메뉴 건너뛰기




Volumn 15, Issue 1, 2000, Pages 101-124

Neural networks for the prediction and forecasting of water resources variables: A review of modelling issues and applications

Author keywords

Artificial neural networks; Forecasting; Model development; Modelling process; Prediction; Review; Water resources

Indexed keywords

COMPUTER ARCHITECTURE; FORECASTING; NEURAL NETWORKS;

EID: 0033957764     PISSN: 13648152     EISSN: None     Source Type: Journal    
DOI: 10.1016/S1364-8152(99)00007-9     Document Type: Article
Times cited : (1983)

References (179)
  • 1
    • 0000177227 scopus 로고
    • The Vapnik-Chervonenkis dimension: Information versus complexity in learning
    • Abu-Mostafa Y.S. The Vapnik-Chervonenkis dimension: Information versus complexity in learning. Neural Computation. 1(3):1989;312-317.
    • (1989) Neural Computation , vol.1 , Issue.3 , pp. 312-317
    • Abu-Mostafa, Y.S.1
  • 2
    • 0028571934 scopus 로고
    • An evaluation of neural networks and discriminant analysis methods for application in operational rain forecasting
    • Allen G., le Marshall J.F. An evaluation of neural networks and discriminant analysis methods for application in operational rain forecasting. Australian Meteorological Magazine. 43(1):1994;17-28.
    • (1994) Australian Meteorological Magazine , vol.43 , Issue.1 , pp. 17-28
    • Allen, G.1    Le Marshall, J.F.2
  • 4
    • 0029484103 scopus 로고
    • A survey and critique of techniques for extracting rules from trained artificial neural networks
    • Andrews R., Diederich J., Tickle A.B. A survey and critique of techniques for extracting rules from trained artificial neural networks. Knowledge Based Systems. 8:1995;373-389.
    • (1995) Knowledge Based Systems , vol.8 , pp. 373-389
    • Andrews, R.1    Diederich, J.2    Tickle, A.B.3
  • 7
    • 0001209372 scopus 로고
    • Accelerated back-propagation learning: Two optimization methods
    • Battiti R. Accelerated back-propagation learning: Two optimization methods. Complex Systems. 3:1989;331-342.
    • (1989) Complex Systems , vol.3 , pp. 331-342
    • Battiti, R.1
  • 8
    • 0001024110 scopus 로고
    • First- And second-order methods for learning: Between steepest descent and Newton's method
    • Battiti R. First- and second-order methods for learning: Between steepest descent and Newton's method. Neural Computation. 4:1992;141-166.
    • (1992) Neural Computation , vol.4 , pp. 141-166
    • Battiti, R.1
  • 9
    • 0028516118 scopus 로고
    • Feed-forward neural networks: Why network size is so important
    • October-November
    • Bebis G., Georgiopoulos M. Feed-forward neural networks: Why network size is so important. IEEE Potentials. October/November:1994;27-31.
    • (1994) IEEE Potentials , pp. 27-31
    • Bebis, G.1    Georgiopoulos, M.2
  • 10
    • 0342735303 scopus 로고
    • Comment on 'Neural networks: A review from a statistical perspective' by B. Cheng and D.M. Titterington
    • Bienenstock E., Geman S. Comment on 'Neural networks: A review from a statistical perspective' by B. Cheng and D.M. Titterington. Statistical Science. 9(1):1994;36-38.
    • (1994) Statistical Science , vol.9 , Issue.1 , pp. 36-38
    • Bienenstock, E.1    Geman, S.2
  • 13
    • 0343169787 scopus 로고    scopus 로고
    • Feed-forward artificial neural network model for forecasting rainfall run-off
    • The Modelling and Simulation Society of Australia Inc., Hobart, Australia
    • Braddock, R.D., Kremmer, M.L., Sanzogni, L., 1997. Feed-forward artificial neural network model for forecasting rainfall run-off. Proceedings of the International Congress on Modelling and Simulation (Modsim 97), The Modelling and Simulation Society of Australia Inc., Hobart, Australia, pp. 1653-1658.
    • (1997) Proceedings of the International Congress on Modelling and Simulation (Modsim 97) , pp. 1653-1658
    • Braddock, R.D.1    Kremmer, M.L.2    Sanzogni, L.3
  • 14
    • 84972493978 scopus 로고
    • Comment on 'Neural networks: A review from a statistical perspective' by B. Cheng and D.M. Titterington
    • Breiman L. Comment on 'Neural networks: A review from a statistical perspective' by B. Cheng and D.M. Titterington. Statistical Science. 9(1):1994;38-42.
    • (1994) Statistical Science , vol.9 , Issue.1 , pp. 38-42
    • Breiman, L.1
  • 15
    • 0000621802 scopus 로고
    • Multivariate functional interpolation and adaptive networks
    • Broomhead D.S., Lowe D. Multivariate functional interpolation and adaptive networks. Complex Systems. 2:1988;321-355.
    • (1988) Complex Systems , vol.2 , pp. 321-355
    • Broomhead, D.S.1    Lowe, D.2
  • 16
    • 0030719953 scopus 로고    scopus 로고
    • Cross-validatory selection of test and validation sets in multivariate calibration and neural networks as applied to spectroscopy
    • Burden F.R., Brereton R.G., Walsh P.T. Cross-validatory selection of test and validation sets in multivariate calibration and neural networks as applied to spectroscopy. Analyst. 122(10):1997;1015-1022.
