메뉴 건너뛰기




Volumn 54, Issue 2, 2009, Pages 247-260

Application of neural network and adaptive neuro-fuzzy inference systems for river flow prediction

Author keywords

Fuzzy inference system; Hydrological processes; Neural networks; Training algorithms

Indexed keywords

ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM; ARTIFICIAL INTELLIGENCE TECHNIQUES; ARTIFICIAL NEURAL NETWORK; CONJUGATE GRADIENT ALGORITHMS; CORRELATION COEFFICIENT; DOWNSTREAM REGION; FEEDFORWARD BACKPROPAGATION; FLOW DATA; FUZZY INFERENCE SYSTEM; GRADIENT DESCENT ALGORITHMS; HYDROLOGICAL PROCESS; HYDROLOGICAL PROCESSES; INDEX OF AGREEMENTS; INPUT-OUTPUT MAPPING; LEVENBERG-MARQUARDT; MAHANADI RIVER BASIN; PEAK FLOWS; PERCENTAGE DEVIATION; PHYSICALLY BASED MODELS; RAINY SEASONS; RIVER FLOW PREDICTION; ROOT MEAN SQUARE ERRORS; STANDARD PERFORMANCE; TIME STEP; TRAINING ALGORITHMS; TRAINING TECHNIQUES;

EID: 69949143939     PISSN: 02626667     EISSN: None     Source Type: Journal    
DOI: 10.1623/hysj.54.2.247     Document Type: Article
Times cited : (114)

