메뉴 건너뛰기




Volumn 230, Issue 3-4, 2000, Pages 244-257

Daily reservoir inflow forecasting using artificial neural networks with stopped training approach

Author keywords

Artificial neural networks; Real time forecasting; Reservoir inflow; Stopped training approach

Indexed keywords

BACKPROPAGATION; FEEDFORWARD NEURAL NETWORKS; MATHEMATICAL MODELS; MULTILAYER NEURAL NETWORKS; REAL TIME SYSTEMS; STATISTICAL METHODS; TIME SERIES ANALYSIS;

EID: 0034621379     PISSN: 00221694     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0022-1694(00)00214-6     Document Type: Article
Times cited : (523)

References (47)
  • 1
    • 0001085145 scopus 로고
    • Determination of nonlinear function response functions in rainfall-runoff processes
    • Amorocho J., Brandstetter A. Determination of nonlinear function response functions in rainfall-runoff processes. Water Resour. Res. 7:(5):1971;1087-1101.
    • (1971) Water Resour. Res. , vol.7 , Issue.5 , pp. 1087-1101
    • Amorocho, J.1    Brandstetter, A.2
  • 2
    • 0024774330 scopus 로고
    • Neural network and principal component analysis: Learning from examples without local minima
    • Baldi P., Hornik K. Neural network and principal component analysis: learning from examples without local minima. Neural Networks. 2:(1):1989;53-58.
    • (1989) Neural Networks , vol.2 , Issue.1 , pp. 53-58
    • Baldi, P.1    Hornik, K.2
  • 5
    • 0032688155 scopus 로고    scopus 로고
    • River flood forecasting with a neural network model
    • Campolo M., Andreussi P., Soldati A. River flood forecasting with a neural network model. Water Resour. Res. 35:(4):1999;1191-1197.
    • (1999) Water Resour. Res. , vol.35 , Issue.4 , pp. 1191-1197
    • Campolo, M.1    Andreussi, P.2    Soldati, A.3
  • 6
    • 0031932822 scopus 로고    scopus 로고
    • Using neural networks to assess the influence of changing seasonal climates in modifying discharge, dissolved organic carbon, and nitrogen export in eastern Canadian rivers
    • Clair T.A., Ehrman J.M. Using neural networks to assess the influence of changing seasonal climates in modifying discharge, dissolved organic carbon, and nitrogen export in eastern Canadian rivers. Water Resour. Res. 34:(3):1998;447-455.
    • (1998) Water Resour. Res. , vol.34 , Issue.3 , pp. 447-455
    • Clair, T.A.1    Ehrman, J.M.2
  • 8
    • 0032829433 scopus 로고    scopus 로고
    • Prévision hydrologique par réseaux de neurones artificiels: État de l'art
    • Coulibaly P., Anctil F., Bobée B. Prévision hydrologique par réseaux de neurones artificiels: état de l'art. Can. J. Civil Engng. 26:(3):1999;293-304.
    • (1999) Can. J. Civil Engng , vol.26 , Issue.3 , pp. 293-304
    • Coulibaly, P.1    Anctil, F.2    Bobée, B.3
  • 10
    • 0024861871 scopus 로고
    • Approximation by superposition of a sigmoidal function
    • Cybenko G. Approximation by superposition of a sigmoidal function. Math. Control Signals Syst. 2:1989;303-314.
    • (1989) Math. Control Signals Syst. , vol.2 , pp. 303-314
    • Cybenko, G.1
  • 12
    • 0027294340 scopus 로고
    • Improving model selection by nonconvergent methods
    • Finnoff W., Hergert F., Zimmermann H.G. Improving model selection by nonconvergent methods. Neural Networks. 6:1993;771-783.
    • (1993) Neural Networks , vol.6 , pp. 771-783
    • Finnoff, W.1    Hergert, F.2    Zimmermann, H.G.3
  • 13
    • 0028543366 scopus 로고
    • Training feedforward networks with the Marquardt algorithm
    • Hagan M.T., Menhaj M.B. Training feedforward networks with the Marquardt algorithm. IEEE Trans. Neural Networks. 5:(6):1994;989-993.
    • (1994) IEEE Trans. Neural Networks , vol.5 , Issue.6 , pp. 989-993
    • Hagan, M.T.1    Menhaj, M.B.2
  • 15
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • Hornik K., Stinchcombe M., White H. Multilayer feedforward networks are universal approximators. Neural Networks. 2:(5):1989;359-366.
    • (1989) Neural Networks , vol.2 , Issue.5 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 16
    • 0029413797 scopus 로고
    • Artificial neural network modeling of the rainfall-rainoff process
    • Hsu K.L., Gupta H.V., Sorooshian S. Artificial neural network modeling of the rainfall-rainoff process. Water Resour. Res. 31:(10):1995;2517-2530.