    • (1997) Analyst , vol.122 , Issue.10 , pp. 1015-1022
    • Burden, F.R.1    Brereton, R.G.2    Walsh, P.T.3
  • 17
    • 0026852344 scopus 로고
    • Neural networks and operations research: An overview
    • Burke L.I., Ignizio J.P. Neural networks and operations research: an overview. Computer and Operations Research. 19(3/4):1992;179-189.
    • (1992) Computer and Operations Research , vol.19 , Issue.3-4 , pp. 179-189
    • Burke, L.I.1    Ignizio, J.P.2
  • 19
    • 0026954346 scopus 로고
    • Forecasting the behaviour of multivariate time series using neural networks
    • Chakraborty K., Mehrotra K., Mohan C.K., Ranka S. Forecasting the behaviour of multivariate time series using neural networks. Neural Networks. 5:1992;961-970.
    • (1992) Neural Networks , vol.5 , pp. 961-970
    • Chakraborty, K.1    Mehrotra, K.2    Mohan, C.K.3    Ranka, S.4
  • 21
    • 35248833159 scopus 로고
    • Neural networks: Forecasting breakthrough or just a passing fad?
    • Chatfield C. Neural networks: Forecasting breakthrough or just a passing fad? International Journal of Forecasting. 9:1993;1-3.
    • (1993) International Journal of Forecasting , vol.9 , pp. 1-3
    • Chatfield, C.1
  • 22
    • 0031194887 scopus 로고    scopus 로고
    • A self-generating modular neural network architecture for supervised learning
    • Chen K., Yang L.P., Yu X., Chi H.S. A self-generating modular neural network architecture for supervised learning. Neurocomputing. 16(1):1997;33-48.
    • (1997) Neurocomputing , vol.16 , Issue.1 , pp. 33-48
    • Chen, K.1    Yang, L.P.2    Yu, X.3    Chi, H.S.4
  • 23
    • 84972539015 scopus 로고
    • Neural networks: A review from a statistical perspective
    • Cheng B., Titterington D.M. Neural networks: A review from a statistical perspective. Statistical Science. 9(1):1994;2-54.
    • (1994) Statistical Science , vol.9 , Issue.1 , pp. 2-54
    • Cheng, B.1    Titterington, D.M.2
  • 24
    • 0029733768 scopus 로고    scopus 로고
    • Gradient radial basis function networks for nonlinear and nonstationary time series prediction
    • Chng E.S., Chen S., Mulgrew B. Gradient radial basis function networks for nonlinear and nonstationary time series prediction. IEEE Transactions on Neural Networks. 7(1):1996;191-194.
    • (1996) IEEE Transactions on Neural Networks , vol.7 , Issue.1 , pp. 191-194
    • Chng, E.S.1    Chen, S.2    Mulgrew, B.3
  • 25
    • 0031106678 scopus 로고    scopus 로고
    • Linear and nonlinear ARMA model parameter estimation using an artificial neural network
    • Chon K.H., Cohen R.J. Linear and nonlinear ARMA model parameter estimation using an artificial neural network. IEEE Transactions on Biomedical Engineering. 44(3):1997;168-174.
    • (1997) IEEE Transactions on Biomedical Engineering , vol.44 , Issue.3 , pp. 168-174
    • Chon, K.H.1    Cohen, R.J.2
  • 26
    • 21744431610 scopus 로고    scopus 로고
    • Development of a recurrent sigma-pi neural network rainfall forecasting system in Hong Kong
    • Chow T.W.S., Cho S.Y. Development of a recurrent sigma-pi neural network rainfall forecasting system in Hong Kong. Neural Computing and Applications. 5(2):1997;66-75.
    • (1997) Neural Computing and Applications , vol.5 , Issue.2 , pp. 66-75
    • Chow, T.W.S.1    Cho, S.Y.2
  • 27
    • 0010320018 scopus 로고
    • A node pruning algorithm for backpropagation networks
    • Chung F.L., Lee T. A node pruning algorithm for backpropagation networks. International Journal of Neural Systems. 3(3):1992;301-314.
    • (1992) International Journal of Neural Systems , vol.3 , Issue.3 , pp. 301-314
    • Chung, F.L.1    Lee, T.2
  • 28
    • 0029849763 scopus 로고    scopus 로고
    • Variations in discharge and dissolved organic carbon and nitrogen export from terrestrial basins with changes in climate: A neural network approach
    • Clair T.A., Ehrman J.M. Variations in discharge and dissolved organic carbon and nitrogen export from terrestrial basins with changes in climate: a neural network approach. Limnology and Oceanography. 41(5):1996;921-927.
    • (1996) Limnology and Oceanography , vol.41 , Issue.5 , pp. 921-927
    • Clair, T.A.1    Ehrman, J.M.2
  • 31
    • 0031277503 scopus 로고    scopus 로고
    • Effects of learning parameters on learning procedure and performance of a BPNN
    • Dai H.C., Macbeth C. Effects of learning parameters on learning procedure and performance of a BPNN. Neural Networks. 10(8):1997;1505-1521.
