메뉴 건너뛰기




Volumn 45, Issue 1, 2009, Pages

A novel method to estimate model uncertainty using machine learning techniques

Author keywords

[No Author keywords available]

Indexed keywords

ERROR DISTRIBUTIONS; ESTIMATE MODEL; HYDROLOGICAL CONDITION; HYDROLOGICAL MODELS; IMPROVED MODELS; M5 MODEL TREE; MACHINE LEARNING TECHNIQUES; MODEL ERRORS; MODEL UNCERTAINTIES; NEW RESULTS; PARAMETERS CHARACTERIZING; RAINFALL-RUNOFF MODELING; RAINFALL-RUNOFF MODELS; TARGET VALUES; TRAINING SETS; UNCERTAINTY ESTIMATION; HYDROLOGICAL MODELING; MACHINE LEARNING MODELS;

EID: 72149087074     PISSN: 00431397     EISSN: None     Source Type: Journal    
DOI: 10.1029/2008WR006839     Document Type: Article
Times cited : (205)

References (39)
  • 3
    • 0004231183 scopus 로고
    • Development and application of a conceptual runoff model for Scandinavian catchments
    • Norrköping, Sweden
    • Bergström, S. (1976), Development and application of a conceptual runoff model for Scandinavian catchments, Rep. RHO 7, Swedish Meteorol. and Hydrol. Inst., Norrköping, Sweden.
    • (1976) Rep. RHO 7, Swedish Meteorol. and Hydrol. Inst.
    • Bergström, S.1
  • 4
    • 0027009437 scopus 로고
    • The future of distributed models: Model calibration and uncertainty prediction
    • doi:10.1002/hyp.3360060305
    • Beven, K., and A. Binley (1992), The future of distributed models: Model calibration and uncertainty prediction, Hydrol. Processes, 6, 279-298, doi:10.1002/hyp.3360060305.
    • (1992) Hydrol. Processes , vol.6 , pp. 279-298
    • Beven, K.1    Binley, A.2
  • 5
    • 0035426008 scopus 로고    scopus 로고
    • Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology
    • DOI 10.1016/S0022-1694(01)00421-8, PII S0022169401004218
    • Beven, K., and J. Freer (2001), Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology, J. Hydrol. Amsterdam, 249, 11-29, doi:10.1016/S0022-1694(01)00421-8. (Pubitemid 32664993)
    • (2001) Journal of Hydrology , vol.249 , Issue.1-4 , pp. 11-29
    • Beven, K.1    Freer, J.2
  • 7
    • 10644295753 scopus 로고    scopus 로고
    • Input determination for neural network models in water resources applications. Part 1 - Background and methodology
    • DOI 10.1016/j.jhydrol.2004.06.021, PII S0022169404002987
    • Bowden, G. J., G. C. Dandy, and H. R. Maier (2005), Input determination for neural network models in water resources applications. Part 1-Background and methodology, J. Hydrol. Amsterdam, 301, 75-92, doi:10.1016/j.jhydrol.2004.06. 021. (Pubitemid 39645410)
    • (2005) Journal of Hydrology , vol.301 , Issue.1-4 , pp. 75-92
    • Bowden, G.J.1    Dandy, G.C.2    Maier, H.R.3
  • 8
    • 0026466155 scopus 로고
    • Application of a conceptual runoff model in different physiographic regions of Switzerland
    • Braun, L. N., and C. B. Renner (1992), Application of a conceptual runoff model in different physiographic regions of Switzerland, Hydrol. Sci. J., 37(3), 217-232.
    • (1992) Hydrol. Sci. J. , vol.37 , Issue.3 , pp. 217-232
    • Braun, L.N.1    Renner, C.B.2
  • 9
    • 34250020342 scopus 로고    scopus 로고
    • Assessing uncertainty propagation through physically based models of soil water flow and solute transport
    • edited by M. G. Anderson, John Wiley, New York
    • Brown, J. D., and G. B. M. Heuvelink (2005), Assessing uncertainty propagation through physically based models of soil water flow and solute transport, in Encyclopedia of Hydrological Sciences, edited by M. G. Anderson, pp. 1181-1195, John Wiley, New York.
    • (2005) Encyclopedia of Hydrological Sciences , pp. 1181-1195
    • Brown, J.D.1    Heuvelink, G.B.M.2
  • 10
    • 1542680961 scopus 로고    scopus 로고