References (40)
  • 1
    • 33947572974 scopus 로고    scopus 로고
    • A comparative study of artificial neural networks and neuro-fuzzy in continuous modeling of the daily and hourly behaviour of runoff
    • Aqil, M., Kita, I., Yano, A. & Nishiyama, S. (2007) A comparative study of artificial neural networks and neuro-fuzzy in continuous modeling of the daily and hourly behaviour of runoff. J. Hydrol. 337, 22-34.
    • (2007) J. Hydrol , vol.337 , pp. 22-34
    • Aqil, M.1    Kita, I.2    Yano, A.3    Nishiyama, S.4
  • 2
    • 0034174280 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology, I: Preliminary concepts
    • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology
    • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology (2000a) Artificial neural networks in hydrology, I: preliminary concepts. J. Hydrol. Engng ASCE 5(2), 115-123.
    • (2000) J. Hydrol. Engng ASCE , vol.5 , Issue.2 , pp. 115-123
  • 3
    • 0034174396 scopus 로고    scopus 로고
    • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology (2000b) Artificial neural networks in hydrology, II: Hydrologic applications. J. Hydrol. Engng ASCE 5(2), 124-137.
    • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology (2000b) Artificial neural networks in hydrology, II: Hydrologic applications. J. Hydrol. Engng ASCE 5(2), 124-137.
  • 6
    • 28444489651 scopus 로고    scopus 로고
    • Adaptive neuro-fuzzy inference system for prediction of water level in reservoir
    • Chang, F. J. & Chang, Y. T. (2006) Adaptive neuro-fuzzy inference system for prediction of water level in reservoir. Adv. Water Resour. 29, 1-10.
    • (2006) Adv. Water Resour , vol.29 , pp. 1-10
    • Chang, F.J.1    Chang, Y.T.2
  • 7
    • 0035340711 scopus 로고    scopus 로고
    • A counter propagation fuzzy-neural network modeling approach to real time stream flow prediction
    • Chang, F. J. & Chen, Y. C. (2001) A counter propagation fuzzy-neural network modeling approach to real time stream flow prediction. J. Hydrol. 245, 153-164.
    • (2001) J. Hydrol , vol.245 , pp. 153-164
    • Chang, F.J.1    Chen, Y.C.2
  • 8
    • 0036719845 scopus 로고    scopus 로고
    • Real-time recurrent neural network for stream-flow forecasting
    • Chang, F. J., Chang, L. C. & Huang, H. L. (2002) Real-time recurrent neural network for stream-flow forecasting. Hydrol. Processes 16, 2577-2588.
    • (2002) Hydrol. Processes , vol.16 , pp. 2577-2588
    • Chang, F.J.1    Chang, L.C.2    Huang, H.L.3
  • 9
    • 27544472438 scopus 로고    scopus 로고
    • Comparison of several flood forecasting models in Yangtze River
    • Chau, K. W., Wu, C. L. & Li, Y. S. (2005) Comparison of several flood forecasting models in Yangtze River. J. Hydrol. Engng ASCE 10(6), 485-491.
    • (2005) J. Hydrol. Engng ASCE , vol.10 , Issue.6 , pp. 485-491
    • Chau, K.W.1    Wu, C.L.2    Li, Y.S.3
  • 10
    • 0032005702 scopus 로고    scopus 로고
    • An artificial neural network approach to rainfall runoff modeling
    • Dawson, C. W. & Wilby, R. L. (1998) An artificial neural network approach to rainfall runoff modeling. Hydrol. Sci. J. 43(1), 47-67.
    • (1998) Hydrol. Sci. J , vol.43 , Issue.1 , pp. 47-67
    • Dawson, C.W.1    Wilby, R.L.2
  • 12
    • 0038502200 scopus 로고    scopus 로고
    • Artificial neural network for stream flow prediction
    • Dolling, O. R. & Vears, E. A. (2002) Artificial neural network for stream flow prediction. J. Hydraul. Res. 40, 547-554.
    • (2002) J. Hydraul. Res , vol.40 , pp. 547-554
    • Dolling, O.R.1    Vears, E.A.2
  • 15
    • 0027066236 scopus 로고
    • An application of fuzzy set theory to runoff prediction
    • ed. by I. D. Cluckie & D. Han, National Taiwan University, Taipei, May, Taipei, Taiwan
    • Fujita, M., Zhu, M. L., Nakoa, T. & Ishi, C. (1992) An application of fuzzy set theory to runoff prediction. In: Sixth IAHR Int. Symp. on Stochastic Hydraulics (ed. by I. D. Cluckie & D. Han) (National Taiwan University, Taipei, May 1992), 727-734. Taipei, Taiwan.
    • (1992) Sixth IAHR Int. Symp. on Stochastic Hydraulics , pp. 727-734
    • Fujita, M.1    Zhu, M.L.2    Nakoa, T.3    Ishi, C.4
  • 19
    • 17444385970 scopus 로고    scopus 로고
    • A modified neural network for improving river flow prediction
    • Hu, T. S., Lam, K. C. & Thomas Ng, S. (2005) A modified neural network for improving river flow prediction. Hydrol. Sci. J. 50(2), 299-318.
    • (2005) Hydrol. Sci. J , vol.50 , Issue.2 , pp. 299-318
    • Hu, T.S.1    Lam, K.C.2    Thomas Ng, S.3
  • 20
    • 17044442585 scopus 로고    scopus 로고
    • Development of a fuzzy logic based rainfall - runoff model
    • Hundecha, Y., Bardossy, A. & Theisen, H.-W. (2001) Development of a fuzzy logic based rainfall - runoff model. Hydrol. Sci. J. 46(3), 363-377.
    • (2001) Hydrol. Sci. J , vol.46 , Issue.3 , pp. 363-377
    • Hundecha, Y.1    Bardossy, A.2    Theisen, H.-W.3
  • 22
    • 16444365723 scopus 로고    scopus 로고
    • Rainfall - runoff modeling using artificial neural networks: Comparison of network types
    • Kumar, A. R. S., Sudheer, K. P., Jain, S. K. &. Agarwal, P. K. (2005) Rainfall - runoff modeling using artificial neural networks: comparison of network types. Hydrol. Processes 19, 1277-1291.
    • (2005) Hydrol. Processes , vol.19 , pp. 1277-1291
    • Kumar, A.R.S.1    Sudheer, K.P.2    Jain, S.K.3    Agarwal, P.K.4
  • 23
    • 85034860364 scopus 로고    scopus 로고
    • Improved non-linear transfer function and neural network methods of flow routing for real-time forecasting
    • Lekkas, D. F., Imrie, C. E. & Lees, M. J. (2001) Improved non-linear transfer function and neural network methods of flow routing for real-time forecasting. J. Hydroinformatics 3, 153-164.
