-
1
-
-
0742267129
-
Using pruning algorithms and genetic algorithms to optimise network architectures and forecasting inputs in a neural network rainfall-runoff model
-
Abrahart, R.J., See, L. and Kncale, P.E., 1999. Using pruning algorithms and genetic algorithms to optimise network architectures and forecasting inputs in a neural network rainfall-runoff model. J. Hydroinform., 1, 103-114.
-
(1999)
J. Hydroinform.
, vol.1
, pp. 103-114
-
-
Abrahart, R.J.1
See, L.2
Kncale, P.E.3
-
2
-
-
0000501656
-
Information theory as an extension of the maximum likelihood principle
-
B. Petrov and F. Csaki (Eds.)
-
Akaike, H., 1973. Information theory as an extension of the maximum likelihood principle. In: Second international conference on Information Theory, Budapest, B. Petrov and F. Csaki (Eds.) 267-281.
-
(1973)
Second International Conference on Information Theory, Budapest
, pp. 267-281
-
-
Akaike, H.1
-
3
-
-
0031236925
-
Asymptotic statistical theory of overtraining and cross-validation
-
Amari, S-I., Murata, N., Muller, K-R., Finke, M. and Yang, H.H., 1997. Asymptotic statistical theory of overtraining and cross-validation, IEEE Trans. Neural Networks, 8, 985-996.
-
(1997)
IEEE Trans. Neural Networks
, vol.8
, pp. 985-996
-
-
Amari, S.-I.1
Murata, N.2
Muller, K.-R.3
Finke, M.4
Yang, H.H.5
-
4
-
-
0004311217
-
-
Holden Day, San Francisco, USA
-
Box, G.E.P. and Jenkins, G.M., 1970. Time series analysis, forecasting and control. Holden Day, San Francisco, USA.
-
(1970)
Time Series Analysis, Forecasting and Control
-
-
Box, G.E.P.1
Jenkins, G.M.2
-
6
-
-
0032829433
-
Prévision hydrologique par réseaux de neurones artificiels: état de l'art
-
Coulibaly, P., Anctil, F. and Bobée, B., 1999. Prévision hydrologique par réseaux de neurones artificiels: état de l'art, Can. J. Civil Eng., 26, 293-304.
-
(1999)
Can. J. Civil Eng.
, vol.26
, pp. 293-304
-
-
Coulibaly, P.1
Anctil, F.2
Bobée, B.3
-
7
-
-
0034621379
-
Daily reservoir inflow forecasting using artificial neural networks with stopped training approach
-
Coulibaly, P., Anctil, F., and Bobée, B., 2000. Daily reservoir inflow forecasting using artificial neural networks with stopped training approach. J. Hydrol., 230, 244-257.
-
(2000)
J. Hydrol.
, vol.230
, pp. 244-257
-
-
Coulibaly, P.1
Anctil, F.2
Bobée, B.3
-
8
-
-
0029673615
-
Modélisation de la relation pluie-débit par les réseaux connexionnistes et le filtre de Kalman
-
Dimopoulos, I., Lek, S. and Lauga, J., 1996. Modélisation de la relation pluie-débit par les réseaux connexionnistes et le filtre de Kalman. Hydrolog. Sci. J., 41, 179-193.
-
(1996)
Hydrolog. Sci. J.
, vol.41
, pp. 179-193
-
-
Dimopoulos, I.1
Lek, S.2
Lauga, J.3
-
9
-
-
0344069601
-
GR3j: A daily watershed model with three free parameters
-
Edijatno, M., Nascimento, N.O., Yang, X., Makhlouf, Z. and Michel, C., 1999. GR3j: a daily watershed model with three free parameters, Hydrolog. Sci. J., 44, 263-277.
-
(1999)
Hydrolog. Sci. J.
, vol.44
, pp. 263-277
-
-
Edijatno, M.1
Nascimento, N.O.2
Yang, X.3
Makhlouf, Z.4
Michel, C.5
-
10
-
-
1642323009
-
-
Technical report, Ecole Nationale des Ponts et Chaussées, Champs-sur-Marne, France
-
Gaume, E. and Tassin, B., 1999. Prévision du débit et de la température de l'eau aux prises d'eau du syndicat des eaux d'lle de France, prévision des débits de la Marne a Noisiel. Technical report, Ecole Nationale des Ponts et Chaussées, Champs-sur-Marne, France.