    • Heteroscedastic kernel ridge regression
    • DOI 10.1016/j.neucom.2004.01.005, PII S0925231204000621, New Aspects in Neurocomputing: 10th European Symposium on Arti
    • Cawley, G. C., N. L. C. Talbot, R. J. Foxall, S. R. Dorling, and D. P. Mandic (2004), Heteroscedastic kernel ridge regression, Neurocomputing, 57, 105-124, doi:10.1016/j.neucom.2004.01.005. (Pubitemid 38351864)
    • (2004) Neurocomputing , vol.57 , Issue.1-4 , pp. 105-124
    • Cawley, G.C.1    Talbot, N.L.C.2    Foxall, R.J.3    Dorling, S.R.4    Mandic, D.P.5
  • 13
    • 13244265879 scopus 로고    scopus 로고
    • Estimation bayésienne des incertitudes au sein d'une modé lisation conceptuelle de bilan hydrologique
    • DOI 10.1623/hysj.50.1.45.56334
    • Engeland, K., C.-Y. Xu, and L. Gottschalk (2005), Assessing uncertainties in a conceptual water balance model using Bayesian methodology, Hydrol. Sci. J., 50(1), 45-63, doi:10.1623/hysj.50.1.45.56334. (Pubitemid 40191272)
    • (2005) Hydrological Sciences Journal , vol.50 , Issue.1 , pp. 45-63
    • Engeland, K.1    Xu, C.-Y.2    Gottschalk, L.3
  • 14
    • 26444548489 scopus 로고    scopus 로고
    • Model calibration and uncertainty estimation
    • edited by M. G. Anderson, John Wiley, New York
    • Gupta, H. V., K. J. Beven, and T. Wagener (2005), Model calibration and uncertainty estimation, in Encyclopedia of Hydrological Sciences, edited by M. G. Anderson, pp. 2015- 2031, John Wiley, New York.
    • (2005) Encyclopedia of Hydrological Sciences , pp. 2015-2031
    • Gupta, H.V.1    Beven, K.J.2    Wagener, T.3
  • 15
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • doi:10.1162/153244303322753616
    • Guyon, I., and A. Elisseeff (2003), An introduction to variable and feature selection, J. Mach. Learning Res., 3(7 - 8), 1157-1182, doi:10.1162/153244303322753616.
    • (2003) J. Mach. Learning Res. , vol.3 , Issue.7-8 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 16
    • 0002098934 scopus 로고    scopus 로고
    • A bivariate meta-Gaussian density for use in hydrology
    • Kelly, K. S., and R. Krzysztofowicz (1997), A bivariate meta-Gaussian density for use in hydrology, Stochastic Hydrol. Hydraul., 11(1), 17-31, doi:10.1007/BF02428423. (Pubitemid 127823850)
    • (1997) Stochastic Hydrology and Hydraulics , vol.11 , Issue.1 , pp. 17-31
    • Kelly, K.S.1    Krzysztofowicz, R.2
  • 17
    • 0000273843 scopus 로고
    • Regression quantiles
    • doi:10.2307/1913643
    • Koenker, R., and G. Bassett (1978), Regression quantiles, Econometrica, 46(1), 33-50, doi:10.2307/1913643.
    • (1978) Econometrica , vol.46 , Issue.1 , pp. 33-50
    • Koenker, R.1    Bassett, G.2
  • 18
    • 34247990255 scopus 로고
    • On the Kolmogorov-Smirnov test for normality with mean and variance unknown
    • doi:10.2307/2283970
    • Lilliefors, H. W. (1967), On the Kolmogorov-Smirnov test for normality with mean and variance unknown, J. Am. Stat. Assoc., 62(318), 399-402, doi:10.2307/2283970.
    • (1967) J. Am. Stat. Assoc. , vol.62 , Issue.318 , pp. 399-402
    • Lilliefors, H.W.1
  • 19
    • 0031581519 scopus 로고    scopus 로고
    • Development and test of the distributed HBV-96 hydrological model
    • DOI 10.1016/S0022-1694(97)00041-3, PII S0022169497000413
    • Lindström, G., B. Johansson, M. Persson, M. Gardelin, and S. Bergtröm (1997), Development and test of the distributed HBV-96 hydrological model, J. Hydrol. Amsterdam, 201, 272-288, doi:10.1016/S0022- 1694(97)00041-3. (Pubitemid 28037764)
    • (1997) Journal of Hydrology , vol.201 , Issue.1-4 , pp. 272-288
    • Lindstrom, G.1    Johansson, B.2    Persson, M.3    Gardelin, M.4    Bergstrom, S.5
  • 20
    • 7244247371 scopus 로고    scopus 로고
