메뉴 건너뛰기




Volumn 25, Issue 8, 2010, Pages 891-909

Methods used for the development of neural networks for the prediction of water resource variables in river systems: Current status and future directions

Author keywords

Artificial neural networks; Forecasting; Model development; Modelling process; Prediction; Review; River systems; Water resources

Indexed keywords

ARTIFICIAL NEURAL NETWORK; FORECASTING MODELS; MODEL DEVELOPMENT; MODELLING PROCESS; PREDICTION; RIVER SYSTEMS;

EID: 77951175284     PISSN: 13648152     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.envsoft.2010.02.003     Document Type: Review
Times cited : (733)

References (233)
  • 2
    • 34648849221 scopus 로고    scopus 로고
    • Neural network modelling of non-linear hydrological relationships
    • Abrahart R.J., and See L.M. Neural network modelling of non-linear hydrological relationships. Hydrology and Earth System Sciences 11 5 (2007) 1563-1579
    • (2007) Hydrology and Earth System Sciences , vol.11 , Issue.5 , pp. 1563-1579
    • Abrahart, R.J.1    See, L.M.2
  • 4
    • 4644274685 scopus 로고    scopus 로고
    • Runoff modelling through back propagation artificial neural network with variable rainfall-runoff data
    • Agarwal A., and Singh R.D. Runoff modelling through back propagation artificial neural network with variable rainfall-runoff data. Water Resources Management 18 3 (2004) 285-300
    • (2004) Water Resources Management , vol.18 , Issue.3 , pp. 285-300
    • Agarwal, A.1    Singh, R.D.2
  • 5
    • 14744288721 scopus 로고    scopus 로고
    • ANN-based sediment yield river basin models for Vamsadhara (India)
    • Agarwal A., Singh R.D., Mishra S.K., and Bhunya P.K. ANN-based sediment yield river basin models for Vamsadhara (India). Water SA 31 1 (2005) 95-100
    • (2005) Water SA , vol.31 , Issue.1 , pp. 95-100
    • Agarwal, A.1    Singh, R.D.2    Mishra, S.K.3    Bhunya, P.K.4
  • 6
    • 33947641864 scopus 로고    scopus 로고
    • An intelligent decision support system for management of floods
    • Ahmad S., and Simonovic S.P. An intelligent decision support system for management of floods. Water Resources Management 20 3 (2006) 391-410
    • (2006) Water Resources Management , vol.20 , Issue.3 , pp. 391-410
    • Ahmad, S.1    Simonovic, S.P.2
  • 7
    • 34248202148 scopus 로고    scopus 로고
    • Artificial neural network model for synthetic streamflow generation
    • Ahmed J.A., and Sarma A.K. Artificial neural network model for synthetic streamflow generation. Water Resources Management 21 6 (2007) 1015-1029
    • (2007) Water Resources Management , vol.21 , Issue.6 , pp. 1015-1029
    • Ahmed, J.A.1    Sarma, A.K.2
  • 8
    • 33749443208 scopus 로고    scopus 로고
    • Suspended sediment load simulation by two artificial neural network methods using hydrometeorological data
    • Alp M., and Cigizoglu H.K. Suspended sediment load simulation by two artificial neural network methods using hydrometeorological data. Environmental Modelling & Software 22 1 (2007) 2-13
    • (2007) Environmental Modelling & Software , vol.22 , Issue.1 , pp. 2-13
    • Alp, M.1    Cigizoglu, H.K.2
  • 11
    • 14344261493 scopus 로고    scopus 로고
    • Generalisation for neural networks through data sampling and training procedures, with applications to streamflow predictions
    • Anctil F., and Lauzon N. Generalisation for neural networks through data sampling and training procedures, with applications to streamflow predictions. Hydrology and Earth System Sciences 8 5 (2004) 940-958
    • (2004) Hydrology and Earth System Sciences , vol.8 , Issue.5 , pp. 940-958
    • Anctil, F.1    Lauzon, N.2
  • 12
    • 11944267778 scopus 로고    scopus 로고
    • Evaluation of neural network streamflow forecasting on 47 watersheds
    • Anctil F., and Rat A. Evaluation of neural network streamflow forecasting on 47 watersheds. Journal of Hydrologic Engineering 10 1 (2005) 85-88
    • (2005) Journal of Hydrologic Engineering , vol.10 , Issue.1 , pp. 85-88
    • Anctil, F.1    Rat, A.2
  • 14
    • 1142294041 scopus 로고    scopus 로고
    • A soil moisture index as an auxiliary ANN input for stream flow forecasting
    • Anctil F., Michel C., Perrin C., and Andreassian V. A soil moisture index as an auxiliary ANN input for stream flow forecasting. Journal of Hydrology 286 1-4 (2004) 155-167
    • (2004) Journal of Hydrology , vol.286 , Issue.1-4 , pp. 155-167
    • Anctil, F.1    Michel, C.2    Perrin, C.3    Andreassian, V.4
  • 15
    • 1442291113 scopus 로고    scopus 로고
    • Impact of the length of observed records on the performance of ANN and of conceptual parsimonious rainfall-runoff forecasting models
    • Anctil F., Perrin C., and Andreassian V. Impact of the length of observed records on the performance of ANN and of conceptual parsimonious rainfall-runoff forecasting models. Environmental Modelling & Software 19 4 (2004) 357-368
    • (2004) Environmental Modelling & Software , vol.19 , Issue.4 , pp. 357-368
    • Anctil, F.1    Perrin, C.2    Andreassian, V.3
  • 16
    • 33747057721 scopus 로고    scopus 로고
    • Improvement of rainfall-runoff forecasts through mean areal rainfall optimization
    • Anctil F., Lauzon N., Andreassian V., Oudin L., and Perrin C. Improvement of rainfall-runoff forecasts through mean areal rainfall optimization. Journal of Hydrology 328 3, 4 (2006) 717-725
    • (2006) Journal of Hydrology , vol.328 , Issue.3-4 , pp. 717-725
    • Anctil, F.1    Lauzon, N.2    Andreassian, V.3    Oudin, L.4    Perrin, C.5
  • 18
    • 33645158824 scopus 로고    scopus 로고
    • Rainfall-runoff modelling using artificial neural networks technique: a Blue Nile catchment case study
    • Antar M.A., Elassiouti I., and Allam M.N. Rainfall-runoff modelling using artificial neural networks technique: a Blue Nile catchment case study. Hydrological Processes 20 5 (2006) 1201-1216
    • (2006) Hydrological Processes , vol.20 , Issue.5 , pp. 1201-1216
    • Antar, M.A.1    Elassiouti, I.2    Allam, M.N.3
  • 19
    • 33947572974 scopus 로고    scopus 로고
    • A comparative study of artificial neural networks and neuro-fuzzy in continuous modeling of the daily and hourly behaviour of runoff
    • Aqil M., Kita I., Yano A., and Nishiyama S. A comparative study of artificial neural networks and neuro-fuzzy in continuous modeling of the daily and hourly behaviour of runoff. Journal of Hydrology 337 1, 2 (2007) 22-34
    • (2007) Journal of Hydrology , vol.337 , Issue.1-2 , pp. 22-34
    • Aqil, M.1    Kita, I.2    Yano, A.3    Nishiyama, S.4
  • 20
    • 34548498867 scopus 로고    scopus 로고
    • Neural networks for real time catchment flow modeling and prediction
    • Aqil M., Kita I., Yano A., and Nishiyama S. Neural networks for real time catchment flow modeling and prediction. Water Resources Management 21 10 (2007) 1781-1796
    • (2007) Water Resources Management , vol.21 , Issue.10 , pp. 1781-1796
    • Aqil, M.1    Kita, I.2    Yano, A.3    Nishiyama, S.4
  • 21
    • 0034174280 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology. I: preliminary concepts
    • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology 2000. Artificial neural networks in hydrology. I: preliminary concepts. Journal of Hydrologic Engineering, ASCE 5 2 (2000) 115-123
    • (2000) Journal of Hydrologic Engineering, ASCE , vol.5 , Issue.2 , pp. 115-123
  • 26
    • 0036221122 scopus 로고    scopus 로고
    • Optimal division of data for neural network models in water resources applications
    • Bowden G.J., Maier H.R., and Dandy G.C. Optimal division of data for neural network models in water resources applications. Water Resources Research 38 2 (2002) 1010
    • (2002) Water Resources Research , vol.38 , Issue.2 , pp. 1010
    • Bowden, G.J.1    Maier, H.R.2    Dandy, G.C.3
  • 27
    • 10644225424 scopus 로고    scopus 로고
    • Input determination for neural network models in water resources applications. Part 2. Case study: forecasting salinity in a river
    • Bowden G.J., Maier H.R., and Dandy G.C. Input determination for neural network models in water resources applications. Part 2. Case study: forecasting salinity in a river. Journal of Hydrology 301 1-4 (2005) 93-107
    • (2005) Journal of Hydrology , vol.301 , Issue.1-4 , pp. 93-107
    • Bowden, G.J.1    Maier, H.R.2    Dandy, G.C.3
  • 28
    • 0036697650 scopus 로고    scopus 로고
    • Neural networks and non-parametric methods for improving real-time flood forecasting through conceptual hydrological models
    • Brath A., Montanari A., and Toth E. Neural networks and non-parametric methods for improving real-time flood forecasting through conceptual hydrological models. Hydrology and Earth System Sciences 6 4 (2002) 627-639
    • (2002) Hydrology and Earth System Sciences , vol.6 , Issue.4 , pp. 627-639
    • Brath, A.1    Montanari, A.2    Toth, E.3
  • 29
    • 23444462420 scopus 로고    scopus 로고
    • Functional networks in real-time flood forecasting - a novel application
    • Bruen M., and Yang J.Q. Functional networks in real-time flood forecasting - a novel application. Advances in Water Resources 28 9 (2005) 899-909
    • (2005) Advances in Water Resources , vol.28 , Issue.9 , pp. 899-909
    • Bruen, M.1    Yang, J.Q.2
  • 30
    • 0037087735 scopus 로고    scopus 로고
    • An evaluation of a traditional and a neural net modelling approach to flood forecasting for an upland catchment
    • Cameron D., Kneale P., and See L. An evaluation of a traditional and a neural net modelling approach to flood forecasting for an upland catchment. Hydrological Processes 16 5 (2002) 1033-1046
    • (2002) Hydrological Processes , vol.16 , Issue.5 , pp. 1033-1046
    • Cameron, D.1    Kneale, P.2    See, L.3
  • 31
    • 0032688155 scopus 로고    scopus 로고
    • River flood forecasting with a neural network model
    • Campolo M., Andreussi P., and Soldati A. River flood forecasting with a neural network model. Water Resources Research 35 4 (1999) 1191-1197
    • (1999) Water Resources Research , vol.35 , Issue.4 , pp. 1191-1197
    • Campolo, M.1    Andreussi, P.2    Soldati, A.3
  • 32
    • 0032722662 scopus 로고    scopus 로고
    • Forecasting river flow rate during low-pow periods using neural networks