    • (1997) Neural Networks , vol.10 , Issue.8 , pp. 1505-1521
    • Dai, H.C.1    Macbeth, C.2
  • 32
    • 0000595242 scopus 로고
    • Note on learning rate schedules for stochastic optimization
    • In: Lippmann, R.P., Moody, J.E., Touretzky, D.S. (Eds.), Morgan Kaufmann, San Mateo, CA
    • Darken, C., Moody, J., 1990. Note on learning rate schedules for stochastic optimization. In: Lippmann, R.P., Moody, J.E., Touretzky, D.S. (Eds.), Advances in Neural Information Processing Systems 3. Morgan Kaufmann, San Mateo, CA.
    • (1990) Advances in Neural Information Processing Systems , vol.3
    • Darken, C.1    Moody, J.2
  • 33
    • 0001348721 scopus 로고
    • A Markov chain framework for the simple genetic algorithm
    • Davis T.E., Principe J.C. A Markov chain framework for the simple genetic algorithm. Evolutionary Computation. 1(3):1993;269-288.
    • (1993) Evolutionary Computation , vol.1 , Issue.3 , pp. 269-288
    • Davis, T.E.1    Principe, J.C.2
  • 34
    • 0032005702 scopus 로고    scopus 로고
    • An artificial neural network approach to rainfall-runoff modelling
    • Dawson C.W., Wilby R. An artificial neural network approach to rainfall-runoff modelling. Hydrological Sciences Journal. 43(1):1998;47-66.
    • (1998) Hydrological Sciences Journal , vol.43 , Issue.1 , pp. 47-66
    • Dawson, C.W.1    Wilby, R.2
  • 36
    • 0031269563 scopus 로고    scopus 로고
    • Structure optimization of neural networks with the A*-algorithm
    • Doering A., Galicki M., Witte H. Structure optimization of neural networks with the A*-algorithm. IEEE Transactions on Neural Networks. 8(6):1997;1434-1445.
    • (1997) IEEE Transactions on Neural Networks , vol.8 , Issue.6 , pp. 1434-1445
    • Doering, A.1    Galicki, M.2    Witte, H.3
  • 37
    • 26444565569 scopus 로고
    • Finding structure in time
    • Elman J.L. Finding structure in time. Cognitive Science. 14:1990;179-211.
    • (1990) Cognitive Science , vol.14 , pp. 179-211
    • Elman, J.L.1
  • 39
    • 0000155950 scopus 로고
    • The cascade-correlation learning architecture
    • In: Touretzky, D.S. (Ed.), Morgan Kaufmann, San Mateo, CA
    • Fahlman, S.E., Lebiere, C., 1990. The cascade-correlation learning architecture. In: Touretzky, D.S. (Ed.), Advances in Neural Information Processing Systems 2. Morgan Kaufmann, San Mateo, CA.
    • (1990) Advances in Neural Information Processing Systems , vol.2
    • Fahlman, S.E.1    Lebiere, C.2
  • 40
    • 0039988139 scopus 로고    scopus 로고
    • Time series forecasting with neural networks: A comparative study using the airline data
    • Faraway J., Chatfield C. Time series forecasting with neural networks: a comparative study using the airline data. Applied Statistics. 47(2):1998;231-250.
    • (1998) Applied Statistics , vol.47 , Issue.2 , pp. 231-250
    • Faraway, J.1    Chatfield, C.2
  • 42
  • 43
    • 0028416331 scopus 로고
    • Neural networks in civil engineering. I: Principles and understanding
    • Flood I., Kartam N. Neural networks in civil engineering. I: Principles and understanding. Journal of Computing in Civil Engineering. 8(2):1994;131-148.
    • (1994) Journal of Computing in Civil Engineering , vol.8 , Issue.2 , pp. 131-148
    • Flood, I.1    Kartam, N.2
  • 45
    • 0001573780 scopus 로고    scopus 로고
    • Comment on 'The use of artificial neural networks for the prediction of water quality parameters' by H.R. Maier and G.C. Dandy
    • Fortin V., Ouarda T.B.M.J., Bobée B. Comment on 'The use of artificial neural networks for the prediction of water quality parameters' by H.R. Maier and G.C. Dandy. Water Resources Research. 33(10):1997;2423-22424.
    • (1997) Water Resources Research , vol.33 , Issue.10 , pp. 2423-22424
    • Fortin, V.1    Ouarda, T.B.M.J.2    Bobée, B.3
  • 47
    • 0000809163 scopus 로고    scopus 로고
    • Nonlinear modelling and prediction with feedforward and recurrent networks
    • Gençay R., Liu T. Nonlinear modelling and prediction with feedforward and recurrent networks. Physica D. 108(1)(2):1997;119-134.
    • (1997) Physica D , vol.108 , Issue.1-2 , pp. 119-134
    • Gençay, R.1    Liu, T.2
  • 53
    • 0000598965 scopus 로고    scopus 로고
    • A novel neural network design for long range prediction of rainfall pattern
    • Goswami P., Srividya A novel neural network design for long range prediction of rainfall pattern. Current Science. 70(6):1996;447-457.