    • Treatment of precipitation uncertainty in rainfall-runoff modelling: A fuzzy set approach
    • DOI 10.1016/j.advwatres.2004.07.001, PII S0309170804001010
    • Maskey, S., V. Guinot, and R. K. Price (2004), Treatment of precipitation uncertainty in rainfall-runoff modelling: A fuzzy set approach, Adv. Water Resour., 27, 889-898, doi:10.1016/j.advwatres.2004.07.001. (Pubitemid 39437057)
    • (2004) Advances in Water Resources , vol.27 , Issue.9 , pp. 889-898
    • Maskey, S.1    Guinot, V.2    Price, R.K.3
  • 21
    • 0026614965 scopus 로고
    • An improved first-order reliability approach for assessing uncertainties in hydrological modelling
    • doi:10.1016/0022-1694(92)90177-W
    • Melching, C. S. (1992), An improved first-order reliability approach for assessing uncertainties in hydrological modelling, J. Hydrol. Amsterdam, 132, 157-177, doi:10.1016/0022-1694(92)90177-W.
    • (1992) J. Hydrol. Amsterdam , vol.132 , pp. 157-177
    • Melching, C.S.1
  • 22
    • 0001995809 scopus 로고
    • Reliability estimation
    • edited by V. P. Singh, Water Resour. Publ., Highlands Ranch, Colo
    • Melching, C. S. (1995), Reliability estimation, in Computer Models of Watershed Hydrology, edited by V. P. Singh, pp. 69-118, Water Resour. Publ., Highlands Ranch, Colo.
    • (1995) Computer Models of Watershed Hydrology , pp. 69-118
    • Melching, C.S.1
  • 24
    • 33947533125 scopus 로고    scopus 로고
    • What do we mean by 'uncertainty'? The need for a consistent wording about uncertainty assessment in hydrology
    • DOI 10.1002/hyp.6623
    • Montanari, A. (2007), do we mean by uncertainty? The need for a consistent wording about uncertainty assessment in hydrology, Hydrol. Processes, 21, 841-845, doi:10.1002/hyp.6623. (Pubitemid 46470747)
    • (2007) Hydrological Processes , vol.21 , Issue.6 , pp. 841-845
    • Montanari, A.1
  • 25
    • 2542555104 scopus 로고    scopus 로고
    • A stochastic approach for assessing the uncertainty of rainfall-runoff simulations
    • doi:10.1029/2003WR002540
    • Montanari, A., and A. Brath (2004), A stochastic approach for assessing the uncertainty of rainfall-runoff simulations, Water Resour. Res., 40, W01106, doi:10.1029/2003WR002540.
    • (2004) Water Resour. Res. , vol.40
    • Montanari, A.1    Brath, A.2
  • 26
    • 0014776873 scopus 로고
    • River flow forecasting through conceptual models part 1: A discussion of principles
    • doi:10.1016/0022-1694(70)90255-6
    • Nash, J. E., and J. V. Sutcliffe (1970), River flow forecasting through conceptual models part 1: A discussion of principles, J. Hydrol. Amsterdam, 10, 282-290, doi:10.1016/0022-1694(70)90255-6.
    • (1970) J. Hydrol. Amsterdam , vol.10 , pp. 282-290
    • Nash, J.E.1    Sutcliffe, J.V.2
  • 27
    • 33745445005 scopus 로고    scopus 로고
    • Ignorance is bliss: Or seven reasons not to use uncertainty analysis
    • DOI 10.1029/2005WR004820
    • Pappenberger, F., and K. J. Beven (2006), Ignorance is bliss: Or seven reasons not to use uncertainty analysis, Water Resour. Res., 42, W05302, doi:10.1029/2005WR004820. (Pubitemid 43955900)
    • (2006) Water Resources Research , vol.42 , Issue.5
    • Pappenberger, F.1    Beven, K.J.2
  • 28
    • 0002151230 scopus 로고    scopus 로고
    • Construction, calibration and validation of hydrological models
    • edited by M. B. Abbott and J. C. Refsgaard, Kluwer Acad., Dordrecht, Netherlands
    • Refsgaard, J. C., and B. Storm (1996), Construction, calibration and validation of hydrological models, in Distributed Hydrological Modelling, Water Sci. Technol. Libr., vol. 22, edited by M. B. Abbott and J. C. Refsgaard, pp. 41- 54, Kluwer Acad., Dordrecht, Netherlands.