    • Campolo M., Soldati A., and Andreussi P. Forecasting river flow rate during low-pow periods using neural networks. Water Resources Research 35 11 (1999) 3547-3552
    • (1999) Water Resources Research , vol.35 , Issue.11 , pp. 3547-3552
    • Campolo, M.1    Soldati, A.2    Andreussi, P.3
  • 34
    • 0036499322 scopus 로고    scopus 로고
    • Downscaling recent streamflow conditions in British Columbia, Canada using ensemble neural network models
    • Cannon A.J., and Whitfield P.H. Downscaling recent streamflow conditions in British Columbia, Canada using ensemble neural network models. Journal of Hydrology 259 1-4 (2002) 136-151
    • (2002) Journal of Hydrology , vol.259 , Issue.1-4 , pp. 136-151
    • Cannon, A.J.1    Whitfield, P.H.2
  • 36
    • 26844446420 scopus 로고    scopus 로고
    • Neural network based decision support model for optimal reservoir operation
    • Chandramouli V., and Deka P. Neural network based decision support model for optimal reservoir operation. Water Resources Management 19 4 (2005) 447-464
    • (2005) Water Resources Management , vol.19 , Issue.4 , pp. 447-464
    • Chandramouli, V.1    Deka, P.2
  • 37
    • 0035340711 scopus 로고    scopus 로고
    • A counterpropagation fuzzy-neural network modeling approach to real time streamflow prediction
    • Chang F.J., and Chen Y.C. A counterpropagation fuzzy-neural network modeling approach to real time streamflow prediction. Journal of Hydrology 245 1-4 (2001) 153-164
    • (2001) Journal of Hydrology , vol.245 , Issue.1-4 , pp. 153-164
    • Chang, F.J.1    Chen, Y.C.2
  • 38
    • 0035864789 scopus 로고    scopus 로고
    • Counterpropagation fuzzy-neural network for streamflow reconstruction
    • Chang F.J., Hu H.F., and Chen Y.C. Counterpropagation fuzzy-neural network for streamflow reconstruction. Hydrological Processes 15 2 (2001) 219-232
    • (2001) Hydrological Processes , vol.15 , Issue.2 , pp. 219-232
    • Chang, F.J.1    Hu, H.F.2    Chen, Y.C.3
  • 39
    • 0036719845 scopus 로고    scopus 로고
    • Real-time recurrent learning neural network for stream-flow forecasting
    • Chang F.J., Chang L.C., and Huang H.L. Real-time recurrent learning neural network for stream-flow forecasting. Hydrological Processes 16 13 (2002) 2577-2588
    • (2002) Hydrological Processes , vol.16 , Issue.13 , pp. 2577-2588
    • Chang, F.J.1    Chang, L.C.2    Huang, H.L.3
  • 40
    • 0036035717 scopus 로고    scopus 로고
    • Fuzzy clustering neural network as flood forecasting model
    • Chang F.J., Chen Y.C., and Liang J.M. Fuzzy clustering neural network as flood forecasting model. Nordic Hydrology 33 4 (2002) 275-290
    • (2002) Nordic Hydrology , vol.33 , Issue.4 , pp. 275-290
    • Chang, F.J.1    Chen, Y.C.2    Liang, J.M.3
  • 41
    • 0842349306 scopus 로고    scopus 로고
    • A two-step-ahead recurrent neural network for stream-flow forecasting
    • Chang L.C., Chang F.J., and Chiang Y.M. A two-step-ahead recurrent neural network for stream-flow forecasting. Hydrological Processes 18 1 (2004) 81-92
    • (2004) Hydrological Processes , vol.18 , Issue.1 , pp. 81-92
    • Chang, L.C.1    Chang, F.J.2    Chiang, Y.M.3
  • 42
    • 15444365276 scopus 로고    scopus 로고
    • Fuzzy exemplar-based inference system for flood forecasting
    • Chang L.C., Chang F.J., and Tsai Y.H. Fuzzy exemplar-based inference system for flood forecasting. Water Resources Research 41 2 (2005) W02005
    • (2005) Water Resources Research , vol.41 , Issue.2
    • Chang, L.C.1    Chang, F.J.2    Tsai, Y.H.3
  • 43
    • 33947502845 scopus 로고    scopus 로고
    • Enforced self-organizing map neural networks for river flood forecasting
    • Chang F.J., Chang L.C., and Wang Y.S. Enforced self-organizing map neural networks for river flood forecasting. Hydrological Processes 21 6 (2007) 741-749
    • (2007) Hydrological Processes , vol.21 , Issue.6 , pp. 741-749
    • Chang, F.J.1    Chang, L.C.2    Wang, Y.S.3
  • 45
    • 34447331259 scopus 로고    scopus 로고
    • Shared near neighbours neural network model: a debris flow warning system
    • Chang F.J., Tseng K.Y., and Chaves P. Shared near neighbours neural network model: a debris flow warning system. Hydrological Processes 21 14 (2007) 1968-1976
    • (2007) Hydrological Processes , vol.21 , Issue.14 , pp. 1968-1976
    • Chang, F.J.1    Tseng, K.Y.2    Chaves, P.3
  • 46
    • 27544472438 scopus 로고    scopus 로고
    • Comparison of several flood forecasting models in Yangtze river
    • Chau K.W., Wu C.L., and Li Y.S. Comparison of several flood forecasting models in Yangtze river. Journal of Hydrologic Engineering 10 6 (2005) 485-491
    • (2005) Journal of Hydrologic Engineering , vol.10 , Issue.6 , pp. 485-491
    • Chau, K.W.1    Wu, C.L.2    Li, Y.S.3
  • 47
    • 33748929857 scopus 로고    scopus 로고
    • Particle swarm optimization training algorithm for ANNs in stage prediction of Shing Mun River
    • Chau K.W. Particle swarm optimization training algorithm for ANNs in stage prediction of Shing Mun River. Journal of Hydrology 329 3, 4 (2006) 363-367
    • (2006) Journal of Hydrology , vol.329 , Issue.3-4 , pp. 363-367
    • Chau, K.W.1
  • 48
    • 35349010023 scopus 로고    scopus 로고
    • A split-step particle swarm optimization algorithm in river stage forecasting
    • Chau K.W. A split-step particle swarm optimization algorithm in river stage forecasting. Journal of Hydrology 346 (2007) 131-135
    • (2007) Journal of Hydrology , vol.346 , pp. 131-135
    • Chau, K.W.1
  • 49
    • 31044455061 scopus 로고    scopus 로고
    • Integration of artificial neural networks with conceptual models in rainfall-runoff modeling
    • Chen J.Y., and Adams B.J. Integration of artificial neural networks with conceptual models in rainfall-runoff modeling. Journal of Hydrology 318 1-4 (2006) 232-249
    • (2006) Journal of Hydrology , vol.318 , Issue.1-4 , pp. 232-249
    • Chen, J.Y.1    Adams, B.J.2
  • 50
    • 33747308412 scopus 로고    scopus 로고
    • Semidistributed form of the tank model coupled with artificial neural networks
    • Chen J.Y., and Adams B.J. Semidistributed form of the tank model coupled with artificial neural networks. Journal of Hydrologic Engineering 11 5 (2006) 408-417
    • (2006) Journal of Hydrologic Engineering , vol.11 , Issue.5 , pp. 408-417
    • Chen, J.Y.1    Adams, B.J.2
  • 51
    • 17444417458 scopus 로고    scopus 로고
    • Fuzzy optimization neural network approach for ice forecast in the Inner Mongolia reach of the Yellow River
    • Chen S.Y., and Ji H.L. Fuzzy optimization neural network approach for ice forecast in the Inner Mongolia reach of the Yellow River. Hydrological Sciences Journal (Journal Des Sciences Hydrologiques) 50 2 (2005) 319-330
    • (2005) Hydrological Sciences Journal (Journal Des Sciences Hydrologiques) , vol.50 , Issue.2 , pp. 319-330
    • Chen, S.Y.1    Ji, H.L.2
  • 52
    • 35748941976 scopus 로고    scopus 로고
    • Pruning of support vector networks on flood forecasting
    • Chen S.T., and Yu P.S. Pruning of support vector networks on flood forecasting. Journal of Hydrology 347 1, 2 (2007) 67-78
    • (2007) Journal of Hydrology , vol.347 , Issue.1-2 , pp. 67-78
    • Chen, S.T.1    Yu, P.S.2
  • 53
    • 34249895257 scopus 로고    scopus 로고
    • Real-time probabilistic forecasting of flood stages
    • Chen S.T., and Yu P.S. Real-time probabilistic forecasting of flood stages. Journal of Hydrology 340 1, 2 (2007) 63-77
    • (2007) Journal of Hydrology , vol.340 , Issue.1-2 , pp. 63-77
    • Chen, S.T.1    Yu, P.S.2
  • 54
    • 33646075449 scopus 로고    scopus 로고
    • The strategy of building a flood forecast model by neuro-fuzzy network
    • Chen S.H., Lin Y.H., Chang L.C., and Chang F.J. The strategy of building a flood forecast model by neuro-fuzzy network. Hydrological Processes 20 7 (2006) 1525-1540
    • (2006) Hydrological Processes , vol.20 , Issue.7 , pp. 1525-1540
    • Chen, S.H.1    Lin, Y.H.2    Chang, L.C.3    Chang, F.J.4
  • 55
    • 33744824379 scopus 로고    scopus 로고
    • A hybrid linear-neural model for river flow forecasting
    • Chetan M., and Sudheer K.P. A hybrid linear-neural model for river flow forecasting. Water Resources Research 42 4 (2006) W04402
    • (2006) Water Resources Research , vol.42 , Issue.4
    • Chetan, M.1    Sudheer, K.P.2
  • 56
    • 1842426595 scopus 로고    scopus 로고
    • Comparison of static-feedforward and dynamic-feedback neural networks for rainfall-runoff modeling
    • Chiang Y.M., Chang L.C., and Chang F.J. Comparison of static-feedforward and dynamic-feedback neural networks for rainfall-runoff modeling. Journal of Hydrology 290 3, 4 (2004) 297-311
    • (2004) Journal of Hydrology , vol.290 , Issue.3-4 , pp. 297-311
    • Chiang, Y.M.1    Chang, L.C.2    Chang, F.J.3
  • 57
    • 33846454693 scopus 로고    scopus 로고
    • Dynamic ANN for precipitation estimation and forecasting from radar observations
    • Chiang Y.M., Chang F.J., Jou B.J.D., and Lin P.F. Dynamic ANN for precipitation estimation and forecasting from radar observations. Journal of Hydrology 334 1, 2 (2007) 250-261
    • (2007) Journal of Hydrology , vol.334 , Issue.1-2 , pp. 250-261
    • Chiang, Y.M.1    Chang, F.J.2    Jou, B.J.D.3    Lin, P.F.4
  • 59
    • 12544253180 scopus 로고    scopus 로고
    • Flow prediction by three back propagation techniques using k-fold partitioning of neural network training data
    • Cigizoglu H.K., and Kisi O. Flow prediction by three back propagation techniques using k-fold partitioning of neural network training data. Nordic Hydrology 36 1 (2005) 49-64
    • (2005) Nordic Hydrology , vol.36 , Issue.1 , pp. 49-64
    • Cigizoglu, H.K.1    Kisi, O.2
  • 60
    • 28944434082 scopus 로고    scopus 로고
    • Methods to improve the neural network performance in suspended sediment estimation
    • Cigizoglu H.K., and Kisi O. Methods to improve the neural network performance in suspended sediment estimation. Journal of Hydrology 317 3, 4 (2006) 221-238
    • (2006) Journal of Hydrology , vol.317 , Issue.3-4 , pp. 221-238
    • Cigizoglu, H.K.1    Kisi, O.2
  • 61
  • 62
    • 0037783429 scopus 로고    scopus 로고
    • Incorporation of ARMA models into flow forecasting by artificial neural networks