-
(1999)
Prévision du Débit et de la Température de L'eau Aux Prises D'eau Du Syndicat Des Eaux D'lle De France, Prévision Des Débits De La Marne a Noisiel
-
-
Gaume, E.1
Tassin, B.2
-
11
-
-
0032170235
-
Uncertainty assessment and analysis of the calibrated parameter values of an urban storm water quality model
-
Gaume, E., Villeneuve, J.-P. and Desbordes, M., 1998. Uncertainty assessment and analysis of the calibrated parameter values of an urban storm water quality model. J. Hydrol., 210, 38-50.
-
(1998)
J. Hydrol.
, vol.210
, pp. 38-50
-
-
Gaume, E.1
Villeneuve, J.-P.2
Desbordes, M.3
-
12
-
-
0028543366
-
Training feedforward networks with the Marquardt algorithm
-
Hagan, M.T. and Menhaj, M., 1994. Training feedforward networks with the Marquardt algorithm. IEEE Trans. Neural Networks, 5, 989-993.
-
(1994)
IEEE Trans. Neural Networks
, vol.5
, pp. 989-993
-
-
Hagan, M.T.1
Menhaj, M.2
-
14
-
-
0024880831
-
Multilayer feed forward networks are universal approximators
-
Hornick, K., Stinchcombe, M. and White, H., 1989. Multilayer feed forward networks are universal approximators. Neural Networks, 2, 359-366.
-
(1989)
Neural Networks
, vol.2
, pp. 359-366
-
-
Hornick, K.1
Stinchcombe, M.2
White, H.3
-
15
-
-
0029413797
-
Artificial neural network modeling of the rainfall-runoff process
-
Hsu, K.L., Gupta, H.V. and Sorooshian, S., 1995. Artificial neural network modeling of the rainfall-runoff process. Water Resour. Res., 31, 2517-2530.
-
(1995)
Water Resour. Res.
, vol.31
, pp. 2517-2530
-
-
Hsu, K.L.1
Gupta, H.V.2
Sorooshian, S.3
-
16
-
-
0034641121
-
River flow prediction using artificial neural networks: Generalisation beyond the calibration range
-
Imrie, C.E., Durucan, S. and Korre, A., 2000. River flow prediction using artificial neural networks : generalisation beyond the calibration range. J. Hydrol., 233, 138-153.
-
(2000)
J. Hydrol.
, vol.233
, pp. 138-153
-
-
Imrie, C.E.1
Durucan, S.2
Korre, A.3
-
17
-
-
0033197895
-
Application of ANN for reservoir inflow prediction and operation
-
Jain, S.K., Das, A. and Srivastava, D.K., 1999. Application of ANN for reservoir inflow prediction and operation. J. Water Resour. Plan. Man. ASCE, 125, 263-271.
-
(1999)
J. Water Resour. Plan. Man. ASCE
, vol.125
, pp. 263-271
-
-
Jain, S.K.1
Das, A.2
Srivastava, D.K.3
-
18
-
-
0027790160
-
How much complexity warranted in a rainfall-runoff model?
-
Jakeman, A.J. and Hornberger, G.M., 1993. How much complexity warranted in a rainfall-runoff model? Water Resour. Res., 29, 2637-2649.
-
(1993)
Water Resour. Res.
, vol.29
, pp. 2637-2649
-
-
Jakeman, A.J.1
Hornberger, G.M.2
-
20
-
-
0028667489
-
Neural network for river flow prediction
-
Karunanithi, N., Grenney, W.J., Whitley, D. and Bovee, K., 1994. Neural network for river flow prediction. J. Comput. Civil Eng., 8, 201-220.
-
(1994)
J. Comput. Civil Eng.
, vol.8
, pp. 201-220
-
-
Karunanithi, N.1
Grenney, W.J.2
Whitley, D.3
Bovee, K.4
-
21
-
-
0031146959
-
Constructive algorithms for structure learning in feedforward neural networks for regression problems
-
Kwok, T.-Y. and Yeung, D.-Y. 1997. Constructive algorithms for structure learning in feedforward neural networks for regression problems. IEEE Trans. Neural Networks, 8, 630-645.