    • (1995) Water Resour. Res. , vol.31 , Issue.10 , pp. 2517-2530
    • Hsu, K.L.1    Gupta, H.V.2    Sorooshian, S.3
  • 17
    • 0024137490 scopus 로고
    • Increased rates of convergence through learning rate adaptation
    • Jacobs R.A. Increased rates of convergence through learning rate adaptation. Neural Networks. 1:(4):1988;295-308.
    • (1988) Neural Networks , vol.1 , Issue.4 , pp. 295-308
    • Jacobs, R.A.1
  • 18
    • 0006994099 scopus 로고
    • A mathematical model for nonlinear hydrologic systems
    • Jacoby S.L.S. A mathematical model for nonlinear hydrologic systems. J. Geophys. Res. 71:(20):1966;4811-4824.
    • (1966) J. Geophys. Res. , vol.71 , Issue.20 , pp. 4811-4824
    • Jacoby, S.L.S.1
  • 19
    • 0033197895 scopus 로고    scopus 로고
    • Application of ANN for reservoir inflow prediction and operation
    • Jain S.K., Das D., Srivastava D.K. Application of ANN for reservoir inflow prediction and operation. J. Water Resour. Planning Mgmt ASCE. 125:(5):1999;263-271.
    • (1999) J. Water Resour. Planning Mgmt ASCE , vol.125 , Issue.5 , pp. 263-271
    • Jain, S.K.1    Das, D.2    Srivastava, D.K.3
  • 20
    • 0001938874 scopus 로고
    • Neural network and its application to rainfall-runoff forecasting
    • Kang K.W., Park C.Y., Kim J.H. Neural network and its application to rainfall-runoff forecasting. Korean J. Hydrosci. 4:1993;1-9.
    • (1993) Korean J. Hydrosci. , vol.4 , pp. 1-9
    • Kang, K.W.1    Park, C.Y.2    Kim, J.H.3
  • 23
    • 0017900054 scopus 로고
    • Development of a hydrologic model for a Canadian watershed
    • Kite G.W. Development of a hydrologic model for a Canadian watershed. Can. J. Civil Engng. 5:(1):1978;126-134.
    • (1978) Can. J. Civil Engng , vol.5 , Issue.1 , pp. 126-134
    • Kite, G.W.1
  • 25
    • 0025477971 scopus 로고
    • Limitations of multi-layer perceptron networks - steps towards genetic neural networks
    • Mülenbein H. Limitations of multi-layer perceptron networks - steps towards genetic neural networks. Parallel Computing. 14:1990;249-260.
    • (1990) Parallel Computing , vol.14 , pp. 249-260
    • Mülenbein, H.1
  • 26
    • 0014776873 scopus 로고
    • River flow forecasting through conceptual models. Part I - A discussion of principles
    • Nash J.E., Sutcliffe J.V. River flow forecasting through conceptual models. Part I - a discussion of principles. J. Hydrol. 10:1970;282-290.
    • (1970) J. Hydrol. , vol.10 , pp. 282-290
    • Nash, J.E.1    Sutcliffe, J.V.2
  • 28
    • 0032099978 scopus 로고    scopus 로고
    • Automatic early stopping using cross validation: Quantifying the criteria
    • Prechelt L. Automatic early stopping using cross validation: quantifying the criteria. Neural Networks. 11:1998;761-767.
    • (1998) Neural Networks , vol.11 , pp. 761-767
    • Prechelt, L.1
  • 29
    • 0032051668 scopus 로고    scopus 로고
    • Comparaison de deux modèles pour la prévision journalière en temps réel des apports naturels
    • Ribeiro J., Lauzon N., Rousselle J., Trung H.T., Salas J.D. Comparaison de deux modèles pour la prévision journalière en temps réel des apports naturels. Can. J. Civil Engng. 25:1998;291-304.
    • (1998) Can. J. Civil Engng , vol.25 , pp. 291-304
    • Ribeiro, J.1    Lauzon, N.2    Rousselle, J.3    Trung, H.T.4    Salas, J.D.5
  • 31
    • 0029663691 scopus 로고    scopus 로고
    • Fuzzy learning decomposition for the scheduling of hydroelectric power systems
    • Saad M., Bigras P., Turgeon A., Duquette R. Fuzzy learning decomposition for the scheduling of hydroelectric power systems. Water Resour. Res. 32:(1):1996;179-186.
    • (1996) Water Resour. Res. , vol.32 , Issue.1 , pp. 179-186
    • Saad, M.1    Bigras, P.2    Turgeon, A.3    Duquette, R.4
  • 32
    • 0033535432 scopus 로고    scopus 로고
    • A non-linear rainfall-runoff model using an artificial neural network
    • Sajikumar N., Thandaveswara B.S. A non-linear rainfall-runoff model using an artificial neural network. J. Hydrol. 216:1999;32-55.
    • (1999) J. Hydrol. , vol.216 , pp. 32-55
    • Sajikumar, N.1    Thandaveswara, B.S.2
  • 34
    • 0342506462 scopus 로고    scopus 로고
    • Application of a neural network technique to rainfall-runoff modelling
