메뉴 건너뛰기




Volumn 26, Issue 4, 2011, Pages 523-537

Fuzzy neural networks for water level and discharge forecasting with uncertainty

Author keywords

Artificial neural networks; Discharge forecasting; Fuzzy numbers; Uncertainty; Water level forecasting

Indexed keywords

ARTIFICIAL NEURAL NETWORK; DISCHARGE FORECASTING; FUZZY NUMBERS; UNCERTAINTY; WATER LEVEL FORECASTING;

EID: 78650584376     PISSN: 13648152     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.envsoft.2010.10.016     Document Type: Article
Times cited : (108)

References (62)
  • 1
    • 0036698601 scopus 로고    scopus 로고
    • Multi-model data fusion for river flow forecasting: an evaluation of six alternative methods based on two contrasting catchments
    • Abrahart R.J., See L. Multi-model data fusion for river flow forecasting: an evaluation of six alternative methods based on two contrasting catchments. Hydrol. Earth Syst. Sci. 2002, 6(4):655-670.
    • (2002) Hydrol. Earth Syst. Sci. , vol.6 , Issue.4 , pp. 655-670
    • Abrahart, R.J.1    See, L.2
  • 2
    • 34648849221 scopus 로고    scopus 로고
    • Neural network modelling of non-linear hydrological relationship
    • Abrahart R.J., See L. Neural network modelling of non-linear hydrological relationship. Hydrol. Earth Syst. Sci. 2007, 11(4):1563-1597.
    • (2007) Hydrol. Earth Syst. Sci. , vol.11 , Issue.4 , pp. 1563-1597
    • Abrahart, R.J.1    See, L.2
  • 3
    • 33344463490 scopus 로고    scopus 로고
    • Water level forecasting through fuzzy logic and neural network approaches
    • Alvisi S., Mascellani G., Franchini M., Bardossy A. Water level forecasting through fuzzy logic and neural network approaches. Hydrol. Earth Syst. Sci. 2006, 10(1):1-17.
    • (2006) Hydrol. Earth Syst. Sci. , vol.10 , Issue.1 , pp. 1-17
    • Alvisi, S.1    Mascellani, G.2    Franchini, M.3    Bardossy, A.4
  • 4
    • 0034174280 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology. I: Preliminary concepts
    • ASCE Task Committee on the application of ANN in Hydrology
    • ASCE Task Committee on the application of ANN in Hydrology Artificial neural networks in hydrology. I: Preliminary concepts. J. Hydrol. Eng. 2000, 5(2):115-123.
    • (2000) J. Hydrol. Eng. , vol.5 , Issue.2 , pp. 115-123
  • 5
    • 0034174396 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology. II: hydrological applications
    • ASCE Task Committee on the Application of ANN in Hydrology
    • ASCE Task Committee on the Application of ANN in Hydrology Artificial neural networks in hydrology. II: hydrological applications. J. Hydrol. Eng. 2000, 5(2):124-137.
    • (2000) J. Hydrol. Eng. , vol.5 , Issue.2 , pp. 124-137
  • 8
    • 0027009437 scopus 로고
    • The future of distributed models: model calibration and uncertainty prediction
    • Beven K.J., Binley A.M. The future of distributed models: model calibration and uncertainty prediction. Hydrol. Proc. 1992, 6:279-298.
    • (1992) Hydrol. Proc. , vol.6 , pp. 279-298
    • Beven, K.J.1    Binley, A.M.2
  • 9
    • 33644526990 scopus 로고    scopus 로고
    • A manifesto for the equifinality thesis
    • Beven K.J. A manifesto for the equifinality thesis. J. Hydrol. 2006, 320:18-36.
    • (2006) J. Hydrol. , vol.320 , pp. 18-36
    • Beven, K.J.1
  • 10
    • 68949135430 scopus 로고    scopus 로고
    • Tools for the assessment of hydrological ensemble forecasts obtained by neural networks
    • Boucher M.A., Perreault L., Anctil F. Tools for the assessment of hydrological ensemble forecasts obtained by neural networks. J. Hydroinf. 2009, 11(3):297-306.
