메뉴 건너뛰기




Volumn 50, Issue 3, 2005, Pages 439-457

Improving generalization of artificial neural networks in rainfall-runoff modelling

Author keywords

Artificial neural networks; Avoiding overfitting techniques; Data driven modelling; Rainfall runoff modelling

Indexed keywords

ALGORITHMS; CATCHMENTS; DATA ACQUISITION; DRAINAGE; MATHEMATICAL MODELS; NEURAL NETWORKS; PARAMETER ESTIMATION; RAIN; SPURIOUS SIGNAL NOISE;

EID: 20844456071     PISSN: 02626667     EISSN: None     Source Type: Journal    
DOI: 10.1623/hysj.50.3.439.65025     Document Type: Article
Times cited : (98)

References (30)
  • 1
    • 0742267129 scopus 로고    scopus 로고
    • Using pruning algorithms and genetic algorithms to optimise network architectures and forecasting inputs in a neural network rainfall-runoff model
    • Abrahart, R. J., See, L. & Kneale, P. E. (1999) Using pruning algorithms and genetic algorithms to optimise network architectures and forecasting inputs in a neural network rainfall-runoff model. J. Hydroinformatics 1(2), 103-114.
    • (1999) J. Hydroinformatics , vol.1 , Issue.2 , pp. 103-114
    • Abrahart, R.J.1    See, L.2    Kneale, P.E.3
  • 2
    • 0034174396 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology. II: Hydrologic applications
    • ASCE Task Committee on Application of Neural Networks in Hydrology
    • ASCE Task Committee on Application of Neural Networks in Hydrology (2000) Artificial neural networks in hydrology. II: hydrologic applications. J. Hydrol. Engng ASCE 5(2), 124-137.
    • (2000) J. Hydrol. Engng ASCE , vol.5 , Issue.2 , pp. 124-137
  • 6
    • 0032005702 scopus 로고    scopus 로고
    • An artificial neural network approach to rainfall-runoff modelling
    • Dawson, C. W. & Wilby, R. (1998) An artificial neural network approach to rainfall-runoff modelling. Hydrol. Sci. J. 43(1), 47-66.
    • (1998) Hydrol. Sci. J. , vol.43 , Issue.1 , pp. 47-66
    • Dawson, C.W.1    Wilby, R.2
  • 8
    • 84962066498 scopus 로고    scopus 로고
    • Input-output dynamic neural networks simulating inflow-outflow phenomena in an urban hydrological basin
    • Giustolisi, O. (2000) Input-output dynamic neural networks simulating inflow-outflow phenomena in an urban hydrological basin. J. Hydroinformatics 2(4), 269-279.
    • (2000) J. Hydroinformatics , vol.2 , Issue.4 , pp. 269-279
    • Giustolisi, O.1
  • 9
    • 20844443609 scopus 로고    scopus 로고
    • Some techniques to avoid overfitting of artificial neural networks
    • IWA Publishing, London, UK
    • Giustolisi, O. (2002) Some techniques to avoid overfitting of artificial neural networks. In: Hydroinformatics 2002, vol. 2, 1465-1477. IWA Publishing, London, UK.
    • (2002) Hydroinformatics 2002 , vol.2 , pp. 1465-1477
    • Giustolisi, O.1
  • 10
    • 0742306444 scopus 로고    scopus 로고
    • Sparse solution in training artificial neural networks
    • Giustolisi, O. (2004) Sparse solution in training artificial neural networks. NeuroComputing 56C, 284-304.
    • (2004) NeuroComputing , vol.56 C , pp. 284-304
    • Giustolisi, O.1
  • 11
    • 0004236492 scopus 로고
    • The Johns Hopkins University Press Ltd., Baltimore, USA