    • (1996) Current Science , vol.70 , Issue.6 , pp. 447-457
    • Goswami, P.1    Srividya2
  • 54
    • 0031191950 scopus 로고    scopus 로고
    • Neural networks and traditional time series methods: A synergistic combination in state economic forecasts
    • Hansen J.V., Nelson R.D. Neural networks and traditional time series methods: A synergistic combination in state economic forecasts. IEEE Transactions on Neural Networks. 8(4):1997;863-873.
    • (1997) IEEE Transactions on Neural Networks , vol.8 , Issue.4 , pp. 863-873
    • Hansen, J.V.1    Nelson, R.D.2
  • 56
    • 84950630088 scopus 로고
    • Identification of dynamic regression (distributed lag) models connecting two time series
    • Haugh L.D., Box G.E.P. Identification of dynamic regression (distributed lag) models connecting two time series. Journal of the American Statistical Association. 72(397):1977;121-130.
    • (1977) Journal of the American Statistical Association , vol.72 , Issue.397 , pp. 121-130
    • Haugh, L.D.1    Box, G.E.P.2
  • 59
    • 0343169780 scopus 로고    scopus 로고
    • Multiplication-free radial basis function network
    • Heiss M., Kampl S. Multiplication-free radial basis function network. IEEE Transactions on Neural Networks. 7(6):1996;1461-1464.
    • (1996) IEEE Transactions on Neural Networks , vol.7 , Issue.6 , pp. 1461-1464
    • Heiss, M.1    Kampl, S.2
  • 60
    • 77956898593 scopus 로고
    • On-line learning processes in artificial neural networks
    • In: Taylor, J.G. (Ed.), Elsevier Science Publishers, Amsterdam
    • Heskes, T.M., Kappen, B., 1993. On-line learning processes in artificial neural networks. In: Taylor, J.G. (Ed.), Mathematical Approaches to Neural Networks. Elsevier Science Publishers, Amsterdam.
    • (1993) Mathematical Approaches to Neural Networks
    • Heskes, T.M.1    Kappen, B.2
  • 62
    • 0025964567 scopus 로고
    • Back-propagation algorithm which varies the number of hidden units
    • Hirose Y., Yamashita K., Hijiya S. Back-propagation algorithm which varies the number of hidden units. Neural Networks. 4(1):1991;61-66.
    • (1991) Neural Networks , vol.4 , Issue.1 , pp. 61-66
    • Hirose, Y.1    Yamashita, K.2    Hijiya, S.3
  • 64
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • Hornik K., Stinchcombe M., White H. Multilayer feedforward networks are universal approximators. Neural Networks. 2:1989;359-366.
    • (1989) Neural Networks , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 65
    • 0031399333 scopus 로고    scopus 로고
    • Precipitation estimation from remotely sensed information using artificial neural networks
    • Hsu K.L., Gao X.G., Sorooshian S., Gupta H.V. Precipitation estimation from remotely sensed information using artificial neural networks. Journal of Applied Meteorology. 36(9):1997;1176-1190.
    • (1997) Journal of Applied Meteorology , vol.36 , Issue.9 , pp. 1176-1190
    • Hsu, K.L.1    Gao, X.G.2    Sorooshian, S.3    Gupta, H.V.4
  • 66
    • 0029413797 scopus 로고
    • Artificial neural network modeling of the rainfall-runoff process
    • Hsu K.-L., Gupta H.V., Sorooshian S. Artificial neural network modeling of the rainfall-runoff process. Water Resources Research. 31(10):1995;2517-2530.
    • (1995) Water Resources Research , vol.31 , Issue.10 , pp. 2517-2530
    • Hsu, K.-L.1    Gupta, H.V.2    Sorooshian, S.3
  • 67
    • 0025792215 scopus 로고
    • Bounds on the number of hidden neurons in multilayer perceptrons
    • Huang S.C., Huang Y.F. Bounds on the number of hidden neurons in multilayer perceptrons. IEEE Transactions on Neural Networks. 2:1991;47-55.
    • (1991) IEEE Transactions on Neural Networks , vol.2 , pp. 47-55
    • Huang, S.C.1    Huang, Y.F.2
  • 69
    • 0026838551 scopus 로고
    • Multiplicative, seasonal ARIMA models for Lake Erie and Lake Ontario water levels
    • Irvine K.N., Eberhardt A.J. Multiplicative, seasonal ARIMA models for Lake Erie and Lake Ontario water levels. Water Resources Bulletin. 28(2):1992;385-396.
    • (1992) Water Resources Bulletin , vol.28 , Issue.2 , pp. 385-396
    • Irvine, K.N.1    Eberhardt, A.J.2
  • 70
    • 0024137490 scopus 로고
    • Increased rates of convergence through learning rate adaptation
    • Jacobs R.A. Increased rates of convergence through learning rate adaptation. Neural Networks. 1:1988;295-307.
    • (1988) Neural Networks , vol.1 , pp. 295-307
    • Jacobs, R.A.1
  • 72
    • 84978564324 scopus 로고
    • Forecasting futures trading volume using neural networks
    • Kaastra I., Boyd M.S. Forecasting futures trading volume using neural networks. The Journal of Futures Markets. 15(8):1995;953-970.
    • (1995) The Journal of Futures Markets , vol.15 , Issue.8 , pp. 953-970
    • Kaastra, I.1    Boyd, M.S.2
  • 74
    • 0025447562 scopus 로고
    • A simple procedure for pruning backpropagation trained neural networks
    • Karnin E.D. A simple procedure for pruning backpropagation trained neural networks. IEEE Transactions on Neural Networks. 1:1990;239-242.