    • (2009) J. Hydroinf. , vol.11 , Issue.3 , pp. 297-306
    • Boucher, M.A.1    Perreault, L.2    Anctil, F.3
  • 11
    • 0032688155 scopus 로고    scopus 로고
    • River flood forecasting with neural network model
    • Campolo M., Andreussi P., Soldati A. River flood forecasting with neural network model. Water Resour. Res. 1999, 35(4):1191-1197.
    • (1999) Water Resour. Res. , vol.35 , Issue.4 , pp. 1191-1197
    • Campolo, M.1    Andreussi, P.2    Soldati, A.3
  • 12
    • 0038240745 scopus 로고    scopus 로고
    • Artificial neural network approach to flood forecasting in the river Arno
    • Campolo M., Andreussi P., Soldati A. Artificial neural network approach to flood forecasting in the river Arno. Hydrol. Sci. J. 2003, 48(3):381-398.
    • (2003) Hydrol. Sci. J. , vol.48 , Issue.3 , pp. 381-398
    • Campolo, M.1    Andreussi, P.2    Soldati, A.3
  • 13
    • 0035340711 scopus 로고    scopus 로고
    • A counterpropagation fuzzy-neural network modelling approach to real time streamflow prediction
    • Chang F.J., Chen Y.C. A counterpropagation fuzzy-neural network modelling approach to real time streamflow prediction. J. Hydrol. 2001, 245:153-164.
    • (2001) J. Hydrol. , vol.245 , pp. 153-164
    • Chang, F.J.1    Chen, Y.C.2
  • 14
    • 15444365276 scopus 로고    scopus 로고
    • Fuzzy exemplar-based inference system for flood forecasting
    • Chang L.C., Chang F.J., Tsai Y.H. Fuzzy exemplar-based inference system for flood forecasting. Water Resour. Res. 2005, 41(W02005). 10.1029/2004WR003037.
    • (2005) Water Resour. Res. , vol.41 , Issue.W02005
    • Chang, L.C.1    Chang, F.J.2    Tsai, Y.H.3
  • 16
    • 0024192140 scopus 로고
    • Effective and efficient global optimization for conceptual rainfall runoff models
    • Duan Q., Sorooshian S., Gupta V.K. Effective and efficient global optimization for conceptual rainfall runoff models. Water Resour. Res. 1992, 24(7):1163-1173.
    • (1992) Water Resour. Res. , vol.24 , Issue.7 , pp. 1163-1173
    • Duan, Q.1    Sorooshian, S.2    Gupta, V.K.3
  • 18
    • 0026015424 scopus 로고
    • Comparative analysis of several conceptual rainfall-runoff models
    • Franchini M., Pacciani M. Comparative analysis of several conceptual rainfall-runoff models. J. Hydrol. 1991, 122:161-219.
    • (1991) J. Hydrol. , vol.122 , pp. 161-219
    • Franchini, M.1    Pacciani, M.2
  • 19
    • 0021518209 scopus 로고
    • Gibbs distributions and the Bayesian restoration of images
    • Geman S., Geman D. Gibbs distributions and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. 1984, 6(2):721-741.
    • (1984) IEEE Trans. Pattern Anal. Mach. Intell. , vol.6 , Issue.2 , pp. 721-741
    • Geman, S.1    Geman, D.2
  • 20
    • 84967485903 scopus 로고
    • How does the brain builds a cognitive code?
    • Grossberg S. How does the brain builds a cognitive code?. Psychol. Rev. 1980, 88:375-407.
    • (1980) Psychol. Rev. , vol.88 , pp. 375-407
    • Grossberg, S.1
  • 21
    • 0028543366 scopus 로고
    • Training feedforward networks with the Marquardt algorithm
    • Hagan M.T., Menhaj M. Training feedforward networks with the Marquardt algorithm. IEEE Tran. Neural Net. 1994, 5(6):989-993.
    • (1994) IEEE Tran. Neural Net. , vol.5 , Issue.6 , pp. 989-993
    • Hagan, M.T.1    Menhaj, M.2
  • 23
    • 0020118274 scopus 로고
    • Neural networks and physical systems with emergent collective computational abilities
    • Hopfield J.J. Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. U S A 1982, 79:2554-2558.