    • Cigizoglu H.K. Incorporation of ARMA models into flow forecasting by artificial neural networks. Environmetrics 14 4 (2003) 417-427
    • (2003) Environmetrics , vol.14 , Issue.4 , pp. 417-427
    • Cigizoglu, H.K.1
  • 63
    • 1342310688 scopus 로고    scopus 로고
    • Estimation and forecasting of daily suspended sediment data by multi-layer perceptrons
    • Cigizoglu H.K. Estimation and forecasting of daily suspended sediment data by multi-layer perceptrons. Advances in Water Resources 27 2 (2004) 185-195
    • (2004) Advances in Water Resources , vol.27 , Issue.2 , pp. 185-195
    • Cigizoglu, H.K.1
  • 64
    • 23044443211 scopus 로고    scopus 로고
    • Application of generalized regression neural networks to intermittent flow forecasting and estimation
    • Cigizoglu H.K. Application of generalized regression neural networks to intermittent flow forecasting and estimation. Journal of Hydrologic Engineering 10 4 (2005) 336-341
    • (2005) Journal of Hydrologic Engineering , vol.10 , Issue.4 , pp. 336-341
    • Cigizoglu, H.K.1
  • 65
    • 27944503514 scopus 로고    scopus 로고
    • Generalized regression neural network in monthly flow forecasting
    • Cigizoglu H.K. Generalized regression neural network in monthly flow forecasting. Civil Engineering and Environmental Systems 22 2 (2005) 71-84
    • (2005) Civil Engineering and Environmental Systems , vol.22 , Issue.2 , pp. 71-84
    • Cigizoglu, H.K.1
  • 66
    • 34249775808 scopus 로고    scopus 로고
    • Baseflow separation techniques for modular artificial neural network modelling in flow forecasting
    • Corzo G., and Solomatine D. Baseflow separation techniques for modular artificial neural network modelling in flow forecasting. Hydrological Sciences Journal (Journal Des Sciences Hydrologiques) 52 3 (2007) 491-507
    • (2007) Hydrological Sciences Journal (Journal Des Sciences Hydrologiques) , vol.52 , Issue.3 , pp. 491-507
    • Corzo, G.1    Solomatine, D.2
  • 67
    • 19744362941 scopus 로고    scopus 로고
    • Nonstationary hydrological time series forecasting using nonlinear dynamic methods
    • Coulibaly P., and Baldwin C.K. Nonstationary hydrological time series forecasting using nonlinear dynamic methods. Journal of Hydrology 307 1-4 (2005) 164-174
    • (2005) Journal of Hydrology , vol.307 , Issue.1-4 , pp. 164-174
    • Coulibaly, P.1    Baldwin, C.K.2
  • 68
    • 0034621379 scopus 로고    scopus 로고
    • Daily reservoir inflow forecasting using artificial neural networks with stopped training approach
    • Coulibaly P., Anctil F., and Bobee B. Daily reservoir inflow forecasting using artificial neural networks with stopped training approach. Journal of Hydrology 230 3, 4 (2000) 244-257
    • (2000) Journal of Hydrology , vol.230 , Issue.3-4 , pp. 244-257
    • Coulibaly, P.1    Anctil, F.2    Bobee, B.3
  • 69
    • 0034298548 scopus 로고    scopus 로고
    • A recurrent neural networks approach using indices of low-frenquency climatic variability to forecast regional annual runoff
    • Coulibaly P., Anctil F., Rasmussen P., and Bobee B. A recurrent neural networks approach using indices of low-frenquency climatic variability to forecast regional annual runoff. Hydrological Processes 14 15 (2000) 2755-2777
    • (2000) Hydrological Processes , vol.14 , Issue.15 , pp. 2755-2777
    • Coulibaly, P.1    Anctil, F.2    Rasmussen, P.3    Bobee, B.4
  • 70
    • 0035450182 scopus 로고    scopus 로고
    • Multivariate reservoir inflow forecasting using temporal neural networks
    • Coulibaly P., Anctil F., and Bobee B. Multivariate reservoir inflow forecasting using temporal neural networks. Journal of Hydrologic Engineering 6 5 (2001) 367-376
    • (2001) Journal of Hydrologic Engineering , vol.6 , Issue.5 , pp. 367-376
    • Coulibaly, P.1    Anctil, F.2    Bobee, B.3
  • 71
    • 0035876630 scopus 로고    scopus 로고
    • Improving extreme hydrologic events forecasting using a new criterion for artificial neural network selection
    • Coulibaly P., Bobee B., and Anctil F. Improving extreme hydrologic events forecasting using a new criterion for artificial neural network selection. Hydrological Processes 15 8 (2001) 1533-1536
    • (2001) Hydrological Processes , vol.15 , Issue.8 , pp. 1533-1536
    • Coulibaly, P.1    Bobee, B.2    Anctil, F.3
  • 73
    • 0346056665 scopus 로고    scopus 로고
    • Impact of meteorological predictions on real-time spring flow forecasting
    • Coulibaly P. Impact of meteorological predictions on real-time spring flow forecasting. Hydrological Processes 17 18 (2003) 3791-3801
    • (2003) Hydrological Processes , vol.17 , Issue.18 , pp. 3791-3801
    • Coulibaly, P.1
  • 74
    • 0033045187 scopus 로고    scopus 로고
    • Neural network models for river flow forecasting
    • Danh N.T., Phien H.N., and Das Gupta A. Neural network models for river flow forecasting. Water SA 25 1 (1999) 33-39
    • (1999) Water SA , vol.25 , Issue.1 , pp. 33-39
    • Danh, N.T.1    Phien, H.N.2    Das Gupta, A.3
  • 75
    • 0033512986 scopus 로고    scopus 로고
    • A comparison of artificial neural networks used for river flow forecasting
    • Dawson C.W., and Wilby R.L. A comparison of artificial neural networks used for river flow forecasting. Hydrology and Earth System Sciences 3 4 (1999) 529-540
    • (1999) Hydrology and Earth System Sciences , vol.3 , Issue.4 , pp. 529-540
    • Dawson, C.W.1    Wilby, R.L.2
  • 76
    • 0034749335 scopus 로고    scopus 로고
    • Hydrological modelling using artificial neural networks
    • Dawson C.W., and Wilby R.L. Hydrological modelling using artificial neural networks. Progress in Physical Geography 25 1 (2001) 80-108
    • (2001) Progress in Physical Geography , vol.25 , Issue.1 , pp. 80-108
    • Dawson, C.W.1    Wilby, R.L.2
  • 77
    • 0036698154 scopus 로고    scopus 로고
    • Evaluation of artificial neural network techniques for flow forecasting in the River Yangtze, China
    • Dawson C.W., Harpham C., Wilby R.L., and Chen Y. Evaluation of artificial neural network techniques for flow forecasting in the River Yangtze, China. Hydrology and Earth System Sciences 6 4 (2002) 619-626
    • (2002) Hydrology and Earth System Sciences , vol.6 , Issue.4 , pp. 619-626
    • Dawson, C.W.1    Harpham, C.2    Wilby, R.L.3    Chen, Y.4
  • 78
    • 32044443415 scopus 로고    scopus 로고
    • Flood estimation at ungauged sites using artificial neural networks
    • Dawson C.W., Abrahart R.J., Shamseldin A.Y., and Wilby R.L. Flood estimation at ungauged sites using artificial neural networks. Journal of Hydrology 319 1-4 (2006) 391-409
    • (2006) Journal of Hydrology , vol.319 , Issue.1-4 , pp. 391-409
    • Dawson, C.W.1    Abrahart, R.J.2    Shamseldin, A.Y.3    Wilby, R.L.4
  • 79
    • 33846798345 scopus 로고    scopus 로고
    • HydroTest: a web-based toolbox of statistical measures for the standardised assessment of hydrological forecasts
    • Dawson C.W., Abrahart R.J., and See L.M. HydroTest: a web-based toolbox of statistical measures for the standardised assessment of hydrological forecasts. Environmental Modelling & Software 27 (2007) 1034-1052
    • (2007) Environmental Modelling & Software , vol.27 , pp. 1034-1052
    • Dawson, C.W.1    Abrahart, R.J.2    See, L.M.3
  • 80
    • 23744444467 scopus 로고    scopus 로고
    • Constraints of artificial neural networks for rainfall-runoff modelling: trade-offs in hydrological state representation and model evaluation
    • de Vos N.J., and Rientjes T.H.M. Constraints of artificial neural networks for rainfall-runoff modelling: trade-offs in hydrological state representation and model evaluation. Hydrology and Earth System Sciences 9 1, 2 (2005) 111-126
    • (2005) Hydrology and Earth System Sciences , vol.9 , Issue.1-2 , pp. 111-126
    • de Vos, N.J.1    Rientjes, T.H.M.2
  • 81
    • 34249810384 scopus 로고    scopus 로고
    • Multi-objective performance comparison of an artificial neural network and a conceptual rainfall-runoff model
    • de Vos N.J., and Rientjes T.H.M. Multi-objective performance comparison of an artificial neural network and a conceptual rainfall-runoff model. Hydrological Sciences Journal (Journal Des Sciences Hydrologiques) 52 3 (2007) 397-413
    • (2007) Hydrological Sciences Journal (Journal Des Sciences Hydrologiques) , vol.52 , Issue.3 , pp. 397-413
    • de Vos, N.J.1    Rientjes, T.H.M.2
  • 83
    • 23044467858 scopus 로고    scopus 로고
    • Fuzzy neural network model for hydrologic flow routing
    • Deka P., and Chandramouli V. Fuzzy neural network model for hydrologic flow routing. Journal of Hydrologic Engineering 10 4 (2005) 302-314
    • (2005) Journal of Hydrologic Engineering , vol.10 , Issue.4 , pp. 302-314
    • Deka, P.1    Chandramouli, V.2
  • 84
    • 49649118346 scopus 로고    scopus 로고
    • Predictive modeling for wastewater applications: Linear and nonlinear approaches
    • Dellana S.A., and West D. Predictive modeling for wastewater applications: Linear and nonlinear approaches. Environmental Modelling & Software 24 1 (2009) 96-106
    • (2009) Environmental Modelling & Software , vol.24 , Issue.1 , pp. 96-106
    • Dellana, S.A.1    West, D.2
  • 85
    • 33947709411 scopus 로고    scopus 로고
    • Cascade correlation artificial neural networks for estimating missing monthly values of water quality parameters in rivers
    • Diamantopoulou M.J., Antonopoulos V.Z., and Papamichail D.M. Cascade correlation artificial neural networks for estimating missing monthly values of water quality parameters in rivers. Water Resources Management 21 3 (2007) 649-662
    • (2007) Water Resources Management , vol.21 , Issue.3 , pp. 649-662
    • Diamantopoulou, M.J.1    Antonopoulos, V.Z.2    Papamichail, D.M.3
  • 86
    • 33748542651 scopus 로고    scopus 로고
    • Derivation of effective and efficient data set with subtractive clustering method and genetic algorithm
    • Doan C.D., Liong S.Y., and Karunasinghe D.S.K. Derivation of effective and efficient data set with subtractive clustering method and genetic algorithm. Journal of Hydroinformatics 7 4 (2005) 219-233
    • (2005) Journal of Hydroinformatics , vol.7 , Issue.4 , pp. 219-233
    • Doan, C.D.1    Liong, S.Y.2    Karunasinghe, D.S.K.3