    • Golub, G. H. & Van Loan, C. F. (1993) Matrix Computations. The Johns Hopkins University Press Ltd., Baltimore, USA.
    • (1993) Matrix Computations
    • Golub, G.H.1    Van Loan, C.F.2
  • 12
    • 0003413187 scopus 로고    scopus 로고
    • (second edn). Prentice-Hall Inc., Englewood Cliffs, New Jersey, USA
    • Haykin, S. (1999) Neural Networks: A Comprehensive Foundation (second edn). Prentice-Hall Inc., Englewood Cliffs, New Jersey, USA.
    • (1999) Neural Networks: A Comprehensive Foundation
    • Haykin, S.1
  • 14
    • 0029413797 scopus 로고
    • Artificial neural network modeling of rainfall-runoff
    • Hsu, K. L., Gupta, H. V. & Sorooshian, S. (1995) Artificial neural network modeling of rainfall-runoff. Water Resour. Res. 31 (10), 2517-2530.
    • (1995) Water Resour. Res. , vol.31 , Issue.10 , pp. 2517-2530
    • Hsu, K.L.1    Gupta, H.V.2    Sorooshian, S.3
  • 15
    • 0035472003 scopus 로고    scopus 로고
    • River flow time series prediction with a range-dependent neural network
    • Hu, T. S., Lam, K. C. & Ng, S. T. (2001) River flow time series prediction with a range-dependent neural network. Hydrol. Sci. J. 46(5), 729-745.
    • (2001) Hydrol. Sci. J. , vol.46 , Issue.5 , pp. 729-745
    • Hu, T.S.1    Lam, K.C.2    Ng, S.T.3
  • 16
    • 0025254722 scopus 로고
    • A time-delay neural network architecture for isolated word recognition
    • Lang, K., Waibel, A.& Hinton, G. (1990) A time-delay neural network architecture for isolated word recognition. Neural Networks 3, 23-43.
    • (1990) Neural Networks , vol.3 , pp. 23-43
    • Lang, K.1    Waibel, A.2    Hinton, G.3
  • 17
    • 0000494466 scopus 로고
    • Optimal brain damage
    • (ed. by D. S. Touretzky), Morgan Kaufmann, San Mateo, California, USA
    • Le Cun, Y., Denker, J. S. & Solla, S. A. (1990) Optimal brain damage. In: Advances in Neural Information Processing Systems (ed. by D. S. Touretzky), vol. 2, 598-605. Morgan Kaufmann, San Mateo, California, USA.
    • (1990) Advances in Neural Information Processing Systems , vol.2 , pp. 598-605
    • Le Cun, Y.1    Denker, J.S.2    Solla, S.A.3
  • 18
    • 0003473124 scopus 로고    scopus 로고
    • (second end). Prentice-Hall Inc., Englewood Cliffs, New Jersey, USA
    • Ljung, L. (1999) System Identification: Theory for the User (second end). Prentice-Hall Inc., Englewood Cliffs, New Jersey, USA.
    • (1999) System Identification: Theory for the User
    • Ljung, L.1
  • 19
    • 0029748915 scopus 로고    scopus 로고
    • A neural network model of rainfall-runoff using radial basis functions
    • Mason, J. C., Price, R. K. & Temme, A. (1996) A neural network model of rainfall-runoff using radial basis functions. J. Hydraul. Res. 34(4), 537-548.
    • (1996) J. Hydraul. Res. , vol.34 , Issue.4 , pp. 537-548
    • Mason, J.C.1    Price, R.K.2    Temme, A.3
  • 20
    • 0013015416 scopus 로고    scopus 로고
    • Sub-symbolic methods for data mining in hydraulic engineering
    • Minns, A. W. (2000) Sub-symbolic methods for data mining in hydraulic engineering. J. Hydroinformatics 2(1), 3-13.
    • (2000) J. Hydroinformatics , vol.2 , Issue.1 , pp. 3-13
    • Minns, A.W.1
  • 21
    • 0030159380 scopus 로고    scopus 로고