    • (1982) Proc. Natl. Acad. Sci. U S A , vol.79 , pp. 2554-2558
    • Hopfield, J.J.1
  • 24
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • Hornik K., Stinchombe M., White H. Multilayer feedforward networks are universal approximators. Neural. Netw. 1989, 2:359-366.
    • (1989) Neural. Netw. , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchombe, M.2    White, H.3
  • 25
    • 0029413797 scopus 로고
    • Artificial neural network modeling of the rainfall-runoff process
    • Hsu K.L., Gupta H.V., Sorooshian S. Artificial neural network modeling of the rainfall-runoff process. Water Resour. Res. 1995, 31(10):2517-2530.
    • (1995) Water Resour. Res. , vol.31 , Issue.10 , pp. 2517-2530
    • Hsu, K.L.1    Gupta, H.V.2    Sorooshian, S.3
  • 26
    • 17044442585 scopus 로고    scopus 로고
    • Development of a fuzzy logic-based rainfall-runoff model
    • Hundecha Y., Bardossy A., Theisen H.W. Development of a fuzzy logic-based rainfall-runoff model. Hydrol. Sci. J. 2001, 46(3):363-376.
    • (2001) Hydrol. Sci. J. , vol.46 , Issue.3 , pp. 363-376
    • Hundecha, Y.1    Bardossy, A.2    Theisen, H.W.3
  • 27
    • 84943257282 scopus 로고
    • Fuzzy neural networks with fuzzy weights and fuzzy biases
    • Ishibuchi H., Okada H., Tanaka H. Fuzzy neural networks with fuzzy weights and fuzzy biases. Proc. ICNN'93 1993, 1650-1655.
    • (1993) Proc. ICNN'93 , pp. 1650-1655
    • Ishibuchi, H.1    Okada, H.2    Tanaka, H.3
  • 28
    • 0028739351 scopus 로고
    • A fuzzy neural network with trapezoid fuzzy weights
    • Ishibuchi H., Morioka K., Tanaka H. A fuzzy neural network with trapezoid fuzzy weights. IEEE, New York 1994, 228-233.
    • (1994) IEEE, New York , pp. 228-233
    • Ishibuchi, H.1    Morioka, K.2    Tanaka, H.3
  • 29
    • 0035313816 scopus 로고    scopus 로고
    • Fuzzy regression using asymmetric fuzzy coefficients and fuzzified neural networks
    • Ishibuchi H., Nii M. Fuzzy regression using asymmetric fuzzy coefficients and fuzzified neural networks. Fuzzy Set. System. 2001, 119:273-290.
    • (2001) Fuzzy Set. System. , vol.119 , pp. 273-290
    • Ishibuchi, H.1    Nii, M.2
  • 30
    • 34249082149 scopus 로고    scopus 로고
    • Development of a possibilistic method for the evaluation of predictive uncertainty in rainfall-runoff modelling
    • Jacquin A.P., Shamseldin A.Y. Development of a possibilistic method for the evaluation of predictive uncertainty in rainfall-runoff modelling. Water Resour. Res. 2007, 43(W04425). 10.1029/2006WR005072.
    • (2007) Water Resour. Res. , vol.43 , Issue.W04425
    • Jacquin, A.P.1    Shamseldin, A.Y.2
  • 31
    • 0027601884 scopus 로고
    • ANFIS: adaptive network based fuzzy inference systems
    • Jang J. ANFIS: adaptive network based fuzzy inference systems. IEEE. Trans. Syst. Man. Cybern. 1993, 23(3):665-683.
    • (1993) IEEE. Trans. Syst. Man. Cybern. , vol.23 , Issue.3 , pp. 665-683
    • Jang, J.1
  • 33
    • 33748029144 scopus 로고    scopus 로고
    • Bayesian neural network for rainfall-runoff modelling
    • Khan M.S., Coulibaly P. Bayesian neural network for rainfall-runoff modelling. Water Resour. Res. 2006, 42(W07409). 10.1029/2005WR003971.
    • (2006) Water Resour. Res. , vol.42 , Issue.W07409
    • Khan, M.S.1    Coulibaly, P.2
  • 34
    • 31444455186 scopus 로고    scopus 로고
    • Bayesian training of artificial neural networks used for water resources modelling
    • Kingston G.B., Lambert M.F., Maier H.R. Bayesian training of artificial neural networks used for water resources modelling. Water Resour. Res. 2005, 41(W12409). 10.1029/2005WR004152.