  • 88
    • 33947693294 scopus 로고    scopus 로고
    • A neuro-fuzzy model for inflow forecasting of the Nile river at Aswan high dam
    • El-Shafie A., Taha M.R., and Noureldin A. A neuro-fuzzy model for inflow forecasting of the Nile river at Aswan high dam. Water Resources Management 21 3 (2007) 533-556
    • (2007) Water Resources Management , vol.21 , Issue.3 , pp. 533-556
    • El-Shafie, A.1    Taha, M.R.2    Noureldin, A.3
  • 91
    • 0037005708 scopus 로고    scopus 로고
    • Estimation of missing streamflow data using principles of chaos theory
    • Elshorbagy A., Simonovic S.P., and Panu U.S. Estimation of missing streamflow data using principles of chaos theory. Journal of Hydrology 255 1-4 (2002) 123-133
    • (2002) Journal of Hydrology , vol.255 , Issue.1-4 , pp. 123-133
    • Elshorbagy, A.1    Simonovic, S.P.2    Panu, U.S.3
  • 92
    • 0037196231 scopus 로고    scopus 로고
    • Noise reduction in chaotic hydrologic time series: facts, and doubts
    • Elshorbagy A., Simonovic S.P., and Panu U.S. Noise reduction in chaotic hydrologic time series: facts, and doubts. Journal of Hydrology 256 3, 4 (2002) 147-165
    • (2002) Journal of Hydrology , vol.256 , Issue.3-4 , pp. 147-165
    • Elshorbagy, A.1    Simonovic, S.P.2    Panu, U.S.3
  • 93
    • 61749084755 scopus 로고    scopus 로고
    • Selection of input variables for data driven models: an average shifted histogram partial mutual information estimator approach
    • Fernando T.M.K.G., Maier H.R., and Dandy G.C. Selection of input variables for data driven models: an average shifted histogram partial mutual information estimator approach. Journal of Hydrology 367 3, 4 (2009) 165-176
    • (2009) Journal of Hydrology , vol.367 , Issue.3-4 , pp. 165-176
    • Fernando, T.M.K.G.1    Maier, H.R.2    Dandy, G.C.3
  • 94
    • 0028416331 scopus 로고
    • Neural networks in civil engineering. I: Principles and understanding
    • Flood I., and Kartam N. Neural networks in civil engineering. I: Principles and understanding. Journal of Computing in Civil Engineering 8 2 (1994) 131-148
    • (1994) Journal of Computing in Civil Engineering , vol.8 , Issue.2 , pp. 131-148
    • Flood, I.1    Kartam, N.2
  • 95
    • 0033388338 scopus 로고    scopus 로고
    • An evaluation of two hydrologic models for climate change scenarios
    • Frakes B., and Yu Z.B. An evaluation of two hydrologic models for climate change scenarios. Journal of the American Water Resources Association 35 6 (1999) 1351-1363
    • (1999) Journal of the American Water Resources Association , vol.35 , Issue.6 , pp. 1351-1363
    • Frakes, B.1    Yu, Z.B.2
  • 96
    • 33747405169 scopus 로고    scopus 로고
    • Comparison of three alternative ANN designs for monthly rainfall-runoff simulation
    • Garbrecht J.D. Comparison of three alternative ANN designs for monthly rainfall-runoff simulation. Journal of Hydrologic Engineering 11 5 (2006) 502-505
    • (2006) Journal of Hydrologic Engineering , vol.11 , Issue.5 , pp. 502-505
    • Garbrecht, J.D.1
  • 97
    • 1642414601 scopus 로고    scopus 로고
    • Over-parameterisation, a major obstacle to the use of artificial neural networks in hydrology?
    • Gaume E., and Gosset R. Over-parameterisation, a major obstacle to the use of artificial neural networks in hydrology?. Hydrology and Earth System Sciences 7 5 (2003) 693-706
    • (2003) Hydrology and Earth System Sciences , vol.7 , Issue.5 , pp. 693-706
    • Gaume, E.1    Gosset, R.2
  • 98
    • 0034702917 scopus 로고    scopus 로고
    • Runoff analysis in humid forest catchment with artificial neural network
    • Gautam M.R., Watanabe K., and Saegusa H. Runoff analysis in humid forest catchment with artificial neural network. Journal of Hydrology 235 1, 2 (2000) 117-136
    • (2000) Journal of Hydrology , vol.235 , Issue.1-2 , pp. 117-136
    • Gautam, M.R.1    Watanabe, K.2    Saegusa, H.3
  • 100
    • 35448991280 scopus 로고    scopus 로고
    • Hydrologic data exploration and river flow forecasting of a humid tropical river basin using artificial neural networks
    • Gopakumar R., Takara K., and James E.J. Hydrologic data exploration and river flow forecasting of a humid tropical river basin using artificial neural networks. Water Resources Management 21 11 (2007) 1915-1940
    • (2007) Water Resources Management , vol.21 , Issue.11 , pp. 1915-1940
    • Gopakumar, R.1    Takara, K.2    James, E.J.3
  • 101
    • 33846452513 scopus 로고    scopus 로고
    • Real-time flow forecasting in the absence of quantitative precipitation forecasts: a multi-model approach
    • Goswami M., and O'Connor K.M. Real-time flow forecasting in the absence of quantitative precipitation forecasts: a multi-model approach. Journal of Hydrology 334 1, 2 (2007) 125-140
    • (2007) Journal of Hydrology , vol.334 , Issue.1-2 , pp. 125-140
    • Goswami, M.1    O'Connor, K.M.2
  • 102
    • 27644470780 scopus 로고    scopus 로고
    • Assessing the performance of eight real-time updating models and procedures for the Brosna River
    • Goswami M., O'Connor K.M., Bhattarai K.P., and Shamseldin A.Y. Assessing the performance of eight real-time updating models and procedures for the Brosna River. Hydrology and Earth System Sciences 9 4 (2005) 394-411
    • (2005) Hydrology and Earth System Sciences , vol.9 , Issue.4 , pp. 394-411
    • Goswami, M.1    O'Connor, K.M.2    Bhattarai, K.P.3    Shamseldin, A.Y.4
  • 103
    • 33846419128 scopus 로고    scopus 로고
    • Uncertainties in real-time flood forecasting with neural networks
    • Han D., Kwong T., and Li S. Uncertainties in real-time flood forecasting with neural networks. Hydrological Processes 21 (2007) 223-228
    • (2007) Hydrological Processes , vol.21 , pp. 223-228
    • Han, D.1    Kwong, T.2    Li, S.3
  • 105
    • 34249996860 scopus 로고    scopus 로고
    • The extrapolation of artificial neural networks for the modelling of rainfall-runoff relationships
    • Hettiarachchi P., Hall M.J., and Minns A.W. The extrapolation of artificial neural networks for the modelling of rainfall-runoff relationships. Journal of Hydroinformatics 7 4 (2005) 291-296
    • (2005) Journal of Hydroinformatics , vol.7 , Issue.4 , pp. 291-296
    • Hettiarachchi, P.1    Hall, M.J.2    Minns, A.W.3
  • 106
    • 0036998831 scopus 로고    scopus 로고
    • Self-organizing linear output map (SOLO): an artificial neural network suitable for hydrologic modeling and analysis
    • Hsu K.L., Gupta H.V., Gao X.G., Sorooshian S., and Imam B. Self-organizing linear output map (SOLO): an artificial neural network suitable for hydrologic modeling and analysis. Water Resources Research 38 12 (2002) 1302
    • (2002) Water Resources Research , vol.38 , Issue.12 , pp. 1302
    • Hsu, K.L.1    Gupta, H.V.2    Gao, X.G.3    Sorooshian, S.4    Imam, B.5
  • 109
    • 34547265730 scopus 로고    scopus 로고
    • Rainfall-runoff modeling using principal component analysis and neural network
    • Hu T.S., Wu F.Y., and Zhang X. Rainfall-runoff modeling using principal component analysis and neural network. Nordic Hydrology 38 3 (2007) 235-248
    • (2007) Nordic Hydrology , vol.38 , Issue.3 , pp. 235-248
    • Hu, T.S.1    Wu, F.Y.2    Zhang, X.3
  • 110
    • 4644299731 scopus 로고    scopus 로고
    • Forecasting flows in Apalachicola River using neural networks
    • Huang W.R., Xu B., and Chan-Hilton A. Forecasting flows in Apalachicola River using neural networks. Hydrological Processes 18 13 (2004) 2545-2564
    • (2004) Hydrological Processes , vol.18 , Issue.13 , pp. 2545-2564
    • Huang, W.R.1    Xu, B.2    Chan-Hilton, A.3
  • 111
    • 0041472702 scopus 로고    scopus 로고
    • Flood forecasting for the upper reach of the Red River Basin, North Vietnam
    • Huynh Ngoc P., and Nguyen Duc Anh K. Flood forecasting for the upper reach of the Red River Basin, North Vietnam. Water SA 29 3 (2003) 267-272
    • (2003) Water SA , vol.29 , Issue.3 , pp. 267-272
    • Huynh Ngoc, P.1    Nguyen Duc Anh, K.2
  • 112
    • 33846820421 scopus 로고    scopus 로고
    • An Artificial Neural Network model for mountainous water-resources management: the case of Cyprus mountainous watersheds
    • Iliadis L.S., and Maris F. An Artificial Neural Network model for mountainous water-resources management: the case of Cyprus mountainous watersheds. Environmental Modelling & Software 22 7 (2007) 1066-1072
    • (2007) Environmental Modelling & Software , vol.22 , Issue.7 , pp. 1066-1072
    • Iliadis, L.S.1    Maris, F.2
  • 113
    • 0034641121 scopus 로고    scopus 로고
    • River flow prediction using artificial neural networks: generalisation beyond the calibration range
    • Imrie C.E., Durucan S., and Korre A. River flow prediction using artificial neural networks: generalisation beyond the calibration range. Journal of Hydrology 233 1-4 (2000) 138-153
    • (2000) Journal of Hydrology , vol.233 , Issue.1-4 , pp. 138-153
    • Imrie, C.E.1    Durucan, S.2    Korre, A.3
  • 114
    • 0037340658 scopus 로고    scopus 로고
    • Comparative analysis of event-based rainfall-runoff modeling techniques - deterministic, statistical, and artificial neural networks
    • Jain A., and Indurthy S. Comparative analysis of event-based rainfall-runoff modeling techniques - deterministic, statistical, and artificial neural networks. Journal of Hydrologic Engineering 8 2 (2003) 93-98
    • (2003) Journal of Hydrologic Engineering , vol.8 , Issue.2 , pp. 93-98
    • Jain, A.1    Indurthy, S.2
  • 115
    • 2442639370 scopus 로고    scopus 로고
    • Development of effective and efficient rainfall-runoff models using integration of deterministic, real-coded genetic algorithms and artificial neural network techniques
    • Jain A., and Srinivasulu S. Development of effective and efficient rainfall-runoff models using integration of deterministic, real-coded genetic algorithms and artificial neural network techniques. Water Resources Research 40 4 (2004) W04302
    • (2004) Water Resources Research , vol.40 , Issue.4
    • Jain, A.1    Srinivasulu, S.2
  • 116
    • 28844473522 scopus 로고    scopus 로고
    • Integrated approach to model decomposed flow hydrograph using artificial neural network and conceptual techniques