    • (1990) IEEE Transactions on Neural Networks , vol.1 , pp. 239-242
    • Karnin, E.D.1
  • 77
  • 78
    • 0024715766 scopus 로고
    • An adaptive least square algorithm for the efficient training of artificial neural networks
    • Kollias S., Anastrassiou D. An adaptive least square algorithm for the efficient training of artificial neural networks. IEEE Transactions on Circuits and Systems. 36:1989;1092-1101.
    • (1989) IEEE Transactions on Circuits and Systems , vol.36 , pp. 1092-1101
    • Kollias, S.1    Anastrassiou, D.2
  • 79
  • 80
    • 0000632352 scopus 로고    scopus 로고
    • Experiments in short-term precipitation forecasting using artificial neural networks
    • Kuligowski R.J., Barros A.P. Experiments in short-term precipitation forecasting using artificial neural networks. Monthly Weather Review. 126:1998;470-482.
    • (1998) Monthly Weather Review , vol.126 , pp. 470-482
    • Kuligowski, R.J.1    Barros, A.P.2
  • 81
    • 0032434569 scopus 로고    scopus 로고
    • Localized precipitation forecasts from a numerical weather prediction model using artificial neural networks
    • Kuligowski R.J., Barros A.P. Localized precipitation forecasts from a numerical weather prediction model using artificial neural networks. Weather and Forecasting. 13:1998;1194-1204.
    • (1998) Weather and Forecasting , vol.13 , pp. 1194-1204
    • Kuligowski, R.J.1    Barros, A.P.2
  • 83
    • 0040527546 scopus 로고
    • Optimization of the neural net connectivity pattern using a backpropagation algorithm
    • Kumar K.K. Optimization of the neural net connectivity pattern using a backpropagation algorithm. Neurocomputing. 5:1993;273-286.
    • (1993) Neurocomputing , vol.5 , pp. 273-286
    • Kumar, K.K.1
  • 84
    • 0031146959 scopus 로고    scopus 로고
    • Constructive algorithms for structure learning in feedforward neural networks for regression problems
    • Kwok T.-Y., Yeung D.-Y. Constructive algorithms for structure learning in feedforward neural networks for regression problems. IEEE Transactions on Neural Networks. 8(3):1997;630-645.
    • (1997) IEEE Transactions on Neural Networks , vol.8 , Issue.3 , pp. 630-645
    • Kwok, T.-Y.1    Yeung, D.-Y.2
  • 85
    • 0031236099 scopus 로고    scopus 로고
    • Objective functions for training new hidden units in constructive neural networks
    • Kwok T.-Y., Yeung D.-Y. Objective functions for training new hidden units in constructive neural networks. IEEE Transactions on Neural Networks. 8(5):1997;1131-1148.
    • (1997) IEEE Transactions on Neural Networks , vol.8 , Issue.5 , pp. 1131-1148
    • Kwok, T.-Y.1    Yeung, D.-Y.2
  • 86
    • 0001006264 scopus 로고
    • Backpropagation in hydrological time series forecasting
    • In: Hipel, K.W., McLeod, A.I., Panu, U.S., Singh, V.P. (Eds.), Kluwer Academic, Dordrecht
    • Lachtermacher, G., Fuller, J.D., 1994. Backpropagation in hydrological time series forecasting. In: Hipel, K.W., McLeod, A.I., Panu, U.S., Singh, V.P. (Eds.), Stochastic and Statistical Methods in Hydrology and Environmental Engineering. Kluwer Academic, Dordrecht.
    • (1994) Stochastic and Statistical Methods in Hydrology and Environmental Engineering
    • Lachtermacher, G.1    Fuller, J.D.2
  • 87
    • 0001278980 scopus 로고
    • A self-optimizing, nonsymmetrical neural net for content addressable memory and pattern recognition
    • Lapedes A., Farber R. A self-optimizing, nonsymmetrical neural net for content addressable memory and pattern recognition. Physica D. 22:1986;247-259.
    • (1986) Physica D , vol.22 , pp. 247-259
    • Lapedes, A.1    Farber, R.2
  • 90
    • 0029777584 scopus 로고    scopus 로고
    • Robust error measure for supervised neural network learning with outliers
    • Liano K. Robust error measure for supervised neural network learning with outliers. IEEE Transactions on Neural Networks. 7(1):1996;246-250.
    • (1996) IEEE Transactions on Neural Networks , vol.7 , Issue.1 , pp. 246-250
    • Liano, K.1
  • 94
    • 0029413502 scopus 로고
    • Neural nets for modelling rainfall-runoff transformations
    • Lorrai M., Sechi G.M. Neural nets for modelling rainfall-runoff transformations. Water Resources Management. 9(4):1995;299-313.
    • (1995) Water Resources Management , vol.9 , Issue.4 , pp. 299-313
    • Lorrai, M.1    Sechi, G.M.2
  • 95
    • 0031105693 scopus 로고    scopus 로고
    • An efficient EM-based training algorithm for feedforward neural networks
    • Ma S., Ji C.Y., Farmer J. An efficient EM-based training algorithm for feedforward neural networks. Neural Networks. 10(2):1997;243-256.
