-
1
-
-
33947572974
-
A comparative study of artificial neural networks and neuro-fuzzy in continuous modeling of the daily and hourly behaviour of runoff
-
Aqil, M., Kita, I., Yano, A. & Nishiyama, S. (2007) A comparative study of artificial neural networks and neuro-fuzzy in continuous modeling of the daily and hourly behaviour of runoff. J. Hydrol. 337, 22-34.
-
(2007)
J. Hydrol
, vol.337
, pp. 22-34
-
-
Aqil, M.1
Kita, I.2
Yano, A.3
Nishiyama, S.4
-
2
-
-
0034174280
-
Artificial neural networks in hydrology, I: Preliminary concepts
-
ASCE Task Committee on Application of Artificial Neural Networks in Hydrology
-
ASCE Task Committee on Application of Artificial Neural Networks in Hydrology (2000a) Artificial neural networks in hydrology, I: preliminary concepts. J. Hydrol. Engng ASCE 5(2), 115-123.
-
(2000)
J. Hydrol. Engng ASCE
, vol.5
, Issue.2
, pp. 115-123
-
-
-
3
-
-
0034174396
-
-
ASCE Task Committee on Application of Artificial Neural Networks in Hydrology (2000b) Artificial neural networks in hydrology, II: Hydrologic applications. J. Hydrol. Engng ASCE 5(2), 124-137.
-
ASCE Task Committee on Application of Artificial Neural Networks in Hydrology (2000b) Artificial neural networks in hydrology, II: Hydrologic applications. J. Hydrol. Engng ASCE 5(2), 124-137.
-
-
-
-
6
-
-
28444489651
-
Adaptive neuro-fuzzy inference system for prediction of water level in reservoir
-
Chang, F. J. & Chang, Y. T. (2006) Adaptive neuro-fuzzy inference system for prediction of water level in reservoir. Adv. Water Resour. 29, 1-10.
-
(2006)
Adv. Water Resour
, vol.29
, pp. 1-10
-
-
Chang, F.J.1
Chang, Y.T.2
-
7
-
-
0035340711
-
A counter propagation fuzzy-neural network modeling approach to real time stream flow prediction
-
Chang, F. J. & Chen, Y. C. (2001) A counter propagation fuzzy-neural network modeling approach to real time stream flow prediction. J. Hydrol. 245, 153-164.
-
(2001)
J. Hydrol
, vol.245
, pp. 153-164
-
-
Chang, F.J.1
Chen, Y.C.2
-
8
-
-
0036719845
-
Real-time recurrent neural network for stream-flow forecasting
-
Chang, F. J., Chang, L. C. & Huang, H. L. (2002) Real-time recurrent neural network for stream-flow forecasting. Hydrol. Processes 16, 2577-2588.
-
(2002)
Hydrol. Processes
, vol.16
, pp. 2577-2588
-
-
Chang, F.J.1
Chang, L.C.2
Huang, H.L.3
-
9
-
-
27544472438
-
Comparison of several flood forecasting models in Yangtze River
-
Chau, K. W., Wu, C. L. & Li, Y. S. (2005) Comparison of several flood forecasting models in Yangtze River. J. Hydrol. Engng ASCE 10(6), 485-491.
-
(2005)
J. Hydrol. Engng ASCE
, vol.10
, Issue.6
, pp. 485-491
-
-
Chau, K.W.1
Wu, C.L.2
Li, Y.S.3
-
10
-
-
0032005702
-
An artificial neural network approach to rainfall runoff modeling
-
Dawson, C. W. & Wilby, R. L. (1998) An artificial neural network approach to rainfall runoff modeling. Hydrol. Sci. J. 43(1), 47-67.
-
(1998)
Hydrol. Sci. J
, vol.43
, Issue.1
, pp. 47-67
-
-
Dawson, C.W.1
Wilby, R.L.2
-
11
-
-
0038076657
-
-
The Mathworks, Inc, Massachusetts, USA
-
Demuth, H. B. & Beale, M. (1998) Neural Network Toolbox for Use with MATLAB, Users Guide. The Mathworks, Inc., Massachusetts, USA.