    • Artificial neural networks as rainfall-runoff models
    • Minns, A. W. & Hall, M. J. (1996) Artificial neural networks as rainfall-runoff models. Hydrol. Sci. J. 41(3), 399-419.
    • (1996) Hydrol. Sci. J. , vol.41 , Issue.3 , pp. 399-419
    • Minns, A.W.1    Hall, M.J.2
  • 22
    • 0001765492 scopus 로고
    • Simplifying neural networks by soft weight-sharing
    • (ed. by J. Moody, S. Hanson & R. Lippmann), Morgan Kaufmann, San Mateo, California, USA
    • Nowlan, S. J. & Hinton, G. E. (1992) Simplifying neural networks by soft weight-sharing. In: Advances in Neural Information Processing Systems (ed. by J. Moody, S. Hanson & R. Lippmann), vol. 4, 173-193. Morgan Kaufmann, San Mateo, California, USA.
    • (1992) Advances in Neural Information Processing Systems , vol.4 , pp. 173-193
    • Nowlan, S.J.1    Hinton, G.E.2
  • 23
    • 0036899543 scopus 로고    scopus 로고
    • Artificial neural networks for daily rainfall-runoff modelling
    • Rajurkar, M. P., Kothyari, U. C. & Chaube U. C. (2002) Artificial neural networks for daily rainfall-runoff modelling. Hydrol. Sci. J. 47(6), 865-877.
    • (2002) Hydrol. Sci. J. , vol.47 , Issue.6 , pp. 865-877
    • Rajurkar, M.P.1    Kothyari, U.C.2    Chaube, U.C.3
  • 24
    • 85006941509 scopus 로고    scopus 로고
    • Rainfall and runoff forecasting with SSA-SVM approach
    • Sivapragasam, C., Liong Shie-Yui & Pasha, M. F. K. (2001) Rainfall and runoff forecasting with SSA-SVM approach. J. Hydroinformatics 3 (3), 141-152.
    • (2001) J. Hydroinformatics , vol.3 , Issue.3 , pp. 141-152
    • Sivapragasam, C.1    Liong, S.-Y.2    Pasha, M.F.K.3
  • 25
    • 0029416249 scopus 로고
    • Neural-network models of rainfall-runoff process
    • Smith, J. & Eli, R. N. (1995) Neural-network models of rainfall-runoff process. J. Water Resour. Plan. Manage. ASCE 121(6), 499-508.
    • (1995) J. Water Resour. Plan. Manage. ASCE , vol.121 , Issue.6 , pp. 499-508
    • Smith, J.1    Eli, R.N.2
  • 27
    • 0000043665 scopus 로고
    • Solution of incorrectly formulated problems and the regularization method
    • Tikhonov, A., N. (1963) Solution of incorrectly formulated problems and the regularization method. Doklady Akademii Nauk SSSR 151, 501-504.
    • (1963) Doklady Akademii Nauk SSSR , vol.151 , pp. 501-504
    • Tikhonov, A.N.1
  • 29
    • 0001024505 scopus 로고
    • On uniform convergence of relative frequencies of events to their probabilities
    • Vapnik, V. N. & Chervonenkis, A. Ya. (1971) On uniform convergence of relative frequencies of events to their probabilities. Theoret. Prob. Appl. 17, 264-280.
    • (1971) Theoret. Prob. Appl. , vol.17 , pp. 264-280
    • Vapnik, V.N.1    Chervonenkis, A.Ya.2
  • 30
    • 0037388711 scopus 로고    scopus 로고
    • Detection of conceptual model rainfall-runoff processes inside an artificial neural network
    • Wilby, R. L., Abrahart, R. J. & Dawson, C. W. (2003) Detection of conceptual model rainfall-runoff processes inside an artificial neural network. Hydrol. Sci. J. 48(2), 163-181.
    • (2003) Hydrol. Sci. J. , vol.48 , Issue.2 , pp. 163-181
    • Wilby, R.L.1    Abrahart, R.J.2    Dawson, C.W.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.