-
(1997)
IEEE Trans. Neural Networks
, vol.8
, pp. 630-645
-
-
Kwok, T.-Y.1
Yeung, D.-Y.2
-
22
-
-
0023331258
-
An introduction to computing with neural nets
-
Lippmann, R.P., 1987. An introduction to computing with neural nets. IEEE ASSP Magazine. 4-22.
-
(1987)
IEEE ASSP Magazine
, pp. 4-22
-
-
Lippmann, R.P.1
-
23
-
-
0033957764
-
Neural networks for the prediction and forecasting of water resources variables: A review of modelling issues and applications
-
Maier, H.R. and Dandy, G.C., 2000. Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications. Environ. Model. Software. 15, 101-124.
-
(2000)
Environ. Model. Software
, vol.15
, pp. 101-124
-
-
Maier, H.R.1
Dandy, G.C.2
-
24
-
-
0030159380
-
Artificial neural networks as rainfall-runoff models
-
Minns, A.W. and Hall, M.J. 1996. Artificial neural networks as rainfall-runoff models. Hydrolog. Sci. J., 41, 399-417.
-
(1996)
Hydrolog. Sci. J.
, vol.41
, pp. 399-417
-
-
Minns, A.W.1
Hall, M.J.2
-
25
-
-
0035961496
-
Does a large number of parameters enhance model performance? Comparative assessment of common catchment model structures on 429 catchments
-
Perrin, C., Michel, C. and Andreassian, V., 2001. Does a large number of parameters enhance model performance? Comparative assessment of common catchment model structures on 429 catchments. J. Hydrol., 242, 275-301.
-
(2001)
J. Hydrol.
, vol.242
, pp. 275-301
-
-
Perrin, C.1
Michel, C.2
Andreassian, V.3
-
27
-
-
0033535432
-
A non-linear rainfall-runoff model using an artificial neural network
-
Sajikumar, N. and Thandaveswara, B.S., 1999. A non-linear rainfall-runoff model using an artificial neural network, J. Hydrol., 216, 32-55.
-
(1999)
J. Hydrol.
, vol.216
, pp. 32-55
-
-
Sajikumar, N.1
Thandaveswara, B.S.2
-
28
-
-
0342506462
-
Application of neural network technique to rainfall-runoff modeling
-
Shamseldin, A.Y., 1997. Application of neural network technique to rainfall-runoff modeling. J. Hydrol., 199, 272-294.
-
(1997)
J. Hydrol.
, vol.199
, pp. 272-294
-
-
Shamseldin, A.Y.1
-
29
-
-
0033536168
-
A systematic approach to noise reduction in chaotic hydrological time series
-
Sivakumar, B., Phoon, K.K., Liong S.-Y. and Liaw C.-Y., 1999. A systematic approach to noise reduction in chaotic hydrological time series. J. Hydrol., 219, 103-135.
-
(1999)
J. Hydrol.
, vol.219
, pp. 103-135
-
-
Sivakumar, B.1
Phoon, K.K.2
Liong, S.-Y.3
Liaw, C.-Y.4
-
30
-
-
0034253886
-
Flood forecasting with a watershed model: A new method of parameter updating
-
Yang, X. and Michel, C., 2000. Flood forecasting with a watershed model : a new method of parameter updating. Hydrolog. Sci. J., 45, 537-546.
-
(2000)
Hydrolog. Sci. J.
, vol.45
, pp. 537-546
-
-
Yang, X.1
Michel, C.2
-
31
-
-
0033019602
-
Short term streamflow forecasting using artificial neural networks
-
Zealand, C.M., Burn, D.H. and Simonovic, S.P., 1999. Short term streamflow forecasting using artificial neural networks. J. Hydrol., 214, 32-48.
-
(1999)
J. Hydrol.
, vol.214
, pp. 32-48
-
-
Zealand, C.M.1
Burn, D.H.2
Simonovic, S.P.3
|