메뉴 건너뛰기




Volumn 7, Issue 5, 2003, Pages 693-706

Over-parameterisation, a major obstacle to the use of artificial neural networks in hydrology?

Author keywords

Artificial Neural Networks; Forecasting; Rainfall runoff; Stream flow

Indexed keywords

ARTIFICIAL NEURAL NETWORK; FORECASTING METHOD; PARAMETERIZATION; RAINFALL-RUNOFF MODELING;

EID: 1642414601     PISSN: 10275606     EISSN: None     Source Type: Journal    
DOI: 10.5194/hess-7-693-2003     Document Type: Article
Times cited : (59)

References (31)
  • 1
    • 0742267129 scopus 로고    scopus 로고
    • Using pruning algorithms and genetic algorithms to optimise network architectures and forecasting inputs in a neural network rainfall-runoff model
    • Abrahart, R.J., See, L. and Kncale, P.E., 1999. Using pruning algorithms and genetic algorithms to optimise network architectures and forecasting inputs in a neural network rainfall-runoff model. J. Hydroinform., 1, 103-114.
    • (1999) J. Hydroinform. , vol.1 , pp. 103-114
    • Abrahart, R.J.1    See, L.2    Kncale, P.E.3
  • 2
    • 0000501656 scopus 로고
    • Information theory as an extension of the maximum likelihood principle
    • B. Petrov and F. Csaki (Eds.)
    • Akaike, H., 1973. Information theory as an extension of the maximum likelihood principle. In: Second international conference on Information Theory, Budapest, B. Petrov and F. Csaki (Eds.) 267-281.
    • (1973) Second International Conference on Information Theory, Budapest , pp. 267-281
    • Akaike, H.1
  • 6
    • 0032829433 scopus 로고    scopus 로고
    • Prévision hydrologique par réseaux de neurones artificiels: état de l'art
    • Coulibaly, P., Anctil, F. and Bobée, B., 1999. Prévision hydrologique par réseaux de neurones artificiels: état de l'art, Can. J. Civil Eng., 26, 293-304.
    • (1999) Can. J. Civil Eng. , vol.26 , pp. 293-304
    • Coulibaly, P.1    Anctil, F.2    Bobée, B.3
  • 7
    • 0034621379 scopus 로고    scopus 로고
    • Daily reservoir inflow forecasting using artificial neural networks with stopped training approach
    • Coulibaly, P., Anctil, F., and Bobée, B., 2000. Daily reservoir inflow forecasting using artificial neural networks with stopped training approach. J. Hydrol., 230, 244-257.
    • (2000) J. Hydrol. , vol.230 , pp. 244-257
    • Coulibaly, P.1    Anctil, F.2    Bobée, B.3
  • 8
    • 0029673615 scopus 로고    scopus 로고
    • Modélisation de la relation pluie-débit par les réseaux connexionnistes et le filtre de Kalman
    • Dimopoulos, I., Lek, S. and Lauga, J., 1996. Modélisation de la relation pluie-débit par les réseaux connexionnistes et le filtre de Kalman. Hydrolog. Sci. J., 41, 179-193.
    • (1996) Hydrolog. Sci. J. , vol.41 , pp. 179-193
    • Dimopoulos, I.1    Lek, S.2    Lauga, J.3
  • 11
    • 0032170235 scopus 로고    scopus 로고
    • Uncertainty assessment and analysis of the calibrated parameter values of an urban storm water quality model
    • Gaume, E., Villeneuve, J.-P. and Desbordes, M., 1998. Uncertainty assessment and analysis of the calibrated parameter values of an urban storm water quality model. J. Hydrol., 210, 38-50.
    • (1998) J. Hydrol. , vol.210 , pp. 38-50
    • Gaume, E.1    Villeneuve, J.-P.2    Desbordes, M.3
  • 12
    • 0028543366 scopus 로고
    • Training feedforward networks with the Marquardt algorithm
    • Hagan, M.T. and Menhaj, M., 1994. Training feedforward networks with the Marquardt algorithm. IEEE Trans. Neural Networks, 5, 989-993.
    • (1994) IEEE Trans. Neural Networks , vol.5 , pp. 989-993
    • Hagan, M.T.1    Menhaj, M.2
  • 14
    • 0024880831 scopus 로고
    • Multilayer feed forward networks are universal approximators
    • Hornick, K., Stinchcombe, M. and White, H., 1989. Multilayer feed forward networks are universal approximators. Neural Networks, 2, 359-366.
    • (1989) Neural Networks , vol.2 , pp. 359-366
    • Hornick, K.1    Stinchcombe, M.2    White, H.3
  • 15
    • 0029413797 scopus 로고
    • Artificial neural network modeling of the rainfall-runoff process
    • Hsu, K.L., Gupta, H.V. and Sorooshian, S., 1995. Artificial neural network modeling of the rainfall-runoff process. Water Resour. Res., 31, 2517-2530.
    • (1995) Water Resour. Res. , vol.31 , pp. 2517-2530
    • Hsu, K.L.1    Gupta, H.V.2    Sorooshian, S.3
  • 16
    • 0034641121 scopus 로고    scopus 로고
    • River flow prediction using artificial neural networks: Generalisation beyond the calibration range
    • Imrie, C.E., Durucan, S. and Korre, A., 2000. River flow prediction using artificial neural networks : generalisation beyond the calibration range. J. Hydrol., 233, 138-153.
    • (2000) J. Hydrol. , vol.233 , pp. 138-153