    • (2005) Water Resour. Res. , vol.41 , Issue.W12409
    • Kingston, G.B.1    Lambert, M.F.2    Maier, H.R.3
  • 35
    • 0015331348 scopus 로고
    • Correlation matrix memories
    • Kohonen T. Correlation matrix memories. IEEE. Trans. Comput. 1972, 21:353-359.
    • (1972) IEEE. Trans. Comput. , vol.21 , pp. 353-359
    • Kohonen, T.1
  • 36
    • 0032853041 scopus 로고    scopus 로고
    • Bayesian theory of probabilistic forecasting via deterministic hydrologic model
    • Krzysztofowicz R. Bayesian theory of probabilistic forecasting via deterministic hydrologic model. Water Resour. Res. 1999, 35(9):2739-2750.
    • (1999) Water Resour. Res. , vol.35 , Issue.9 , pp. 2739-2750
    • Krzysztofowicz, R.1
  • 37
    • 0035426007 scopus 로고    scopus 로고
    • The case for probabilistic forecasting in hydrology
    • Krzysztofowicz R. The case for probabilistic forecasting in hydrology. J. Hydrol. 2001, 249:2-9. 10.1016/S0022-1694(01)00420-6.
    • (2001) J. Hydrol. , vol.249 , pp. 2-9
    • Krzysztofowicz, R.1
  • 38
    • 0035312886 scopus 로고    scopus 로고
    • Bayesian approach for neural networks-review and case studies
    • Lampinen J., Vehtari A. Bayesian approach for neural networks-review and case studies. Neural. Netw. 2001, 14(3):257-274. 10.1016/S0893-6080(00)00098-8.
    • (2001) Neural. Netw. , vol.14 , Issue.3 , pp. 257-274
    • Lampinen, J.1    Vehtari, A.2
  • 39
    • 0033957764 scopus 로고    scopus 로고
    • Neural networks for prediction and forecasting of water resources variables: a review of modelling issue and applications
    • Maier H.R., Dandy G.C. Neural networks for prediction and forecasting of water resources variables: a review of modelling issue and applications. Environ. Model. Software 2000, 15:101-124.
    • (2000) Environ. Model. Software , vol.15 , pp. 101-124
    • Maier, H.R.1    Dandy, G.C.2
  • 40
    • 33748808177 scopus 로고    scopus 로고
    • Hydrological forecasting uncertainty assessment: incoherence of the GLUE methodology
    • Mantovan P., Todini E. Hydrological forecasting uncertainty assessment: incoherence of the GLUE methodology. J. Hydrol. 2006, 330:368-381. 10.1016/j.jhydrol.2006.04.046.
    • (2006) J. Hydrol. , vol.330 , pp. 368-381
    • Mantovan, P.1    Todini, E.2
  • 41
    • 0028754808 scopus 로고
    • Fuzzy regression analysis by fuzzy neural networks and its application
    • in: Proceedings of the Third IEEE Conference on Fuzzy Systems
    • Miyazaki, A., Known, K., Ishibuchi, H. and Tanaka, H., 1994. Fuzzy regression analysis by fuzzy neural networks and its application. in: Proceedings of the Third IEEE Conference on Fuzzy Systems, vol. 1, pp. 52-57.
    • (1994) , vol.1 , pp. 52-57
    • Miyazaki, A.1    Known, K.2    Ishibuchi, H.3    Tanaka, H.4
  • 42
    • 33947533125 scopus 로고    scopus 로고
    • What do we mean by 'uncertainty'? The need for a consistent wording about uncertainty assessment in hydrology
    • Montanari A. What do we mean by 'uncertainty'? The need for a consistent wording about uncertainty assessment in hydrology. Hydrol. Proc. 2007, 21:841-845. 10.1002/hyp.6623.
    • (2007) Hydrol. Proc. , vol.21 , pp. 841-845
    • Montanari, A.1
  • 43
    • 72149128601 scopus 로고    scopus 로고
    • Estimating the uncertainty of hydrological forecasts: a statistical approach
    • Montanari A., Grossi G. Estimating the uncertainty of hydrological forecasts: a statistical approach. Water Resour. Res. 2008, 44(W00B08). 10.1029/2008WR006897.
