Lee, C.-S.2
  • 120
    • 0001773535 scopus 로고
    • Applications of advances in nonlinear sensitivity analysis
    • Éditeurs: R. Drenick et F. Kozin. Springer-Verlag, New York
    • Werbos, P.J. 1981. Applications of advances in nonlinear sensitivity analysis. Dans System modeling and optimization. Éditeurs: R. Drenick et F. Kozin. Springer-Verlag, New York, pp. 762-770.
    • (1981) Dans System Modeling and Optimization. , pp. 762-770
    • Werbos, P.J.1
  • 124
    • 0025488663 scopus 로고
    • 30 years of adaptive neural networks: Perceptron, madaline and backpropagation
    • Widrow, B., et Lehr, M.A. 1990. 30 years of adaptive neural networks: perceptron, madaline and backpropagation. Proceedings of the IEEE, 78(9) : 1415-1442.
    • (1990) Proceedings of the IEEE , vol.78 , Issue.9 , pp. 1415-1442
    • Widrow, B.1    Lehr, M.A.2
  • 125
    • 0000082693 scopus 로고
    • Forecasting sales by exponentially weighted moving averages
    • Winters, P.R. 1960. Forecasting sales by exponentially weighted moving averages. Management Sciences, 6 : 324-342.
    • (1960) Management Sciences , vol.6 , pp. 324-342
    • Winters, P.R.1
  • 127
    • 0030784223 scopus 로고    scopus 로고
    • Development of a neural network based algorithm for rainfall estimation from radar observation
    • Xiao R., et Chandrasekar, V. 1997. Development of a neural network based algorithm for rainfall estimation from radar observation. IEEE Transactions on Geoscences and Remote Sensing, 35(1) : 160-171.
    • (1997) IEEE Transactions on Geoscences and Remote Sensing , vol.35 , Issue.1 , pp. 160-171
    • Xiao, R.1    Chandrasekar, V.2
  • 128
    • 0024369937 scopus 로고
    • Quadrature and the development of orientation selective cortical cells by Hebb rules
    • Yuille, A.L., Kammenet, D.M., et Cohen, D.S. 1989. Quadrature and the development of orientation selective cortical cells by Hebb rules. Biological Cybernetics, 61 : 183-194.
    • (1989) Biological Cybernetics , vol.61 , pp. 183-194
    • Yuille, A.L.1    Kammenet, D.M.2    Cohen, D.S.3
  • 129
    • 0344464106 scopus 로고    scopus 로고
    • Forecasting water availability by applying neural networks with global and solar indices
    • Éditeur. H.J. Morel-Seytoux. Hydrology Days Publications, Washington, D.C.
    • Zhang, E.Y., et Trimble, P. 1996. Forecasting water availability by applying neural networks with global and solar indices. Proceedings of the sixteenth annual American Geophysical Union Hydrology Days. Éditeur. H.J. Morel-Seytoux. Hydrology Days Publications, Washington, D.C. pp. 559-570.
    • (1996) Proceedings of the Sixteenth Annual American Geophysical Union Hydrology Days , pp. 559-570
    • Zhang, E.Y.1    Trimble, P.2
  • 130
    • 0343052623 scopus 로고    scopus 로고
    • Rainfall estimation using artificial neural network group
    • Zhang, M., Fulcher, J., et Scofield, R.A. 1997. Rainfall estimation using artificial neural network group. Neurocomputing, 16 : 97-115.
    • (1997) Neurocomputing , vol.16 , pp. 97-115
    • Zhang, M.1    Fulcher, J.2    Scofield, R.A.3
  • 131
    • 0031239528 scopus 로고    scopus 로고
    • Forecasting raw-water quality parameters for the North Saskatchewan River by neural network modelling
    • Zhang, Q., et Stanley, S.J. 1997. Forecasting raw-water quality parameters for the North Saskatchewan River by neural network modelling. Water Research, 31(9) : 2340-2350.
    • (1997) Water Research , vol.31 , Issue.9 , pp. 2340-2350
    • Zhang, Q.1    Stanley, S.J.2
  • 132
    • 0000674732 scopus 로고
    • Prediction of daily water demands by neural networks
    • Éditeurs: K.W. Hipel, A.I. McLeod, U.S. Panu et V.P. Singh. Kluwer Academic Publishers, Dortrecht, Hollande
    • Zhang, S.P., Watanabe, H., et Yamada, R. 1994. Prediction of daily water demands by neural networks. Dans Stochastic and statistical methods in hydrology and environmental engineering. Vol. 3. Éditeurs: K.W. Hipel, A.I. McLeod, U.S. Panu et V.P. Singh. Kluwer Academic Publishers, Dortrecht, Hollande, pp. 217-227.
    • (1994) Dans Stochastic and Statistical Methods in Hydrology and Environmental Engineering. , vol.3 , pp. 217-227
    • Zhang, S.P.1    Watanabe, H.2    Yamada, R.3
  • 133
    • 0000251270 scopus 로고
    • Comparisons between fuzzy reasoning and neural network methods to forecast runoff discharge
    • Zhu, M.L., et Fujita, M. 1994. Comparisons between fuzzy reasoning and neural network methods to forecast runoff discharge. Journal of Hydroscience and Hydraulic Engineering, 12(2) : 131-141.
    • (1994) Journal of Hydroscience and Hydraulic Engineering , vol.12 , Issue.2 , pp. 131-141
    • Zhu, M.L.1    Fujita, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.