    • Imrie, C.E.1    Durucan, S.2    Korre, A.3
  • 17
    • 0033197895 scopus 로고    scopus 로고
    • Application of ANN for reservoir inflow prediction and operation
    • Jain, S.K., Das, A. and Srivastava, D.K., 1999. Application of ANN for reservoir inflow prediction and operation. J. Water Resour. Plan. Man. ASCE, 125, 263-271.
    • (1999) J. Water Resour. Plan. Man. ASCE , vol.125 , pp. 263-271
    • Jain, S.K.1    Das, A.2    Srivastava, D.K.3
  • 18
    • 0027790160 scopus 로고
    • How much complexity warranted in a rainfall-runoff model?
    • Jakeman, A.J. and Hornberger, G.M., 1993. How much complexity warranted in a rainfall-runoff model? Water Resour. Res., 29, 2637-2649.
    • (1993) Water Resour. Res. , vol.29 , pp. 2637-2649
    • Jakeman, A.J.1    Hornberger, G.M.2
  • 21
    • 0031146959 scopus 로고    scopus 로고
    • Constructive algorithms for structure learning in feedforward neural networks for regression problems
    • Kwok, T.-Y. and Yeung, D.-Y. 1997. Constructive algorithms for structure learning in feedforward neural networks for regression problems. IEEE Trans. Neural Networks, 8, 630-645.
    • (1997) IEEE Trans. Neural Networks , vol.8 , pp. 630-645
    • Kwok, T.-Y.1    Yeung, D.-Y.2
  • 22
    • 0023331258 scopus 로고
    • An introduction to computing with neural nets
    • Lippmann, R.P., 1987. An introduction to computing with neural nets. IEEE ASSP Magazine. 4-22.
    • (1987) IEEE ASSP Magazine , pp. 4-22
    • Lippmann, R.P.1
  • 23
    • 0033957764 scopus 로고    scopus 로고
    • Neural networks for the prediction and forecasting of water resources variables: A review of modelling issues and applications
    • Maier, H.R. and Dandy, G.C., 2000. Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications. Environ. Model. Software. 15, 101-124.
    • (2000) Environ. Model. Software , vol.15 , pp. 101-124
    • Maier, H.R.1    Dandy, G.C.2
  • 24
    • 0030159380 scopus 로고    scopus 로고
    • Artificial neural networks as rainfall-runoff models
    • Minns, A.W. and Hall, M.J. 1996. Artificial neural networks as rainfall-runoff models. Hydrolog. Sci. J., 41, 399-417.
    • (1996) Hydrolog. Sci. J. , vol.41 , pp. 399-417
    • Minns, A.W.1    Hall, M.J.2
  • 25
    • 0035961496 scopus 로고    scopus 로고
    • Does a large number of parameters enhance model performance? Comparative assessment of common catchment model structures on 429 catchments
    • Perrin, C., Michel, C. and Andreassian, V., 2001. Does a large number of parameters enhance model performance? Comparative assessment of common catchment model structures on 429 catchments. J. Hydrol., 242, 275-301.
    • (2001) J. Hydrol. , vol.242 , pp. 275-301
    • Perrin, C.1    Michel, C.2    Andreassian, V.3
  • 27
    • 0033535432 scopus 로고    scopus 로고
    • A non-linear rainfall-runoff model using an artificial neural network
    • Sajikumar, N. and Thandaveswara, B.S., 1999. A non-linear rainfall-runoff model using an artificial neural network, J. Hydrol., 216, 32-55.
    • (1999) J. Hydrol. , vol.216 , pp. 32-55
    • Sajikumar, N.1    Thandaveswara, B.S.2
  • 28
    • 0342506462 scopus 로고    scopus 로고
    • Application of neural network technique to rainfall-runoff modeling
    • Shamseldin, A.Y., 1997. Application of neural network technique to rainfall-runoff modeling. J. Hydrol., 199, 272-294.
    • (1997) J. Hydrol. , vol.199 , pp. 272-294
    • Shamseldin, A.Y.1
  • 29
    • 0033536168 scopus 로고    scopus 로고
    • A systematic approach to noise reduction in chaotic hydrological time series
    • Sivakumar, B., Phoon, K.K., Liong S.-Y. and Liaw C.-Y., 1999. A systematic approach to noise reduction in chaotic hydrological time series. J. Hydrol., 219, 103-135.
    • (1999) J. Hydrol. , vol.219 , pp. 103-135
    • Sivakumar, B.1    Phoon, K.K.2    Liong, S.-Y.3    Liaw, C.-Y.4
  • 30
    • 0034253886 scopus 로고    scopus 로고
    • Flood forecasting with a watershed model: A new method of parameter updating
    • Yang, X. and Michel, C., 2000. Flood forecasting with a watershed model : a new method of parameter updating. Hydrolog. Sci. J., 45, 537-546.
    • (2000) Hydrolog. Sci. J. , vol.45 , pp. 537-546
    • Yang, X.1    Michel, C.2
  • 31
    • 0033019602 scopus 로고    scopus 로고
    • Short term streamflow forecasting using artificial neural networks
    • Zealand, C.M., Burn, D.H. and Simonovic, S.P., 1999. Short term streamflow forecasting using artificial neural networks. J. Hydrol., 214, 32-48.
    • (1999) J. Hydrol. , vol.214 , pp. 32-48
    • Zealand, C.M.1    Burn, D.H.2    Simonovic, S.P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.