    • (2008) Water Resour. Res. , vol.44 , Issue.W00B08
    • Montanari, A.1    Grossi, G.2
  • 44
    • 1942490118 scopus 로고    scopus 로고
    • A neuro-fuzzy computing technique for modelling hydrological time series
    • Nayak P.C., Sudheer K.P., Rangan D.M., Ramasastri K.S. A neuro-fuzzy computing technique for modelling hydrological time series. J. Hydrol. 2004, 291:52-66.
    • (2004) J. Hydrol. , vol.291 , pp. 52-66
    • Nayak, P.C.1    Sudheer, K.P.2    Rangan, D.M.3    Ramasastri, K.S.4
  • 45
    • 78650527502 scopus 로고
    • Bayesian training of backpropagation networks by the hybrid Monte Carlo method. Tech. Rep. CRG-TR-92-1, Dep. of Comput. Sci., Univ. of Toronto, Toronto, Ont., Canada.
    • Neal, R.M. 1992. Bayesian training of backpropagation networks by the hybrid Monte Carlo method. Tech. Rep. CRG-TR-92-1, Dep. of Comput. Sci., Univ. of Toronto, Toronto, Ont., Canada.
    • (1992)
    • Neal, R.M.1
  • 46
    • 16344393109 scopus 로고
    • Constructing rule-bases for multivariable fuzzy control by self-learning - part I: system structure and learning algorithms
    • Nie J. Constructing rule-bases for multivariable fuzzy control by self-learning - part I: system structure and learning algorithms. Int. J. Syst. Sci. 1993, 24:111-127.
    • (1993) Int. J. Syst. Sci. , vol.24 , pp. 111-127
    • Nie, J.1
  • 47
    • 0035889604 scopus 로고    scopus 로고
    • Fuzzy conceptual rainfall-runoff models
    • Özelkan E.C., Duckstein L. Fuzzy conceptual rainfall-runoff models. J. Hydrol. 2001, 253:41-68.
    • (2001) J. Hydrol. , vol.253 , pp. 41-68
    • Özelkan, E.C.1    Duckstein, L.2
  • 49
    • 0036171051 scopus 로고    scopus 로고
    • Fuzzy approach for Analysis of pipe networks
    • Revelli R., Ridolfi L. Fuzzy approach for Analysis of pipe networks. J. Hydraul. Eng. 2002, 128(1):93-101.
    • (2002) J. Hydraul. Eng. , vol.128 , Issue.1 , pp. 93-101
    • Revelli, R.1    Ridolfi, L.2
  • 50
    • 11144273669 scopus 로고
    • The perceptron: a probabilistic model for information storage and organization in the brain
    • Rosenblatt F. The perceptron: a probabilistic model for information storage and organization in the brain. Psychol. Rev. 1958, 65:386-408.
    • (1958) Psychol. Rev. , vol.65 , pp. 386-408
    • Rosenblatt, F.1
  • 51
    • 51649147836 scopus 로고
    • NLQPL: a Fortran-subroutine solving constrained nonlinear programming problems
    • Schitlowski K. NLQPL: a Fortran-subroutine solving constrained nonlinear programming problems. Oper. Res. 1985, 5:485-500.
    • (1985) Oper. Res. , vol.5 , pp. 485-500
    • Schitlowski, K.1
  • 52
    • 0034254025 scopus 로고    scopus 로고
    • A hybrid multi-model approach to river level forecasting
    • See L., Openshaw S. A hybrid multi-model approach to river level forecasting. Hydrol. Sci. J. 2000, 45(4):523-536.
    • (2000) Hydrol. Sci. J. , vol.45 , Issue.4 , pp. 523-536
    • See, L.1    Openshaw, S.2
  • 53
    • 34249844193 scopus 로고    scopus 로고
    • Hydroinformatics: computational intelligence and technological developments in water science applications
    • See L., Solomatine D.P., Abrahart R., Toth E. Hydroinformatics: computational intelligence and technological developments in water science applications. Hydrol. Sci. J. 2007, 52(3):391-396.