    • (1997) Neural Networks , vol.10 , Issue.2 , pp. 243-256
    • Ma, S.1    Ji, C.Y.2    Farmer, J.3
  • 97
    • 0030405597 scopus 로고    scopus 로고
    • Neural network models for forecasting univariate time series
    • Maier H.R., Dandy G.C. Neural network models for forecasting univariate time series. Neural Network World. 6(5):1996;747-771.
    • (1996) Neural Network World , vol.6 , Issue.5 , pp. 747-771
    • Maier, H.R.1    Dandy, G.C.2
  • 98
    • 0029663621 scopus 로고    scopus 로고
    • The use of artificial neural networks for the prediction of water quality parameters
    • Maier H.R., Dandy G.C. The use of artificial neural networks for the prediction of water quality parameters. Water Resources Research. 32(4):1996;1013-1022.
    • (1996) Water Resources Research , vol.32 , Issue.4 , pp. 1013-1022
    • Maier, H.R.1    Dandy, G.C.2
  • 99
    • 0031222587 scopus 로고    scopus 로고
    • Determining inputs for neural network models of multivariate time series
    • Maier H.R., Dandy G.C. Determining inputs for neural network models of multivariate time series. Microcomputers in Civil Engineering. 12(5):1997;353-368.
    • (1997) Microcomputers in Civil Engineering , vol.12 , Issue.5 , pp. 353-368
    • Maier, H.R.1    Dandy, G.C.2
  • 100
    • 0031096422 scopus 로고    scopus 로고
    • Modelling cyanobacteria (blue-green algae) in the River Murray using artificial neural networks
    • (4)(5)
    • Maier H.R., Dandy G.C. Modelling cyanobacteria (blue-green algae) in the River Murray using artificial neural networks. Mathematics and Computers in Simulation. 43(3)(4)(5)(6):1997;377-386.
    • (1997) Mathematics and Computers in Simulation , vol.43 , Issue.3-6 , pp. 377-386
    • Maier, H.R.1    Dandy, G.C.2
  • 101
    • 0032051569 scopus 로고    scopus 로고
    • The effect of internal parameters and geometry on the performance of back-propagation neural networks: An empirical study
    • Maier H.R., Dandy G.C. The effect of internal parameters and geometry on the performance of back-propagation neural networks: An empirical study. Environmental Modelling and Software. 13(2):1998;193-209.
    • (1998) Environmental Modelling and Software , vol.13 , Issue.2 , pp. 193-209
    • Maier, H.R.1    Dandy, G.C.2
  • 102
    • 0032034197 scopus 로고    scopus 로고
    • Understanding the behaviour and optimising the performance of back-propagation neural networks: An empirical study
    • Maier H.R., Dandy G.C. Understanding the behaviour and optimising the performance of back-propagation neural networks: An empirical study. Environmental Modelling and Software. 13(2):1998;179-191.
    • (1998) Environmental Modelling and Software , vol.13 , Issue.2 , pp. 179-191
    • Maier, H.R.1    Dandy, G.C.2
  • 103
    • 0032855262 scopus 로고    scopus 로고
    • Empirical comparison of various methods for training feedforward neural networks for salinity forecasting
    • submitted
    • Maier, H.R., Dandy, G.C., 1999a. Empirical comparison of various methods for training feedforward neural networks for salinity forecasting. Water Resources Research, submitted.
    • (1999) Water Resources Research
    • Maier, H.R.1    Dandy, G.C.2
  • 104
    • 85010652906 scopus 로고    scopus 로고
    • Neural network based modelling of environmental variables: A systematic approach
    • in press
    • Maier, H.R., Dandy, G.C. 1999b. Neural network based modelling of environmental variables: A systematic approach. Mathematical and Computer Modelling, in press.
    • (1999) Mathematical and Computer Modelling
    • Maier, H.R.1    Dandy, G.C.2
  • 105
    • 0031933254 scopus 로고    scopus 로고
    • Use of artificial neural networks for modelling cyanobacteria Anabaena spp. in the River Murray, South Australia
    • Maier H.R., Dandy G.C., Burch M.D. Use of artificial neural networks for modelling cyanobacteria Anabaena spp. in the River Murray, South Australia. Ecological Modelling. 105(2/3):1998;257-272.
    • (1998) Ecological Modelling , vol.105 , Issue.2-3 , pp. 257-272
    • Maier, H.R.1    Dandy, G.C.2    Burch, M.D.3
  • 108
  • 110
    • 0342300249 scopus 로고    scopus 로고
    • Rain rate estimation using neural networks
    • Miller S.W. Rain rate estimation using neural networks. AI Applications. 11(1):1997;95-98.
    • (1997) AI Applications , vol.11 , Issue.1 , pp. 95-98
    • Miller, S.W.1
  • 111
    • 0030159380 scopus 로고    scopus 로고
    • Artificial neural networks as rainfall-runoff models
    • Minns A.W., Hall M.J. Artificial neural networks as rainfall-runoff models. Hydrological Sciences Journal. 41(3):1996;399-417.