    • Jain A., and Srinivasulu S. Integrated approach to model decomposed flow hydrograph using artificial neural network and conceptual techniques. Journal of Hydrology 317 3, 4 (2006) 291-306
    • (2006) Journal of Hydrology , vol.317 , Issue.3-4 , pp. 291-306
    • Jain, A.1    Srinivasulu, S.2
  • 118
    • 1542287371 scopus 로고    scopus 로고
    • Identification of physical processes inherent in artificial neural network rainfall runoff models
    • Jain A., Sudheer K.P., and Srinivasulu S. Identification of physical processes inherent in artificial neural network rainfall runoff models. Hydrological Processes 18 3 (2004) 571-581
    • (2004) Hydrological Processes , vol.18 , Issue.3 , pp. 571-581
    • Jain, A.1    Sudheer, K.P.2    Srinivasulu, S.3
  • 119
    • 33645947036 scopus 로고    scopus 로고
    • Ten iterative stepts in development and evaluation of environmental models
    • Jakeman A.J., Letcher R.A., and Norton J.P. Ten iterative stepts in development and evaluation of environmental models. Environmental Modelling & Software 21 5 (2006) 602-614
    • (2006) Environmental Modelling & Software , vol.21 , Issue.5 , pp. 602-614
    • Jakeman, A.J.1    Letcher, R.A.2    Norton, J.P.3
  • 120
    • 30444441291 scopus 로고    scopus 로고
    • Rainfall-runoff models using artificial neural networks for ensemble streamflow prediction
    • Jeong D.I., and Kim Y.O. Rainfall-runoff models using artificial neural networks for ensemble streamflow prediction. Hydrological Processes 19 19 (2005) 3819-3835
    • (2005) Hydrological Processes , vol.19 , Issue.19 , pp. 3819-3835
    • Jeong, D.I.1    Kim, Y.O.2
  • 121
    • 33750682003 scopus 로고    scopus 로고
    • Bootstrapped artificial neural networks for synthetic flow generation with a small data sample
    • Jia Y.B., and Culver T.B. Bootstrapped artificial neural networks for synthetic flow generation with a small data sample. Journal of Hydrology 331 3, 4 (2006) 580-590
    • (2006) Journal of Hydrology , vol.331 , Issue.3-4 , pp. 580-590
    • Jia, Y.B.1    Culver, T.B.2
  • 122
    • 40749144865 scopus 로고    scopus 로고
    • Review of the self-organizing map (SOM) approach in water resources: analysis, modelling and application
    • Kalteh A.M., Hjortha P., and Berndtsson R. Review of the self-organizing map (SOM) approach in water resources: analysis, modelling and application. Environmental Modelling & Software 23 7 (2008) 835-845
    • (2008) Environmental Modelling & Software , vol.23 , Issue.7 , pp. 835-845
    • Kalteh, A.M.1    Hjortha, P.2    Berndtsson, R.3
  • 125
    • 33646572227 scopus 로고    scopus 로고
    • Chaotic time series prediction with a global model: artificial neural network
    • Karunasinghe D.S.K., and Liong S.Y. Chaotic time series prediction with a global model: artificial neural network. Journal of Hydrology 323 1-4 (2006) 92-105
    • (2006) Journal of Hydrology , vol.323 , Issue.1-4 , pp. 92-105
    • Karunasinghe, D.S.K.1    Liong, S.Y.2
  • 127
    • 0035977694 scopus 로고    scopus 로고
    • Groups and neural networks based streamflow data infilling procedures
    • Khalil M., Panu U.S., and Lennox W.C. Groups and neural networks based streamflow data infilling procedures. Journal of Hydrology 241 3, 4 (2001) 153-176
    • (2001) Journal of Hydrology , vol.241 , Issue.3-4 , pp. 153-176
    • Khalil, M.1    Panu, U.S.2    Lennox, W.C.3
  • 129
    • 33748029144 scopus 로고    scopus 로고
    • Bayesian neural network for rainfall-runoff modeling
    • Khan M.S., and Coulibaly P. Bayesian neural network for rainfall-runoff modeling. Water Resources Research 42 7 (2006) W07409
    • (2006) Water Resources Research , vol.42 , Issue.7
    • Khan, M.S.1    Coulibaly, P.2
  • 130
    • 1642348122 scopus 로고    scopus 로고
    • Reduction of Monte-Carlo simulation runs for uncertainty estimation in hydrological modelling
    • Khu S.T., and Werner M.G.F. Reduction of Monte-Carlo simulation runs for uncertainty estimation in hydrological modelling. Hydrology and Earth System Sciences 7 5 (2003) 680-692
    • (2003) Hydrology and Earth System Sciences , vol.7 , Issue.5 , pp. 680-692
    • Khu, S.T.1    Werner, M.G.F.2
  • 131
    • 0035370678 scopus 로고    scopus 로고
    • Quantitative flood forecasting using multisensor data and neural networks
    • Kim G., and Barros A.P. Quantitative flood forecasting using multisensor data and neural networks. Journal of Hydrology 246 1-4 (2001) 45-62
    • (2001) Journal of Hydrology , vol.246 , Issue.1-4 , pp. 45-62
    • Kim, G.1    Barros, A.P.2
  • 132
    • 0344121593 scopus 로고    scopus 로고
    • Nonlinear model for drought forecasting based on a conjunction of wavelet transforms and neural networks
    • Kim T.W., and Valdes J.B. Nonlinear model for drought forecasting based on a conjunction of wavelet transforms and neural networks. Journal of Hydrologic Engineering 8 6 (2003) 319-328
    • (2003) Journal of Hydrologic Engineering , vol.8 , Issue.6 , pp. 319-328
    • Kim, T.W.1    Valdes, J.B.2
  • 133
    • 33144461497 scopus 로고    scopus 로고
    • Nonparametric approach for bivariate drought characterization using palmer drought index
    • Kim T.W., Valdes J.B., and Yoo C. Nonparametric approach for bivariate drought characterization using palmer drought index. Journal of Hydrologic Engineering 11 2 (2006) 134-143
    • (2006) Journal of Hydrologic Engineering , vol.11 , Issue.2 , pp. 134-143
    • Kim, T.W.1    Valdes, J.B.2    Yoo, C.3
  • 134
    • 31444455186 scopus 로고    scopus 로고
    • Bayesian training of artificial neural networks used for water resources modeling
    • Kingston G.B., Lambert M.F., and Maier H.R. Bayesian training of artificial neural networks used for water resources modeling. Water Resources Research 41 12 (2005) W12409
    • (2005) Water Resources Research , vol.41 , Issue.12
    • Kingston, G.B.1    Lambert, M.F.2    Maier, H.R.3
  • 135
    • 28444444200 scopus 로고    scopus 로고
    • Calibration and validation of neural networks to ensure physically plausible hydrological modeling
    • Kingston G.B., Maier H.R., and Lambert M.F. Calibration and validation of neural networks to ensure physically plausible hydrological modeling. Journal of Hydrology 314 1-4 (2005) 158-176
    • (2005) Journal of Hydrology , vol.314 , Issue.1-4 , pp. 158-176
    • Kingston, G.B.1    Maier, H.R.2    Lambert, M.F.3
  • 136
    • 44349171685 scopus 로고    scopus 로고
    • Bayesian model selection applied to artificial neural networks used for water resources modeling
    • Kingston G.B., Maier H.R., and Lambert M.F. Bayesian model selection applied to artificial neural networks used for water resources modeling. Water Resources Research 44 4 (2008) W04419
    • (2008) Water Resources Research , vol.44 , Issue.4
    • Kingston, G.B.1    Maier, H.R.2    Lambert, M.F.3
  • 138
    • 17644433091 scopus 로고    scopus 로고
    • Daily suspended sediment modelling using a fuzzy differential evolution approach
    • Kisi O. Daily suspended sediment modelling using a fuzzy differential evolution approach. Hydrological Sciences Journal (Journal Des Sciences Hydrologiques) 49 1 (2004) 183-197
    • (2004) Hydrological Sciences Journal (Journal Des Sciences Hydrologiques) , vol.49 , Issue.1 , pp. 183-197
    • Kisi, O.1
  • 139
    • 1642497522 scopus 로고    scopus 로고
    • River flow modeling using artificial neural networks
    • Kisi O. River flow modeling using artificial neural networks. Journal of Hydrologic Engineering 9 1 (2004) 60-63
    • (2004) Journal of Hydrologic Engineering , vol.9 , Issue.1 , pp. 60-63
    • Kisi, O.1
  • 140
    • 23044469546 scopus 로고    scopus 로고
    • Discussion of "fuzzy logic model approaches to daily pan evaporation estimation in western Turkey"
    • Kisi O. Discussion of "fuzzy logic model approaches to daily pan evaporation estimation in western Turkey". Hydrological Sciences Journal (Journal Des Sciences Hydrologiques) 50 4 (2005) 727-728
    • (2005) Hydrological Sciences Journal (Journal Des Sciences Hydrologiques) , vol.50 , Issue.4 , pp. 727-728
    • Kisi, O.1
  • 141
    • 34548146808 scopus 로고    scopus 로고
    • Streamflow forecasting using different artificial neural network algorithms
    • Kisi O. Streamflow forecasting using different artificial neural network algorithms. Journal of Hydrologic Engineering 12 5 (2007) 532-539
    • (2007) Journal of Hydrologic Engineering , vol.12 , Issue.5 , pp. 532-539
    • Kisi, O.1
  • 142
    • 2542447559 scopus 로고    scopus 로고
    • River flow forecasting using recurrent neural networks
    • Kumar D.N., Raju K.S., and Sathish T. River flow forecasting using recurrent neural networks. Water Resources Management 18 2 (2004) 143-161
    • (2004) Water Resources Management , vol.18 , Issue.2 , pp. 143-161
    • Kumar, D.N.1    Raju, K.S.2    Sathish, T.3
  • 143
    • 16444365723 scopus 로고    scopus 로고
    • Rainfall-runoff modelling using artificial neural networks: comparison of network types
    • Kumar A.R.S., Sudheer K.P., Jain S.K., and Agarwal P.K. Rainfall-runoff modelling using artificial neural networks: comparison of network types. Hydrological Processes 19 6 (2005) 1277-1291
    • (2005) Hydrological Processes , vol.19 , Issue.6 , pp. 1277-1291
    • Kumar, A.R.S.1    Sudheer, K.P.2    Jain, S.K.3    Agarwal, P.K.4
  • 145
    • 33745914620 scopus 로고    scopus 로고
    • Clustering of heterogeneous precipitation fields for the assessment and possible improvement of lumped neural network models for streamflow forecasts
    • Lauzon N., Anctil F., and Baxter C.W. Clustering of heterogeneous precipitation fields for the assessment and possible improvement of lumped neural network models for streamflow forecasts. Hydrology and Earth System Sciences 10 4 (2006) 485-494
    • (2006) Hydrology and Earth System Sciences , vol.10 , Issue.4 , pp. 485-494
    • Lauzon, N.1    Anctil, F.2    Baxter, C.W.3
  • 146
    • 1642387025 scopus 로고    scopus 로고
    • A non-linear rainfall-runoff model using radial basis function network
    • Lin G.F., and Chen L.H. A non-linear rainfall-runoff model using radial basis function network. Journal of Hydrology 289 1-4 (2004) 1-8
    • (2004) Journal of Hydrology , vol.289 , Issue.1-4 , pp. 1-8