-
(1998)
Neural Network Toolbox for Use with MATLAB, Users Guide
-
-
Demuth, H.B.1
Beale, M.2
-
12
-
-
0038502200
-
Artificial neural network for stream flow prediction
-
Dolling, O. R. & Vears, E. A. (2002) Artificial neural network for stream flow prediction. J. Hydraul. Res. 40, 547-554.
-
(2002)
J. Hydraul. Res
, vol.40
, pp. 547-554
-
-
Dolling, O.R.1
Vears, E.A.2
-
13
-
-
0003710566
-
-
Prentice-Hall, Upper Saddle River, New Jersey, USA
-
Fausett, L. (1994) Fundamentals of Neural Networks Architectures, Algorithms, and Applications. Prentice-Hall, Upper Saddle River, New Jersey, USA.
-
(1994)
Fundamentals of Neural Networks Architectures, Algorithms, and Applications
-
-
Fausett, L.1
-
15
-
-
0027066236
-
An application of fuzzy set theory to runoff prediction
-
ed. by I. D. Cluckie & D. Han, National Taiwan University, Taipei, May, Taipei, Taiwan
-
Fujita, M., Zhu, M. L., Nakoa, T. & Ishi, C. (1992) An application of fuzzy set theory to runoff prediction. In: Sixth IAHR Int. Symp. on Stochastic Hydraulics (ed. by I. D. Cluckie & D. Han) (National Taiwan University, Taipei, May 1992), 727-734. Taipei, Taiwan.
-
(1992)
Sixth IAHR Int. Symp. on Stochastic Hydraulics
, pp. 727-734
-
-
Fujita, M.1
Zhu, M.L.2
Nakoa, T.3
Ishi, C.4
-
16
-
-
0003753097
-
-
Prentice-Hall, Upper Saddle River, New Jersey, USA
-
Jang, J.-S. R., Sun, C. T. & Mizutani, E. (1997) Neuro-fuzzy and Soft Computing. Prentice-Hall, Upper Saddle River, New Jersey, USA.
-
(1997)
Neuro-fuzzy and Soft Computing
-
-
Jang, J.-S.R.1
Sun, C.T.2
Mizutani, E.3
-
17
-
-
0003593041
-
-
Cengage Learning, New Delhi, India
-
Hagan, M. T., Demuth, H. B. & Beale, M. (1996) Neural Network Design. Cengage Learning, New Delhi, India.
-
(1996)
Neural Network Design
-
-
Hagan, M.T.1
Demuth, H.B.2
Beale, M.3
-
19
-
-
17444385970
-
A modified neural network for improving river flow prediction
-
Hu, T. S., Lam, K. C. & Thomas Ng, S. (2005) A modified neural network for improving river flow prediction. Hydrol. Sci. J. 50(2), 299-318.
-
(2005)
Hydrol. Sci. J
, vol.50
, Issue.2
, pp. 299-318
-
-
Hu, T.S.1
Lam, K.C.2
Thomas Ng, S.3
-
20
-
-
17044442585
-
Development of a fuzzy logic based rainfall - runoff model
-
Hundecha, Y., Bardossy, A. & Theisen, H.-W. (2001) Development of a fuzzy logic based rainfall - runoff model. Hydrol. Sci. J. 46(3), 363-377.
-
(2001)
Hydrol. Sci. J
, vol.46
, Issue.3
, pp. 363-377
-
-
Hundecha, Y.1
Bardossy, A.2
Theisen, H.-W.3
-
21
-
-
0028667489
-
Neural network for river flow prediction
-
Karunanithi, N., Grenney, W. J. & Whitley, D. (1994) Neural network for river flow prediction. J. Comput. Civil Engng 8, 201-220.
-
(1994)
J. Comput. Civil Engng
, vol.8
, pp. 201-220
-
-
Karunanithi, N.1
Grenney, W.J.2
Whitley, D.3
-
22
-
-
16444365723
-
Rainfall - runoff modeling using artificial neural networks: Comparison of network types
-
Kumar, A. R. S., Sudheer, K. P., Jain, S. K. &. Agarwal, P. K. (2005) Rainfall - runoff modeling using artificial neural networks: comparison of network types. Hydrol. Processes 19, 1277-1291.