    • (2007) Hydrol. Sci. J. , vol.52 , Issue.3 , pp. 391-396
    • See, L.1    Solomatine, D.P.2    Abrahart, R.3    Toth, E.4
  • 54
    • 33645987256 scopus 로고    scopus 로고
    • Machine learning approaches for estimation of prediction interval for the model output
    • Shrestha D.L., Solomatine D.P. Machine learning approaches for estimation of prediction interval for the model output. Neural. Netw. 2006, 19(2):225-235.
    • (2006) Neural. Netw. , vol.19 , Issue.2 , pp. 225-235
    • Shrestha, D.L.1    Solomatine, D.P.2
  • 55
    • 0037565156 scopus 로고    scopus 로고
    • Model trees as an alternative to neural networks in rainfall runoff modelling
    • Solomatine D.P., Dulal K.N. Model trees as an alternative to neural networks in rainfall runoff modelling. Hydrol. Sci. J. 2003, 48(3):399-411.
    • (2003) Hydrol. Sci. J. , vol.48 , Issue.3 , pp. 399-411
    • Solomatine, D.P.1    Dulal, K.N.2
  • 56
    • 34249775216 scopus 로고    scopus 로고
    • Development of a low flow forecasting model using the M5 machine learning method
    • Stravs L., Brilly M. Development of a low flow forecasting model using the M5 machine learning method. Hydrol. Sci. J. 2007, 52(3):466-477.
    • (2007) Hydrol. Sci. J. , vol.52 , Issue.3 , pp. 466-477
    • Stravs, L.1    Brilly, M.2
  • 57
    • 0034174356 scopus 로고    scopus 로고
    • Hydrological forecasting using neural networks
    • Thirumalaiah K., Deo M.C. Hydrological forecasting using neural networks. J. Hydrol. Eng. 2000, 5(2):180-189.
    • (2000) J. Hydrol. Eng. , vol.5 , Issue.2 , pp. 180-189
    • Thirumalaiah, K.1    Deo, M.C.2
  • 58
    • 37549066943 scopus 로고    scopus 로고
    • Multistep ahead streamflow forecasting: role of calibration data in conceptual and neural network modeling
    • Toth E., Brath A. Multistep ahead streamflow forecasting: role of calibration data in conceptual and neural network modeling. Water Resour. Res. 2007, 43(W11405). 10.1029/2006WR005383.
    • (2007) Water Resour. Res. , vol.43 , Issue.W11405
    • Toth, E.1    Brath, A.2
  • 59
    • 78650533379 scopus 로고    scopus 로고
    • MCMC methods for MLP-network and Gaussian process and stuff-a documentation for Matlab toolbox MCMCstuff. Available from
    • Vanhatalo A., Vehtari, A., 2006. MCMC methods for MLP-network and Gaussian process and stuff-a documentation for Matlab toolbox MCMCstuff. Available from: http://www.lce.hut.fi/research/mm/mcmcstuff.
    • (2006)
    • Vanhatalo, A.1    Vehtari, A.2
  • 60
    • 70349545766 scopus 로고    scopus 로고
    • Indices for assessing the prediction bounds of hydrological models and application by generalised likelihood uncertainty estimation
    • Xiong L., Wan M., Wei X., O'Connor K. Indices for assessing the prediction bounds of hydrological models and application by generalised likelihood uncertainty estimation. Hydrol. Sci. J. 2009, 54(5):852-871.
    • (2009) Hydrol. Sci. J. , vol.54 , Issue.5 , pp. 852-871
    • Xiong, L.1    Wan, M.2    Wei, X.3    O'Connor, K.4
  • 61
  • 62
    • 62949213977 scopus 로고    scopus 로고
    • Estimating uncertainty of streamflow simulation using Bayesian neural networks
    • Zhang X., Liang F., Srinivasan R., Van Liew M. Estimating uncertainty of streamflow simulation using Bayesian neural networks. Water Resour. Res. 2009, 45(W02403). 10.1029/2008WR007030.
    • (2009) Water Resour. Res. , vol.45 , Issue.W02403
    • Zhang, X.1    Liang, F.2    Srinivasan, R.3    Van Liew, M.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.