    • Lin, G.F.1    Chen, L.H.2
  • 148
    • 38949116337 scopus 로고    scopus 로고
    • Predicting faecal indicator levels in estuarine receiving waters - an integrated hydrodynamic and ANN modelling approach
    • Lin B., Syed M., and Falconer R.A. Predicting faecal indicator levels in estuarine receiving waters - an integrated hydrodynamic and ANN modelling approach. Environmental Modelling & Software 23 6 (2008) 729-740
    • (2008) Environmental Modelling & Software , vol.23 , Issue.6 , pp. 729-740
    • Lin, B.1    Syed, M.2    Falconer, R.A.3
  • 150
    • 0034723860 scopus 로고    scopus 로고
    • Advance flood forecasting for flood stricken Bangladesh with a fuzzy reasoning method
    • Liong S.Y., Lim W.H., Kojiri T., and Hori T. Advance flood forecasting for flood stricken Bangladesh with a fuzzy reasoning method. Hydrological Processes 14 3 (2000) 431-448
    • (2000) Hydrological Processes , vol.14 , Issue.3 , pp. 431-448
    • Liong, S.Y.1    Lim, W.H.2    Kojiri, T.3    Hori, T.4
  • 151
    • 0037442430 scopus 로고    scopus 로고
    • Checking a process-based catchment model by artificial neural networks
    • Lischeid G., and Uhlenbrook S. Checking a process-based catchment model by artificial neural networks. Hydrological Processes 17 2 (2003) 265-277
    • (2003) Hydrological Processes , vol.17 , Issue.2 , pp. 265-277
    • Lischeid, G.1    Uhlenbrook, S.2
  • 152
    • 0035282702 scopus 로고    scopus 로고
    • Investigating short-term dynamics and long-term trends of SO4 in the runoff of a forested catchment using artificial neural networks
    • Lischeid G. Investigating short-term dynamics and long-term trends of SO4 in the runoff of a forested catchment using artificial neural networks. Journal of Hydrology 243 1, 2 (2001) 31-42
    • (2001) Journal of Hydrology , vol.243 , Issue.1-2 , pp. 31-42
    • Lischeid, G.1
  • 153
    • 33751047662 scopus 로고    scopus 로고
    • Takagi-Sugeno fuzzy inference system for modeling stage-discharge relationship
    • Lohani A.K., Goel N.K., and Bhatia K.K.S. Takagi-Sugeno fuzzy inference system for modeling stage-discharge relationship. Journal of Hydrology 331 1, 2 (2006) 146-160
    • (2006) Journal of Hydrology , vol.331 , Issue.1-2 , pp. 146-160
    • Lohani, A.K.1    Goel, N.K.2    Bhatia, K.K.S.3
  • 155
    • 0032855262 scopus 로고    scopus 로고
    • Empirical comparison of various methods for training feed-forward neural networks for salinity forecasting
    • Maier H.R., and Dandy G.C. Empirical comparison of various methods for training feed-forward neural networks for salinity forecasting. Water Resources Research 35 8 (1999) 2591-2596
    • (1999) Water Resources Research , vol.35 , Issue.8 , pp. 2591-2596
    • Maier, H.R.1    Dandy, G.C.2
  • 156
    • 0033957764 scopus 로고    scopus 로고
    • Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications
    • Maier H.R., and Dandy G.C. Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications. Environmental Modelling & Software 15 1 (2000) 101-124
    • (2000) Environmental Modelling & Software , vol.15 , Issue.1 , pp. 101-124
    • Maier, H.R.1    Dandy, G.C.2
  • 158
    • 0037339103 scopus 로고    scopus 로고
    • Uncertainty of weekly nitrate-nitrogen forecasts using artificial neural networks
    • Markus M., Tsai C.W.S., and Demissie M. Uncertainty of weekly nitrate-nitrogen forecasts using artificial neural networks. Journal of Environmental Engineering - ASCE 129 3 (2003) 267-274
    • (2003) Journal of Environmental Engineering - ASCE , vol.129 , Issue.3 , pp. 267-274
    • Markus, M.1    Tsai, C.W.S.2    Demissie, M.3
  • 159
    • 34547733003 scopus 로고    scopus 로고
    • Comparing artificial neural networks and regression models for predicting faecal coliform concentrations
    • Mas D.M.L., and Ahlfeld D.P. Comparing artificial neural networks and regression models for predicting faecal coliform concentrations. Hydrological Sciences Journal (Journal Des Sciences Hydrologiques) 52 4 (2007) 713-731
    • (2007) Hydrological Sciences Journal (Journal Des Sciences Hydrologiques) , vol.52 , Issue.4 , pp. 713-731
    • Mas, D.M.L.1    Ahlfeld, D.P.2
  • 161
    • 53149113747 scopus 로고    scopus 로고
    • Prediction of urban stormwater quality using artificial neural networks
    • May D.B., and Sivakumar M. Prediction of urban stormwater quality using artificial neural networks. Environmental Modelling & Software 24 2 (2009) 296-302
    • (2009) Environmental Modelling & Software , vol.24 , Issue.2 , pp. 296-302
    • May, D.B.1    Sivakumar, M.2
  • 162
    • 44749087316 scopus 로고    scopus 로고
    • Non-linear variable selection for artificial neural networks using partial mutual information
    • May R.J., Maier H.R., Dandy G.C., and Fernando T. Non-linear variable selection for artificial neural networks using partial mutual information. Environmental Modelling & Software 23 10, 11 (2008) 1312-1326
    • (2008) Environmental Modelling & Software , vol.23 , Issue.10-11 , pp. 1312-1326
    • May, R.J.1    Maier, H.R.2    Dandy, G.C.3    Fernando, T.4
  • 163
    • 44749087176 scopus 로고    scopus 로고
    • Application of partial mutual information variable selection to ANN forecasting of water quality in water distribution systems
    • May R.J., Dandy G.C., Maier H.R., and Nixon J.B. Application of partial mutual information variable selection to ANN forecasting of water quality in water distribution systems. Environmental Modelling & Software 23 10, 11 (2008) 1289-1299
    • (2008) Environmental Modelling & Software , vol.23 , Issue.10-11 , pp. 1289-1299
    • May, R.J.1    Dandy, G.C.2    Maier, H.R.3    Nixon, J.B.4
  • 164
    • 77951183310 scopus 로고    scopus 로고
    • Developing artificial neural networks for water quality modelling and analysis
    • Hanrahan G. (Ed), ILM Publications, St Albans, UK
    • May R.J., Maier H.R., and Dandy G.C. Developing artificial neural networks for water quality modelling and analysis. In: Hanrahan G. (Ed). Modelling of Pollutants in Complex Environmental Systems vol. 1 (2009), ILM Publications, St Albans, UK
    • (2009) Modelling of Pollutants in Complex Environmental Systems , vol.1
    • May, R.J.1    Maier, H.R.2    Dandy, G.C.3
  • 165
    • 74149090502 scopus 로고    scopus 로고
    • Data splitting for artificial neural netowrks using SOM-based stratified sampling
    • May R.J., Maier H.R., and Dandy G.C. Data splitting for artificial neural netowrks using SOM-based stratified sampling. Neural Networks 23 2 (2010) 283-294
    • (2010) Neural Networks , vol.23 , Issue.2 , pp. 283-294
    • May, R.J.1    Maier, H.R.2    Dandy, G.C.3
  • 166
    • 33846527925 scopus 로고    scopus 로고
    • Multitemporal scale hydrograph prediction using artificial neural networks
    • Melesse A.M., and Wang X.X. Multitemporal scale hydrograph prediction using artificial neural networks. Journal of the American Water Resources Association 42 6 (2006) 1647-1657
    • (2006) Journal of the American Water Resources Association , vol.42 , Issue.6 , pp. 1647-1657
    • Melesse, A.M.1    Wang, X.X.2
  • 167
    • 3142538909 scopus 로고    scopus 로고
    • Improved streamflow forecasting using self-organizing radial basis function artificial neural networks
    • Moradkhani H., Hsu K., Gupta H.V., and Sorooshian S. Improved streamflow forecasting using self-organizing radial basis function artificial neural networks. Journal of Hydrology 295 1-4 (2004) 246-262
    • (2004) Journal of Hydrology , vol.295 , Issue.1-4 , pp. 246-262
    • Moradkhani, H.1    Hsu, K.2    Gupta, H.V.3    Sorooshian, S.4
  • 168
    • 34249787892 scopus 로고    scopus 로고
    • Seasonal reservoir inflow forecasting with low-frequency climatic indices: a comparison of data-driven methods
    • Muluye G.V., and Coulibaly P. Seasonal reservoir inflow forecasting with low-frequency climatic indices: a comparison of data-driven methods. Hydrological Sciences Journal (Journal Des Sciences Hydrologiques) 52 3 (2007) 508-522
    • (2007) Hydrological Sciences Journal (Journal Des Sciences Hydrologiques) , vol.52 , Issue.3 , pp. 508-522
    • Muluye, G.V.1    Coulibaly, P.2
  • 169
    • 1942490118 scopus 로고    scopus 로고
    • A neuro-fuzzy computing technique for modeling hydrological time series
    • Nayak P.C., Sudheer K.P., Rangan D.M., and Ramasastri K.S. A neuro-fuzzy computing technique for modeling hydrological time series. Journal of Hydrology 291 1, 2 (2004) 52-66
    • (2004) Journal of Hydrology , vol.291 , Issue.1-2 , pp. 52-66
    • Nayak, P.C.1    Sudheer, K.P.2    Rangan, D.M.3    Ramasastri, K.S.4
  • 171
    • 36649032078 scopus 로고    scopus 로고
    • Rainfall-runoff modeling through hybrid intelligent system
    • Nayak P.C., Sudheer K.P., and Jain S.K. Rainfall-runoff modeling through hybrid intelligent system. Water Resources Research 43 7 (2007) W07415
    • (2007) Water Resources Research , vol.43 , Issue.7
    • Nayak, P.C.1    Sudheer, K.P.2    Jain, S.K.3
  • 172
    • 33645973241 scopus 로고    scopus 로고
    • Monthly runoff simulation: Comparing and combining conceptual and neural network models
    • Nilsson P., Uvo C.B., and Berndtsson R. Monthly runoff simulation: Comparing and combining conceptual and neural network models. Journal of Hydrology 321 1-4 (2006) 344-363
    • (2006) Journal of Hydrology , vol.321 , Issue.1-4 , pp. 344-363
    • Nilsson, P.1    Uvo, C.B.2    Berndtsson, R.3
  • 173
    • 33845670075 scopus 로고    scopus 로고
    • Radial basis function modeling of hourly streamflow hydrograph
    • Nor N.I.A., Harun S., and Kassim A.H.M. Radial basis function modeling of hourly streamflow hydrograph. Journal of Hydrologic Engineering 12 1 (2007) 113-123
    • (2007) Journal of Hydrologic Engineering , vol.12 , Issue.1 , pp. 113-123
    • Nor, N.I.A.1    Harun, S.2    Kassim, A.H.M.3
  • 174
    • 0036698116 scopus 로고    scopus 로고
    • Multivariate synthetic streamflow generation using a hybrid model based on artificial neural networks
    • Ochoa-Rivera J.C., Garcia-Bartual R., and Andreu J. Multivariate synthetic streamflow generation using a hybrid model based on artificial neural networks. Hydrology and Earth System Sciences 6 4 (2002) 641-654