-
(2005)
Hydrol. Processes
, vol.19
, pp. 1277-1291
-
-
Kumar, A.R.S.1
Sudheer, K.P.2
Jain, S.K.3
Agarwal, P.K.4
-
23
-
-
85034860364
-
Improved non-linear transfer function and neural network methods of flow routing for real-time forecasting
-
Lekkas, D. F., Imrie, C. E. & Lees, M. J. (2001) Improved non-linear transfer function and neural network methods of flow routing for real-time forecasting. J. Hydroinformatics 3, 153-164.
-
(2001)
J. Hydroinformatics
, vol.3
, pp. 153-164
-
-
Lekkas, D.F.1
Imrie, C.E.2
Lees, M.J.3
-
24
-
-
1942490118
-
A neuro-fuzzy computing technique for modeling hydrological time series
-
Nayak, P. C., Sudheer, K. P., Rangan, D. M. & Ramasastri, K. S. (2004) A neuro-fuzzy computing technique for modeling hydrological time series. J. Hydrol. 291, 52-66.
-
(2004)
J. Hydrol
, vol.291
, pp. 52-66
-
-
Nayak, P.C.1
Sudheer, K.P.2
Rangan, D.M.3
Ramasastri, K.S.4
-
25
-
-
19044383810
-
Short-term flood forecasting with a neurofuzzy model
-
Nayak, P. C., Sudheer, K. P., Rangan, D. M. & Ramasastri, K. S. (2005) Short-term flood forecasting with a neurofuzzy model. Water Resour. Res. 41, 2517-2530.
-
(2005)
Water Resour. Res
, vol.41
, pp. 2517-2530
-
-
Nayak, P.C.1
Sudheer, K.P.2
Rangan, D.M.3
Ramasastri, K.S.4
-
27
-
-
0033381989
-
-
See, L. & Openshaw, S. (2000) Applying soft computing approaches to river level forecasting. Hydrol. Sci. J. 44(5), 763-779.
-
See, L. & Openshaw, S. (2000) Applying soft computing approaches to river level forecasting. Hydrol. Sci. J. 44(5), 763-779.
-
-
-
-
28
-
-
0036698155
-
Comparison of different forms of the multi-layer feed-forward neural network method used for river flow forecasting
-
Shamseldin, A. Y., Nasr, A. E. & O'Conner, K. M. (2002) Comparison of different forms of the multi-layer feed-forward neural network method used for river flow forecasting. Hydol. Earth Syst. Sci. 6, 671-684.
-
(2002)
Hydol. Earth Syst. Sci
, vol.6
, pp. 671-684
-
-
Shamseldin, A.Y.1
Nasr, A.E.2
O'Conner, K.M.3
-
30
-
-
69949178657
-
Flood routing using artificial neural networks
-
Thessaloniki, Greece
-
Shrestha, R. R. (2003) Flood routing using artificial neural networks. In: Proc. IAHR XXX Congress, Thessaloniki, Greece.
-
(2003)
Proc. IAHR XXX Congress
-
-
Shrestha, R.R.1
-
31
-
-
0037199712
-
River flow forecasting - use of phase-space reconstruction and artificial neural networks approaches
-
Sivakumar, B., Jayawardena, A. W. & Fernando, T. M. K. G. (2002) River flow forecasting - use of phase-space reconstruction and artificial neural networks approaches. J. Hydrol. 265, 225-245.
-
(2002)
J. Hydrol
, vol.265
, pp. 225-245
-
-
Sivakumar, B.1
Jayawardena, A.W.2
Fernando, T.M.K.G.3
-
32
-
-
0034451729
-
-
Stuber, M., Gemmar, P. & Greving, M. (2000) Machine supported development of fuzzy-flood forecast systems. In: European Conf. on Adv. in Flood Res. (Potsdam, Germany) (ed. by A. Bronstert, C. Bismuth & L. Menzel), 504-515.
-
Stuber, M., Gemmar, P. & Greving, M. (2000) Machine supported development of fuzzy-flood forecast systems. In: European Conf. on Adv. in Flood Res. (Potsdam, Germany) (ed. by A. Bronstert, C. Bismuth & L. Menzel), 504-515.