    • Shamseldin A.Y. Application of a neural network technique to rainfall-runoff modelling. J. Hydrol. 199:1997;272-294.
    • (1997) J. Hydrol. , vol.199 , pp. 272-294
    • Shamseldin, A.Y.1
  • 35
    • 0030220483 scopus 로고    scopus 로고
    • Back-propagation is not efficient
    • Sima S. Back-propagation is not efficient. Neural Networks. 9:(6):1996;1017-1023.
    • (1996) Neural Networks , vol.9 , Issue.6 , pp. 1017-1023
    • Sima, S.1
  • 36
    • 0027274189 scopus 로고
    • Neural network constructive algorithms: Trading generalization for learning efficiency?
    • Smieja F.J. Neural network constructive algorithms: trading generalization for learning efficiency? Circuits, Signals and Signal Processing. 12:1993;331-374.
    • (1993) Circuits, Signals and Signal Processing , vol.12 , pp. 331-374
    • Smieja, F.J.1
  • 37
    • 0029416249 scopus 로고
    • Neural-network models of rainfall-runoff process
    • Smith J., Eli R.N. Neural-network models of rainfall-runoff process. J. Water Resour. Plan. Mgmt ASCE. 121:(6):1995;499-508.
    • (1995) J. Water Resour. Plan. Mgmt ASCE , vol.121 , Issue.6 , pp. 499-508
    • Smith, J.1    Eli, R.N.2
  • 39
    • 0033167344 scopus 로고    scopus 로고
    • Rainfall-runoff modeling using artificial neural networks
    • Tokar A.S., Johnson P.A. Rainfall-runoff modeling using artificial neural networks. J. Hydrol. Engng ASCE. 4:(3):1999;232-239.
    • (1999) J. Hydrol. Engng ASCE , vol.4 , Issue.3 , pp. 232-239
    • Tokar, A.S.1    Johnson, P.A.2
  • 40
    • 0025593679 scopus 로고
    • SuperSAB: Fast adaptive backpropagation with good scalling properties
    • Tollenaere T. SuperSAB: Fast adaptive backpropagation with good scalling properties. Neural Networks. 3:1990;561-573.
    • (1990) Neural Networks , vol.3 , pp. 561-573
    • Tollenaere, T.1
  • 42
    • 0000539096 scopus 로고
    • Generalization by weight-elimination with application to forecasting
    • R.P. Lippmann, J.E. Moody, & D.S. Touretzky. San Mateo: Morgan Kaufmann
    • Weigend A.S., Rumelhart D.E., Huberman B.A. Generalization by weight-elimination with application to forecasting. Lippmann R.P., Moody J.E., Touretzky D.S. Advances in Neural Information Processing Systems 3. 1991;875-882 Morgan Kaufmann, San Mateo.
    • (1991) Advances in Neural Information Processing Systems 3 , pp. 875-882
    • Weigend, A.S.1    Rumelhart, D.E.2    Huberman, B.A.3
  • 43
    • 0003408761 scopus 로고
    • World Meteorological Organisation (WMO), Geneva, Switzerland
    • World Meteorological Organisation (WMO), 1994. Guide for hydrological practices, Geneva, Switzerland.
    • (1994) Guide for Hydrological Practices
  • 44
    • 0031127257 scopus 로고    scopus 로고
    • Efficient backpropagation learning using optimal learning rate and momentum
    • Yu X.H., Chen G.A. Efficient backpropagation learning using optimal learning rate and momentum. Neural Networks. 10:1997;517-527.
    • (1997) Neural Networks , vol.10 , pp. 517-527
    • Yu, X.H.1    Chen, G.A.2
  • 45
    • 0033019602 scopus 로고    scopus 로고
    • Short term streamflow forecasting using artificial neural networks
    • Zealand C.M., Burn D.H., Simonovic S.P. Short term streamflow forecasting using artificial neural networks. J. Hydrol. 214:1999;32-48.
    • (1999) J. Hydrol. , vol.214 , pp. 32-48
    • Zealand, C.M.1    Burn, D.H.2    Simonovic, S.P.3
  • 46
    • 0003123930 scopus 로고    scopus 로고
    • Forecasting with artificial neural networks: The state of the art
    • Zhang G., Patuwo B.E., Hu M.Y. Forecasting with artificial neural networks: the state of the art. Int. J. Forecasting. 14:1998;35-62.
    • (1998) Int. J. Forecasting , vol.14 , pp. 35-62
    • Zhang, G.1    Patuwo, B.E.2    Hu, M.Y.3
  • 47
    • 0000251270 scopus 로고
    • Comparisons between fuzzy reasoning and neural network methods to forecast runoff discharge
    • Zhu M.L., Fujita M. Comparisons between fuzzy reasoning and neural network methods to forecast runoff discharge. J. Hydrosci. Hydraulic Engng. 12:(2):1994;131-141.
    • (1994) J. Hydrosci. Hydraulic Engng , vol.12 , Issue.2 , pp. 131-141
    • Zhu, M.L.1    Fujita, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.