    • (1996) Hydrological Sciences Journal , vol.41 , Issue.3 , pp. 399-417
    • Minns, A.W.1    Hall, M.J.2
  • 112
    • 0027205884 scopus 로고
    • A scaled conjugate gradient algorithm for fast supervised learning
    • Møller M.S. A scaled conjugate gradient algorithm for fast supervised learning. Neural Networks. 6(4):1993;525-534.
    • (1993) Neural Networks , vol.6 , Issue.4 , pp. 525-534
    • Møller, M.S.1
  • 113
    • 0242401012 scopus 로고
    • Networks with learned unit response functions
    • In: Moody, J.E., Hanson, S.J., Lippmann, R.P. (Eds.), Morgan Kaufmann, San Mateo, CA
    • Moody, J., Yarvin, N., 1992. Networks with learned unit response functions. In: Moody, J.E., Hanson, S.J., Lippmann, R.P. (Eds.), Advances in Neural Information Processing Systems 4. Morgan Kaufmann, San Mateo, CA.
    • (1992) Advances in Neural Information Processing Systems , vol.4
    • Moody, J.1    Yarvin, N.2
  • 114
    • 0028544395 scopus 로고
    • Network information criterion - Determining the number of hidden units for an artificial neural network model
    • Murata N., Yoshizawa S., Amari S. Network information criterion - Determining the number of hidden units for an artificial neural network model. IEEE Transactions on Neural Networks. 5:1994;865-872.
    • (1994) IEEE Transactions on Neural Networks , vol.5 , pp. 865-872
    • Murata, N.1    Yoshizawa, S.2    Amari, S.3
  • 118
    • 0032170668 scopus 로고    scopus 로고
    • The application of neural techniques to the modelling of time-series of atmospheric pollution data
    • Nunnari G., Nucifora A.F.M., Randieri C. The application of neural techniques to the modelling of time-series of atmospheric pollution data. Ecological Modelling. 111(2)(3):1998;187-205.
    • (1998) Ecological Modelling , vol.111 , Issue.2-3 , pp. 187-205
    • Nunnari, G.1    Nucifora, A.F.M.2    Randieri, C.3
  • 119
    • 0030477946 scopus 로고    scopus 로고
    • Fast second order learning algorithm for feedforward multilayer neural networks and its applications
    • Osowski S., Bojarczak P., Stodolski M. Fast second order learning algorithm for feedforward multilayer neural networks and its applications. Neural Networks. 9(9):1996;1583-1596.
    • (1996) Neural Networks , vol.9 , Issue.9 , pp. 1583-1596
    • Osowski, S.1    Bojarczak, P.2    Stodolski, M.3
  • 120
    • 0000014434 scopus 로고    scopus 로고
    • A generalized learning paradigm exploiting the structure of feedforward neural networks
    • Parisi R., Di Claudio E.D., Orlandi G., Rao B.D. A generalized learning paradigm exploiting the structure of feedforward neural networks. IEEE Transactions on Neural Networks. 7(6):1996;1451-1460.
    • (1996) IEEE Transactions on Neural Networks , vol.7 , Issue.6 , pp. 1451-1460
    • Parisi, R.1    Di Claudio, E.D.2    Orlandi, G.3    Rao, B.D.4
  • 121
    • 0001969496 scopus 로고
    • Learning sets of filters using backpropagation
    • Plaut D.C., Hinton G.E. Learning sets of filters using backpropagation. Comput. Speech Language. 2:1987;35-61.
    • (1987) Comput. Speech Language , vol.2 , pp. 35-61
    • Plaut, D.C.1    Hinton, G.E.2
  • 122
    • 0012733832 scopus 로고    scopus 로고
    • Stream hydrological and ecological responses to climate change assessed with an artificial neural network
    • Poff N.L., Tokar S., Johnson P. Stream hydrological and ecological responses to climate change assessed with an artificial neural network. Limnology and Oceanography. 41(5):1996;857-863.
    • (1996) Limnology and Oceanography , vol.41 , Issue.5 , pp. 857-863
    • Poff, N.L.1    Tokar, S.2    Johnson, P.3
  • 123
    • 0031194103 scopus 로고    scopus 로고
    • Connection pruning with static and adaptive pruning schedules
    • Prechelt L. Connection pruning with static and adaptive pruning schedules. Neurocomputing. 16(1):1997;49-61.
    • (1997) Neurocomputing , vol.16 , Issue.1 , pp. 49-61
    • Prechelt, L.1
  • 124
    • 0029413038 scopus 로고
    • Multivariate modelling of water resources time series using artificial neural networks
    • Raman H., Sunilkumar N. Multivariate modelling of water resources time series using artificial neural networks. Hydrological Sciences Journal. 40(2):1995;145-163.
    • (1995) Hydrological Sciences Journal , vol.40 , Issue.2 , pp. 145-163
    • Raman, H.1    Sunilkumar, N.2
  • 125
    • 0030809170 scopus 로고    scopus 로고
    • ANNA - Artificial neural network model for predicting species abundance and succession of blue-green algae
    • Recknagel F. ANNA - Artificial neural network model for predicting species abundance and succession of blue-green algae. Hydrobiologia. 349:1997;47-57.
    • (1997) Hydrobiologia , vol.349 , pp. 47-57
    • Recknagel, F.1
  • 126
    • 0030619529 scopus 로고    scopus 로고
    • Artificial neural network approach for modelling and prediction of algal blooms
    • Recknagel F., French M., Harkonen P., Yabunaka K.-I. Artificial neural network approach for modelling and prediction of algal blooms. Ecological Modelling. 96:1997;11-28.