    • (2001) J. Hydroinformatics , vol.3 , pp. 153-164
    • Lekkas, D.F.1    Imrie, C.E.2    Lees, M.J.3
  • 24
    • 1942490118 scopus 로고    scopus 로고
    • A neuro-fuzzy computing technique for modeling hydrological time series
    • Nayak, P. C., Sudheer, K. P., Rangan, D. M. & Ramasastri, K. S. (2004) A neuro-fuzzy computing technique for modeling hydrological time series. J. Hydrol. 291, 52-66.
    • (2004) J. Hydrol , vol.291 , pp. 52-66
    • Nayak, P.C.1    Sudheer, K.P.2    Rangan, D.M.3    Ramasastri, K.S.4
  • 27
    • 0033381989 scopus 로고    scopus 로고
    • See, L. & Openshaw, S. (2000) Applying soft computing approaches to river level forecasting. Hydrol. Sci. J. 44(5), 763-779.
    • See, L. & Openshaw, S. (2000) Applying soft computing approaches to river level forecasting. Hydrol. Sci. J. 44(5), 763-779.
  • 28
    • 0036698155 scopus 로고    scopus 로고
    • Comparison of different forms of the multi-layer feed-forward neural network method used for river flow forecasting
    • Shamseldin, A. Y., Nasr, A. E. & O'Conner, K. M. (2002) Comparison of different forms of the multi-layer feed-forward neural network method used for river flow forecasting. Hydol. Earth Syst. Sci. 6, 671-684.
    • (2002) Hydol. Earth Syst. Sci , vol.6 , pp. 671-684
    • Shamseldin, A.Y.1    Nasr, A.E.2    O'Conner, K.M.3
  • 30
    • 69949178657 scopus 로고    scopus 로고
    • Flood routing using artificial neural networks
    • Thessaloniki, Greece
    • Shrestha, R. R. (2003) Flood routing using artificial neural networks. In: Proc. IAHR XXX Congress, Thessaloniki, Greece.
    • (2003) Proc. IAHR XXX Congress
    • Shrestha, R.R.1
  • 31
    • 0037199712 scopus 로고    scopus 로고
    • River flow forecasting - use of phase-space reconstruction and artificial neural networks approaches
    • Sivakumar, B., Jayawardena, A. W. & Fernando, T. M. K. G. (2002) River flow forecasting - use of phase-space reconstruction and artificial neural networks approaches. J. Hydrol. 265, 225-245.
    • (2002) J. Hydrol , vol.265 , pp. 225-245
    • Sivakumar, B.1    Jayawardena, A.W.2    Fernando, T.M.K.G.3
  • 32
    • 0034451729 scopus 로고    scopus 로고
    • Stuber, M., Gemmar, P. & Greving, M. (2000) Machine supported development of fuzzy-flood forecast systems. In: European Conf. on Adv. in Flood Res. (Potsdam, Germany) (ed. by A. Bronstert, C. Bismuth & L. Menzel), 504-515.
    • Stuber, M., Gemmar, P. & Greving, M. (2000) Machine supported development of fuzzy-flood forecast systems. In: European Conf. on Adv. in Flood Res. (Potsdam, Germany) (ed. by A. Bronstert, C. Bismuth & L. Menzel), 504-515.
  • 33
    • 0037197571 scopus 로고    scopus 로고
    • A data driven algorithm for constructing ANN based rainfall - runoff models
    • Sudheer, K. P., Gosain, A. K. & Ramasastri, K. S. (2002) A data driven algorithm for constructing ANN based rainfall - runoff models. Hydrol. Processes 16, 1325-1330.
    • (2002) Hydrol. Processes , vol.16 , pp. 1325-1330
    • Sudheer, K.P.1    Gosain, A.K.2    Ramasastri, K.S.3
  • 34
    • 0031898654 scopus 로고    scopus 로고
    • River stage forecasting using artificial neural network
    • Thirumalaiah, K. & Deo, M. C.(1998) River stage forecasting using artificial neural network. J. Hydrol. Engng ASCE 3(1), 26-3.
    • (1998) J. Hydrol. Engng ASCE , vol.3 , Issue.1 , pp. 26-33
    • Thirumalaiah, K.1    Deo, M.C.2
  • 35
    • 27944507998 scopus 로고    scopus 로고
    • Monthly stream flow forecasting using an neural fuzzy network model
    • Brazilian Computer Society, Brazil
    • Valenca, M. & Ludermir, T. (2000) Monthly stream flow forecasting using an neural fuzzy network model. In: Proc. Sixth Brazilian Symposium on Neural Networks, 117-120. Brazilian Computer Society, Brazil.
    • (2000) Proc. Sixth Brazilian Symposium on Neural Networks , pp. 117-120
    • Valenca, M.1    Ludermir, T.2
  • 36
    • 33646547633 scopus 로고    scopus 로고
    • Forecasting daily stream flow using hybrid ANN models
    • Wang, W., Pieter, H. A. J. M., Gelder, V., Vrijling, J. K. & Ma, J. (2006) Forecasting daily stream flow using hybrid ANN models. J. Hydrol. 321, 383-399.
    • (2006) J. Hydrol , vol.321 , pp. 383-399
    • Wang, W.1    Pieter, H.A.J.M.2    Gelder, V.3    Vrijling, J.K.4    Ma, J.5
  • 37
    • 0035340544 scopus 로고    scopus 로고
    • A nonlinear combination of the forecasts of rainfall - runoff models by the first order Takagi-Sugeno fuzzy system
    • Xiong, L. H., Shamseldin, A. Y. & O'Connor, K. M. (2001) A nonlinear combination of the forecasts of rainfall - runoff models by the first order Takagi-Sugeno fuzzy system. J. Hydrol. 245, 196-217.
    • (2001) J. Hydrol , vol.245 , pp. 196-217
    • Xiong, L.H.1    Shamseldin, A.Y.2    O'Connor, K.M.3
  • 38
    • 0033019602 scopus 로고    scopus 로고
    • Short term stream flow forecasting using artificial neural networks
    • Zealand, C. M., Burn, D. H. & Simonovic, S. P. (1999) Short term stream flow forecasting using artificial neural networks. J. Hydrol. 214, 32-48.
    • (1999) J. Hydrol , vol.214 , pp. 32-48
    • Zealand, C.M.1    Burn, D.H.2    Simonovic, S.P.3
  • 39
    • 0000251270 scopus 로고
    • Comparison between fuzzy reasoning and neural network method to forecast runoff discharge
    • Zhu, M. L. & Fujita, M. (1994) Comparison between fuzzy reasoning and neural network method to forecast runoff discharge. J. Hydrosci. & Hydraul. Engng. 12(2), 131-141.
    • (1994) J. Hydrosci. & Hydraul. Engng , vol.12 , Issue.2 , pp. 131-141
    • Zhu, M.L.1    Fujita, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.