-
-
-
-
33
-
-
0037197571
-
A data driven algorithm for constructing ANN based rainfall - runoff models
-
Sudheer, K. P., Gosain, A. K. & Ramasastri, K. S. (2002) A data driven algorithm for constructing ANN based rainfall - runoff models. Hydrol. Processes 16, 1325-1330.
-
(2002)
Hydrol. Processes
, vol.16
, pp. 1325-1330
-
-
Sudheer, K.P.1
Gosain, A.K.2
Ramasastri, K.S.3
-
34
-
-
0031898654
-
River stage forecasting using artificial neural network
-
Thirumalaiah, K. & Deo, M. C.(1998) River stage forecasting using artificial neural network. J. Hydrol. Engng ASCE 3(1), 26-3.
-
(1998)
J. Hydrol. Engng ASCE
, vol.3
, Issue.1
, pp. 26-33
-
-
Thirumalaiah, K.1
Deo, M.C.2
-
35
-
-
27944507998
-
Monthly stream flow forecasting using an neural fuzzy network model
-
Brazilian Computer Society, Brazil
-
Valenca, M. & Ludermir, T. (2000) Monthly stream flow forecasting using an neural fuzzy network model. In: Proc. Sixth Brazilian Symposium on Neural Networks, 117-120. Brazilian Computer Society, Brazil.
-
(2000)
Proc. Sixth Brazilian Symposium on Neural Networks
, pp. 117-120
-
-
Valenca, M.1
Ludermir, T.2
-
36
-
-
33646547633
-
Forecasting daily stream flow using hybrid ANN models
-
Wang, W., Pieter, H. A. J. M., Gelder, V., Vrijling, J. K. & Ma, J. (2006) Forecasting daily stream flow using hybrid ANN models. J. Hydrol. 321, 383-399.
-
(2006)
J. Hydrol
, vol.321
, pp. 383-399
-
-
Wang, W.1
Pieter, H.A.J.M.2
Gelder, V.3
Vrijling, J.K.4
Ma, J.5
-
37
-
-
0035340544
-
A nonlinear combination of the forecasts of rainfall - runoff models by the first order Takagi-Sugeno fuzzy system
-
Xiong, L. H., Shamseldin, A. Y. & O'Connor, K. M. (2001) A nonlinear combination of the forecasts of rainfall - runoff models by the first order Takagi-Sugeno fuzzy system. J. Hydrol. 245, 196-217.
-
(2001)
J. Hydrol
, vol.245
, pp. 196-217
-
-
Xiong, L.H.1
Shamseldin, A.Y.2
O'Connor, K.M.3
-
38
-
-
0033019602
-
Short term stream flow forecasting using artificial neural networks
-
Zealand, C. M., Burn, D. H. & Simonovic, S. P. (1999) Short term stream flow forecasting using artificial neural networks. J. Hydrol. 214, 32-48.
-
(1999)
J. Hydrol
, vol.214
, pp. 32-48
-
-
Zealand, C.M.1
Burn, D.H.2
Simonovic, S.P.3
-
39
-
-
0000251270
-
Comparison between fuzzy reasoning and neural network method to forecast runoff discharge
-
Zhu, M. L. & Fujita, M. (1994) Comparison between fuzzy reasoning and neural network method to forecast runoff discharge. J. Hydrosci. & Hydraul. Engng. 12(2), 131-141.
-
(1994)
J. Hydrosci. & Hydraul. Engng
, vol.12
, Issue.2
, pp. 131-141
-
-
Zhu, M.L.1
Fujita, M.2
-
40
-
-
1942497320
-
Long lead time forecast of runoff using fuzzy reasoning method
-
Zhu, M. L., Fujita, M., Hashimoto, N. & Kudo, M. (1994) Long lead time forecast of runoff using fuzzy reasoning method. J. Japan Soc. Hydrol. & Water Resour. 7(2), 83-89.
-
(1994)
J. Japan Soc. Hydrol. & Water Resour
, vol.7
, Issue.2
, pp. 83-89
-
-
Zhu, M.L.1
Fujita, M.2
Hashimoto, N.3
Kudo, M.4
|