    • (2002) Hydrology and Earth System Sciences , vol.6 , Issue.4 , pp. 641-654
    • Ochoa-Rivera, J.C.1    Garcia-Bartual, R.2    Andreu, J.3
  • 176
    • 3242769911 scopus 로고    scopus 로고
    • State space neural networks for short term rainfall-runoff forecasting
    • Pan T.Y., and Wang R.Y. State space neural networks for short term rainfall-runoff forecasting. Journal of Hydrology 297 1-4 (2004) 34-50
    • (2004) Journal of Hydrology , vol.297 , Issue.1-4 , pp. 34-50
    • Pan, T.Y.1    Wang, R.Y.2
  • 177
    • 28944448665 scopus 로고    scopus 로고
    • Using recurrent neural networks to reconstruct rainfall-runoff processes
    • Pan T.Y., and Wang R.Y. Using recurrent neural networks to reconstruct rainfall-runoff processes. Hydrological Processes 19 18 (2005) 3603-3619
    • (2005) Hydrological Processes , vol.19 , Issue.18 , pp. 3603-3619
    • Pan, T.Y.1    Wang, R.Y.2
  • 179
    • 33845975322 scopus 로고    scopus 로고
    • A nonlinear perturbation model based on artificial neural network
    • Pang B., Guo S.L., Xiong L.H., and Li C.Q. A nonlinear perturbation model based on artificial neural network. Journal of Hydrology 333 2-4 (2007) 504-516
    • (2007) Journal of Hydrology , vol.333 , Issue.2-4 , pp. 504-516
    • Pang, B.1    Guo, S.L.2    Xiong, L.H.3    Li, C.Q.4
  • 180
    • 33845600932 scopus 로고    scopus 로고
    • Cluster-based hydrologic prediction using genetic algorithm-trained neural networks
    • Parasuraman K., and Elshorbagy A. Cluster-based hydrologic prediction using genetic algorithm-trained neural networks. Journal of Hydrologic Engineering 12 1 (2007) 52-62
    • (2007) Journal of Hydrologic Engineering , vol.12 , Issue.1 , pp. 52-62
    • Parasuraman, K.1    Elshorbagy, A.2
  • 181
    • 33745435792 scopus 로고    scopus 로고
    • Spiking modular neural networks: A neural network modeling approach for hydrological processes
    • Parasuraman K., Elshorbagy A., and Carey S.K. Spiking modular neural networks: A neural network modeling approach for hydrological processes. Water Resources Research 42 5 (2006) W05412
    • (2006) Water Resources Research , vol.42 , Issue.5
    • Parasuraman, K.1    Elshorbagy, A.2    Carey, S.K.3
  • 182
    • 28844493616 scopus 로고    scopus 로고
    • Modeling a densely urbanized watershed with an artificial neural network, weather radar and telemetric data
    • Pereira A.J., and dos Santos O.C. Modeling a densely urbanized watershed with an artificial neural network, weather radar and telemetric data. Journal of Hydrology 317 1-2 (2006) 31-48
    • (2006) Journal of Hydrology , vol.317 , Issue.1-2 , pp. 31-48
    • Pereira, A.J.1    dos Santos, O.C.2
  • 183
    • 0041472702 scopus 로고    scopus 로고
    • Flood forecasting for the upper reach of the Red River Basin, North Vietnam
    • Phien H.N., and Kha N.D.A. Flood forecasting for the upper reach of the Red River Basin, North Vietnam. Water SA 29 3 (2003) 267-272
    • (2003) Water SA , vol.29 , Issue.3 , pp. 267-272
    • Phien, H.N.1    Kha, N.D.A.2
  • 184
    • 36949001609 scopus 로고    scopus 로고
    • Evaluation of 1-D tracer concentration profile in a small river by means of multi-layer perceptron neural networks
    • Piotrowski A., Wallis S.G., Napiorkowski J.J., and Rowinski P.M. Evaluation of 1-D tracer concentration profile in a small river by means of multi-layer perceptron neural networks. Hydrology and Earth System Sciences 11 6 (2007) 1883-1896
    • (2007) Hydrology and Earth System Sciences , vol.11 , Issue.6 , pp. 1883-1896
    • Piotrowski, A.1    Wallis, S.G.2    Napiorkowski, J.J.3    Rowinski, P.M.4
  • 185
    • 33845620661 scopus 로고    scopus 로고
    • Application of neural approaches to one-step daily flow forecasting in Portuguese watersheds
    • Pulido-Calvo I., and Portela M.M. Application of neural approaches to one-step daily flow forecasting in Portuguese watersheds. Journal of Hydrology 332 1-2 (2007) 1-15
    • (2007) Journal of Hydrology , vol.332 , Issue.1-2 , pp. 1-15
    • Pulido-Calvo, I.1    Portela, M.M.2
  • 186
    • 31444443313 scopus 로고    scopus 로고
    • Runoff and sediment yield modeling using artificial neural networks: Upper Siwane River, India
    • Raghuwanshi N.S., Singh R., and Reddy L.S. Runoff and sediment yield modeling using artificial neural networks: Upper Siwane River, India. Journal of Hydrologic Engineering 11 1 (2006) 71-79
    • (2006) Journal of Hydrologic Engineering , vol.11 , Issue.1 , pp. 71-79
    • Raghuwanshi, N.S.1    Singh, R.2    Reddy, L.S.3
  • 188
    • 0347135926 scopus 로고    scopus 로고
    • Modeling of the daily rainfall-runoff relationship with artificial neural network
    • Rajurkar M.P., Kothyari U.C., and Chaube U.C. Modeling of the daily rainfall-runoff relationship with artificial neural network. Journal of Hydrology 285 1-4 (2004) 96-113
    • (2004) Journal of Hydrology , vol.285 , Issue.1-4 , pp. 96-113
    • Rajurkar, M.P.1    Kothyari, U.C.2    Chaube, U.C.3
  • 189
    • 4644296256 scopus 로고    scopus 로고
    • Predicting catchment flow in a semi-arid region via an artificial neural network technique
    • Riad S., Mania J., Bouchaou L., and Najjar Y. Predicting catchment flow in a semi-arid region via an artificial neural network technique. Hydrological Processes 18 13 (2004) 2387-2393
    • (2004) Hydrological Processes , vol.18 , Issue.13 , pp. 2387-2393
    • Riad, S.1    Mania, J.2    Bouchaou, L.3    Najjar, Y.4
  • 190
    • 36148967396 scopus 로고    scopus 로고
    • Ten steps applied to development and evaluation of process-based biogeochemical models of estuaries
    • Robson B.J., Hamilton D.P., Webster I.T., and Chan T. Ten steps applied to development and evaluation of process-based biogeochemical models of estuaries. Environmental Modelling & Software 23 4 (2008) 369-384
    • (2008) Environmental Modelling & Software , vol.23 , Issue.4 , pp. 369-384
    • Robson, B.J.1    Hamilton, D.P.2    Webster, I.T.3    Chan, T.4
  • 192
    • 28844470729 scopus 로고    scopus 로고
    • Flow forecasting for a Hawaii stream using rating curves and neural networks
    • Sahoo G.B., and Ray C. Flow forecasting for a Hawaii stream using rating curves and neural networks. Journal of Hydrology 317 1, 2 (2006) 63-80
    • (2006) Journal of Hydrology , vol.317 , Issue.1-2 , pp. 63-80
    • Sahoo, G.B.1    Ray, C.2
  • 193
    • 33746217873 scopus 로고    scopus 로고
    • Use of neural network to predict flash flood and attendant water qualities of a mountainous stream on Oahu, Hawaii
    • Sahoo G.B., Ray C., and De Carlo E.H. Use of neural network to predict flash flood and attendant water qualities of a mountainous stream on Oahu, Hawaii. Journal of Hydrology 327 3, 4 (2006) 525-538
    • (2006) Journal of Hydrology , vol.327 , Issue.3-4 , pp. 525-538
    • Sahoo, G.B.1    Ray, C.2    De Carlo, E.H.3
  • 194
    • 0033535432 scopus 로고    scopus 로고
    • A non-linear rainfall-runoff model using an artificial neural network
    • Sajikumar N., and Thandaveswara B.S. A non-linear rainfall-runoff model using an artificial neural network. Journal of Hydrology 216 1, 2 (1999) 32-55
    • (1999) Journal of Hydrology , vol.216 , Issue.1-2 , pp. 32-55
    • Sajikumar, N.1    Thandaveswara, B.S.2
  • 195
    • 0032804627 scopus 로고    scopus 로고
    • A genetic programming approach to rainfall-runoff modelling
    • Savic D.A., Walters G.A., and Davidson J.W. A genetic programming approach to rainfall-runoff modelling. Water Resources Management 13 3 (1999) 219-231
    • (1999) Water Resources Management , vol.13 , Issue.3 , pp. 219-231
    • Savic, D.A.1    Walters, G.A.2    Davidson, J.W.3
  • 196
    • 21044446809 scopus 로고    scopus 로고
    • Application of a degree-day snow depth model to a Swiss glacierised catchment to improve neural network discharge forecasts
    • Schumann G., and Lauener G. Application of a degree-day snow depth model to a Swiss glacierised catchment to improve neural network discharge forecasts. Nordic Hydrology 36 2 (2005) 99-111
    • (2005) Nordic Hydrology , vol.36 , Issue.2 , pp. 99-111
    • Schumann, G.1    Lauener, G.2
  • 198
    • 34848868092 scopus 로고    scopus 로고
    • A comparative study of three neural network forecast combination methods for simulated river flows of different rainfall-runoff models
    • Shamseldin A.Y., O'Connor K.M., and Nasr A.E. A comparative study of three neural network forecast combination methods for simulated river flows of different rainfall-runoff models. Hydrological Sciences Journal (Journal Des Sciences Hydrologiques) 52 (2007) 896-916
    • (2007) Hydrological Sciences Journal (Journal Des Sciences Hydrologiques) , vol.52 , pp. 896-916
    • Shamseldin, A.Y.1    O'Connor, K.M.2    Nasr, A.E.3
  • 200
    • 27644448548 scopus 로고    scopus 로고
    • Simulation of flood flow in a river system using artificial neural networks
    • Shrestha R.R., Theobald S., and Nestmann F. Simulation of flood flow in a river system using artificial neural networks. Hydrology and Earth System Sciences 9 4 (2005) 313-321
    • (2005) Hydrology and Earth System Sciences , vol.9 , Issue.4 , pp. 313-321
    • Shrestha, R.R.1    Theobald, S.2    Nestmann, F.3
  • 201
    • 6344243351 scopus 로고    scopus 로고
    • Artificial neural network ensembles and their application in pooled flood frequency analysis
    • Shu C., and Burn D.H. Artificial neural network ensembles and their application in pooled flood frequency analysis. Water Resources Research 40 9 (2004) W09301
    • (2004) Water Resources Research , vol.40 , Issue.9
    • Shu, C.1    Burn, D.H.2
  • 202
    • 0037199712 scopus 로고    scopus 로고
    • River flow forecasting: use of phase-space reconstruction and artificial neural networks approaches
    • Sivakumar B., Jayawardena A.W., and Fernando T. River flow forecasting: use of phase-space reconstruction and artificial neural networks approaches. Journal of Hydrology 265 1-4 (2002) 225-245
    • (2002) Journal of Hydrology , vol.265 , Issue.1-4 , pp. 225-245
    • Sivakumar, B.1    Jayawardena, A.W.2    Fernando, T.3
  • 203
    • 0036214974 scopus 로고    scopus 로고
    • Is correlation dimension a reliable indicator of low-dimensional chaos in short hydrological time series?