    • (1996) Distributed Hydrological Modelling, Water Sci. Technol. Libr. , vol.22 , pp. 41-54
    • Refsgaard, J.C.1    Storm, B.2
  • 29
    • 33645987256 scopus 로고    scopus 로고
    • Machine learning approaches for estimation of prediction interval for the model output
    • doi:10.1016/j.neunet.2006.01.012
    • Shrestha, D. L., and D. P. Solomatine (2006), Machine learning approaches for estimation of prediction interval for the model output, Neural Networks, 19(2), 225-235, doi:10.1016/j.neunet.2006.01.012.
    • (2006) Neural Networks , vol.19 , Issue.2 , pp. 225-235
    • Shrestha, D.L.1    Solomatine, D.P.2
  • 30
    • 65849306265 scopus 로고    scopus 로고
    • Data-driven approaches for estimating uncertainty in rainfall runoff modelling
    • Shrestha, D. L., and D. P. Solomatine (2008), Data-driven approaches for estimating uncertainty in rainfall runoff modelling, J. River Basin Manage., 6(2), 109-122.
    • (2008) J. River Basin Manage. , vol.6 , Issue.2 , pp. 109-122
    • Shrestha, D.L.1    Solomatine, D.P.2
  • 32
    • 0037565156 scopus 로고    scopus 로고
    • Model trees as an alternative to neural networks in rainfall-runoff modelling
    • DOI 10.1623/hysj.48.3.399.45291
    • Solomatine, D. P., and K. N. Dulal (2003), Model trees as an alternative to neural networks in rainfall-Runoff modelling, Hydrol. Sci. J., 48(3), 399-411, doi:10.1623/hysj.48.3.399.45291. (Pubitemid 36695916)
    • (2003) Hydrological Sciences Journal , vol.48 , Issue.3 , pp. 399-412
    • Solomatine, D.P.1    Dulal, K.N.2
  • 33
    • 39449089195 scopus 로고    scopus 로고
    • Data-driven modelling: Some past experiences and new approaches
    • doi:10.2166/hydro.2008.015
    • Solomatine, D. P., and A. Ostfeld (2008), Data-driven modelling: Some past experiences and new approaches, J. Hydroinformatics, 10(1), 3-22, doi:10.2166/hydro.2008.015.
    • (2008) J. Hydroinformatics , vol.10 , Issue.1 , pp. 3-22
    • Solomatine, D.P.1    Ostfeld, A.2
  • 34
    • 0033384302 scopus 로고    scopus 로고
    • Automatic calibration of groundwater models using global optimization techniques
    • Solomatine, D. P., Y. Dibike, and N. Kukuric (1999), Automatic calibration of groundwater models using global optimization techniques, Hydrol. Sci. J., 44(6), 879-894. (Pubitemid 30101153)
    • (1999) Hydrological Sciences Journal , vol.44 , Issue.6 , pp. 879-894
    • Solomatine, D.P.1    Dibike, Y.B.2    Kukuric, N.3
  • 35
    • 38549089135 scopus 로고    scopus 로고
    • Instance-based learning compared to other data-driven methods in hydrological forecasting
    • DOI 10.1002/hyp.6592
    • Solomatine, D. P., M. Maskey, and D. L. Shrestha (2008), Instance-based learning compared to other data-driven methods in hydrological forecasting, Hydrol. Processes, 22, 275-287, doi:10.1002/hyp.6592. (Pubitemid 351149249)
    • (2008) Hydrological Processes , vol.22 , Issue.2 , pp. 275-287
    • Solomatine, D.P.1    Maskey, M.2    Shrestha, D.L.3
  • 36
    • 0344568284 scopus 로고    scopus 로고
    • Uncertainty and reliability analysis
    • edited by L. W. Mays, McGraw-Hill, New York
    • Tung, Y.-K. (1996), Uncertainty and reliability analysis, in Water Resources Handbook, edited by L. W. Mays, pp. 7.1 - 7.65, McGraw-Hill, New York.
    • (1996) Water Resources Handbook , pp. 71-765
    • Tung, Y.-K.1
  • 39
    • 34248666540 scopus 로고
    • Fuzzy sets
    • doi:10.1016/S0019-9958(65)90241-X
    • Zadeh, L. A. (1965), Fuzzy sets, Inf. Control, 8(3), 338-353, doi:10.1016/S0019-9958(65)90241-X.
    • (1965) Inf. Control , vol.8 , Issue.3 , pp. 338-353
    • Zadeh, L.A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.