    • Sivakumar B., Persson M., Berndtsson R., and Uvo C.B. Is correlation dimension a reliable indicator of low-dimensional chaos in short hydrological time series?. Water Resources Research 38 2 (2002) 1011
    • (2002) Water Resources Research , vol.38 , Issue.2 , pp. 1011
    • Sivakumar, B.1    Persson, M.2    Berndtsson, R.3    Uvo, C.B.4
  • 204
    • 18144390148 scopus 로고    scopus 로고
    • Flow categorization model for improving forecasting
    • Sivapragasam C., and Liong S.Y. Flow categorization model for improving forecasting. Nordic Hydrology 36 1 (2005) 37-48
    • (2005) Nordic Hydrology , vol.36 , Issue.1 , pp. 37-48
    • Sivapragasam, C.1    Liong, S.Y.2
  • 205
    • 27744590254 scopus 로고    scopus 로고
    • Discharge rating curve extension - A new approach
    • Sivapragasam C., and Muttil N. Discharge rating curve extension - A new approach. Water Resources Management 19 5 (2005) 505-520
    • (2005) Water Resources Management , vol.19 , Issue.5 , pp. 505-520
    • Sivapragasam, C.1    Muttil, N.2
  • 208
    • 10244261532 scopus 로고    scopus 로고
    • M5 model trees and neural networks: application to flood forecasting in the upper reach of the Huai River in China
    • Solomatine D.P., and Xue Y.P. M5 model trees and neural networks: application to flood forecasting in the upper reach of the Huai River in China. Journal of Hydrologic Engineering 9 6 (2004) 491-501
    • (2004) Journal of Hydrologic Engineering , vol.9 , Issue.6 , pp. 491-501
    • Solomatine, D.P.1    Xue, Y.P.2
  • 209
    • 36749007877 scopus 로고    scopus 로고
    • A simplified approach to quantifying predictive and parametric uncertainty in artificial neural network hydrologic models
    • Srivastav R.K., Sudheer K.P., and Chaubey I. A simplified approach to quantifying predictive and parametric uncertainty in artificial neural network hydrologic models. Water Resources Research 43 10 (2007) W10407
    • (2007) Water Resources Research , vol.43 , Issue.10
    • Srivastav, R.K.1    Sudheer, K.P.2    Chaubey, I.3
  • 210
    • 33845270185 scopus 로고    scopus 로고
    • Comparison of process-based and artificial neural network approaches for streamflow modeling in an agricultural watershed
    • Srivastava P., McVair J.N., and Johnson T.E. Comparison of process-based and artificial neural network approaches for streamflow modeling in an agricultural watershed. Journal of the American Water Resources Association 42 3 (2006) 545-563
    • (2006) Journal of the American Water Resources Association , vol.42 , Issue.3 , pp. 545-563
    • Srivastava, P.1    McVair, J.N.2    Johnson, T.E.3
  • 211
    • 1642333234 scopus 로고    scopus 로고
    • Explaining the internal behaviour of artificial neural network river flow models
    • Sudheer K.P., and Jain A. Explaining the internal behaviour of artificial neural network river flow models. Hydrological Processes 18 4 (2004) 833-844
    • (2004) Hydrological Processes , vol.18 , Issue.4 , pp. 833-844
    • Sudheer, K.P.1    Jain, A.2
  • 212
    • 0037470339 scopus 로고    scopus 로고
    • Improving peak flow estimates in artificial neural network river flow models
    • Sudheer K.P., Nayak P.C., and Ramasastri K.S. Improving peak flow estimates in artificial neural network river flow models. Hydrological Processes 17 3 (2003) 677-686
    • (2003) Hydrological Processes , vol.17 , Issue.3 , pp. 677-686
    • Sudheer, K.P.1    Nayak, P.C.2    Ramasastri, K.S.3
  • 213
    • 23044433719 scopus 로고    scopus 로고
    • Knowledge extraction from trained neural network river flow models
    • Sudheer K.P. Knowledge extraction from trained neural network river flow models. Journal of Hydrologic Engineering 10 4 (2005) 264-269
    • (2005) Journal of Hydrologic Engineering , vol.10 , Issue.4 , pp. 264-269
    • Sudheer, K.P.1
  • 215
    • 33644924333 scopus 로고    scopus 로고
    • Artificial neural networks for estimating daily total suspended sediment in natural streams
    • Tayfur G., and Guldal V. Artificial neural networks for estimating daily total suspended sediment in natural streams. Nordic Hydrology 37 1 (2006) 69-79
    • (2006) Nordic Hydrology , vol.37 , Issue.1 , pp. 69-79
    • Tayfur, G.1    Guldal, V.2
  • 216
    • 0242658864 scopus 로고    scopus 로고
    • Fuzzy logic algorithm for runoff-induced sediment transport from bare soil surfaces
    • Tayfur G., Ozdemir S., and Singh V.P. Fuzzy logic algorithm for runoff-induced sediment transport from bare soil surfaces. Advances in Water Resources 26 12 (2003) 1249-1256
    • (2003) Advances in Water Resources , vol.26 , Issue.12 , pp. 1249-1256
    • Tayfur, G.1    Ozdemir, S.2    Singh, V.P.3
  • 217
    • 34447334519 scopus 로고    scopus 로고
    • Predicting and forecasting flow discharge at sites receiving significant lateral inflow
    • Tayfur G., Moramarco T., and Singh V.P. Predicting and forecasting flow discharge at sites receiving significant lateral inflow. Hydrological Processes 21 14 (2007) 1848-1859
    • (2007) Hydrological Processes , vol.21 , Issue.14 , pp. 1848-1859
    • Tayfur, G.1    Moramarco, T.2    Singh, V.P.3
  • 218
    • 85006533095 scopus 로고    scopus 로고
    • Fuzzy set based error measure for hydrologic model evaluation
    • Teegavarapu R., and Elshorbagy A. Fuzzy set based error measure for hydrologic model evaluation. Journal of Hydroinformatics 7 3 (2005) 199-208
    • (2005) Journal of Hydroinformatics , vol.7 , Issue.3 , pp. 199-208
    • Teegavarapu, R.1    Elshorbagy, A.2
  • 219
    • 0034298851 scopus 로고    scopus 로고
    • Application of tank, NAM, ARMA and neural network models to flood forecasting
    • Tingsanchali T., and Gautam M.R. Application of tank, NAM, ARMA and neural network models to flood forecasting. Hydrological Processes 14 14 (2000) 2473-2487
    • (2000) Hydrological Processes , vol.14 , Issue.14 , pp. 2473-2487
    • Tingsanchali, T.1    Gautam, M.R.2
  • 221
    • 37549066943 scopus 로고    scopus 로고
    • Multistep ahead streamflow forecasting: Role of calibration data in conceptual and neural network modeling
    • Toth E., and Brath A. Multistep ahead streamflow forecasting: Role of calibration data in conceptual and neural network modeling. Water Resources Research 43 11 (2007) W11405
    • (2007) Water Resources Research , vol.43 , Issue.11
    • Toth, E.1    Brath, A.2
  • 222
    • 33646547633 scopus 로고    scopus 로고
    • Forecasting daily streamflow using hybrid ANN models
    • Wang W., Van Gelder P., Vrijling J.K., and Ma J. Forecasting daily streamflow using hybrid ANN models. Journal of Hydrology 324 1-4 (2006) 383-399
    • (2006) Journal of Hydrology , vol.324 , Issue.1-4 , pp. 383-399
    • Wang, W.1    Van Gelder, P.2    Vrijling, J.K.3    Ma, J.4
  • 223
    • 34748814840 scopus 로고    scopus 로고
    • Water balance modelling in Bowen, Queensland, and the ten iterative steps in model development and evaluation
    • Welsh W.D. Water balance modelling in Bowen, Queensland, and the ten iterative steps in model development and evaluation. Environmental Modelling & Software 23 2 (2008) 195-205
    • (2008) Environmental Modelling & Software , vol.23 , Issue.2 , pp. 195-205
    • Welsh, W.D.1
  • 224
    • 4644299731 scopus 로고    scopus 로고
    • Forecasting flows in Apalachicola River using neural networks
    • Wenrui H., Bing X., and Chan-Hilton A. Forecasting flows in Apalachicola River using neural networks. Hydrological Processes 18 13 (2004) 2545-2564
    • (2004) Hydrological Processes , vol.18 , Issue.13 , pp. 2545-2564
    • Wenrui, H.1    Bing, X.2    Chan-Hilton, A.3
  • 226
    • 18744366631 scopus 로고    scopus 로고
    • Artificial neural networks for forecasting watershed runoff and stream flows
    • Wu J.S., Han J., Annambhotla S., and Bryant S. Artificial neural networks for forecasting watershed runoff and stream flows. Journal of Hydrologic Engineering 10 3 (2005) 216-222
    • (2005) Journal of Hydrologic Engineering , vol.10 , Issue.3 , pp. 216-222
    • Wu, J.S.1    Han, J.2    Annambhotla, S.3    Bryant, S.4
  • 228
    • 0037200134 scopus 로고    scopus 로고
    • Short-term inflow forecasting using an artificial neural network model
    • Xu Z.X., and Li J.Y. Short-term inflow forecasting using an artificial neural network model. Hydrological Processes 16 12 (2002) 2423-2439
    • (2002) Hydrological Processes , vol.16 , Issue.12 , pp. 2423-2439
    • Xu, Z.X.1    Li, J.Y.2
  • 229
    • 33845702662 scopus 로고    scopus 로고
    • Forecasting of hydrologic time series with ridge regression in feature space
    • Yu X.Y., and Liong S.Y. Forecasting of hydrologic time series with ridge regression in feature space. Journal of Hydrology 332 3, 4 (2007) 290-302
    • (2007) Journal of Hydrology , vol.332 , Issue.3-4 , pp. 290-302
    • Yu, X.Y.1    Liong, S.Y.2
  • 230
    • 0033019602 scopus 로고    scopus 로고
    • Short term streamflow forecasting using artificial neural networks
    • Zealand C.M., Burn D.H., and Simonovic S.P. Short term streamflow forecasting using artificial neural networks. Journal of Hydrology 214 1-4 (1999) 32-48
    • (1999) Journal of Hydrology , vol.214 , Issue.1-4 , pp. 32-48
    • Zealand, C.M.1    Burn, D.H.2    Simonovic, S.P.3
  • 231
    • 0034100712 scopus 로고    scopus 로고
    • Prediction of watershed runoff using Bayesian concepts and modular neural networks
    • Zhang B., and Govindaraju R.S. Prediction of watershed runoff using Bayesian concepts and modular neural networks. Water Resources Research 36 3 (2000) 753-762
    • (2000) Water Resources Research , vol.36 , Issue.3 , pp. 753-762
    • Zhang, B.1    Govindaraju, R.S.2
  • 232
    • 0037466126 scopus 로고    scopus 로고
    • Geomorphology-based artificial neural networks (GANNs) for estimation of direct runoff over watersheds
    • Zhang B., and Govindaraju R.S. Geomorphology-based artificial neural networks (GANNs) for estimation of direct runoff over watersheds. Journal of Hydrology 273 1-4 (2003) 18-34
    • (2003) Journal of Hydrology , vol.273 , Issue.1-4 , pp. 18-34
    • Zhang, B.1    Govindaraju, R.S.2
  • 233
    • 34848823126 scopus 로고    scopus 로고
    • An adaptive neural network embedded genetic algorithm approach for inverse water quality modeling
    • Zou R., Lung W.S., and Wu J. An adaptive neural network embedded genetic algorithm approach for inverse water quality modeling. Water Resources Research 43 8 (2007) W08427
    • (2007) Water Resources Research , vol.43 , Issue.8
    • Zou, R.1    Lung, W.S.2    Wu, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.