    • (1997) Ecological Modelling , vol.96 , pp. 11-28
    • Recknagel, F.1    French, M.2    Harkonen, P.3    Yabunaka, K.-I.4
  • 128
    • 0031272644 scopus 로고    scopus 로고
    • Neural networks in financial engineering: A study in methodology
    • Refenes A., Burgess A.N., Bents Y. Neural networks in financial engineering: A study in methodology. IEEE Transactions on Neural Networks. 8(6):1997;1223-1267.
    • (1997) IEEE Transactions on Neural Networks , vol.8 , Issue.6 , pp. 1223-1267
    • Refenes, A.1    Burgess, A.N.2    Bents, Y.3
  • 129
    • 0000696616 scopus 로고
    • Neural networks and related methods of classification
    • Ripley B.D. Neural networks and related methods of classification. Journal of the Royal Statistical Society B. 56(3):1994;409-456.
    • (1994) Journal of the Royal Statistical Society B , vol.56 , Issue.3 , pp. 409-456
    • Ripley, B.D.1
  • 132
    • 0028174533 scopus 로고
    • Optimization of groundwater remediation using artificial neural networks with parallel solute transport modeling
    • Rogers L.L., Dowla F.U. Optimization of groundwater remediation using artificial neural networks with parallel solute transport modeling. Water Resources Research. 30(2):1994;457-481.
    • (1994) Water Resources Research , vol.30 , Issue.2 , pp. 457-481
    • Rogers, L.L.1    Dowla, F.U.2
  • 134
    • 0000646059 scopus 로고
    • Learning internal representations by error propagation
    • In: Rumelhart, D.E., McClelland, J.L. (Eds.), MIT Press, Cambridge
    • Rumelhart, D.E., Hinton, G.E., Williams, R.J., 1986a. Learning internal representations by error propagation. In: Rumelhart, D.E., McClelland, J.L. (Eds.), Parallel Distributed Processing. MIT Press, Cambridge.
    • (1986) Parallel Distributed Processing
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 135
    • 0022471098 scopus 로고
    • Learning representations by backpropagating errors
    • Rumelhart D.E., Hinton G.E., Williams R.J. Learning representations by backpropagating errors. Nature. 323:1986;533-536.
    • (1986) Nature , vol.323 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 137
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz G. Estimating the dimension of a model. Annals of Statistics. 6:1978;461-464.
    • (1978) Annals of Statistics , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 138
    • 0030633575 scopus 로고    scopus 로고
    • A penalty-function approach for pruning feedforward neural networks
    • Setiono R. A penalty-function approach for pruning feedforward neural networks. Neural Computation. 9(1):1997;185-204.
    • (1997) Neural Computation , vol.9 , Issue.1 , pp. 185-204
    • Setiono, R.1
  • 139
    • 0029185114 scopus 로고
    • Use of a quasi-Newton method in a feedforward neural-network construction algorithm
    • Setiono R., Hui L.C.K. Use of a quasi-Newton method in a feedforward neural-network construction algorithm. IEEE Transactions on Neural Networks. 6:1995;273-277.
    • (1995) IEEE Transactions on Neural Networks , vol.6 , pp. 273-277
    • Setiono, R.1    Hui, L.C.K.2
  • 140
    • 0342506462 scopus 로고    scopus 로고
    • Application of a neural network technique to rainfall-runoff modelling
    • Shamseldin A.Y. Application of a neural network technique to rainfall-runoff modelling. Journal of Hydrology. 199:1997;272-294.
    • (1997) Journal of Hydrology , vol.199 , pp. 272-294
    • Shamseldin, A.Y.1
  • 141
    • 0000618748 scopus 로고
    • Conjugate gradient methods with inexact line searches
    • Shanno D.F. Conjugate gradient methods with inexact line searches. Mathematics of Operations Research. 3:1978;244-256.
    • (1978) Mathematics of Operations Research , vol.3 , pp. 244-256
    • Shanno, D.F.1
  • 145
    • 0026017007 scopus 로고
    • Creating artificial neural networks that generalize
    • Sietsma J., Dow R.J.F. Creating artificial neural networks that generalize. Neural Networks. 4:1991;67-79.
    • (1991) Neural Networks , vol.4 , pp. 67-79
    • Sietsma, J.1    Dow, R.J.F.2
  • 148
    • 0001336749 scopus 로고
    • Accelerated learning in layered neural networks
    • Solla S.A., Levin E., Fleisher M. Accelerated learning in layered neural networks. Complex Systems. 2:1988;625-639.
    • (1988) Complex Systems , vol.2 , pp. 625-639
    • Solla, S.A.1    Levin, E.2    Fleisher, M.3
  • 149
    • 0000629975 scopus 로고
    • Cross-validatory choice and assessment of statistical predictions
    • Stone M. Cross-validatory choice and assessment of statistical predictions. Journal of the Royal Statistical Society B. 36:1974;111-147.
    • (1974) Journal of the Royal Statistical Society B , vol.36 , pp. 111-147
    • Stone, M.1
  • 150
    • 0002472775 scopus 로고    scopus 로고
    • Back-propagation networks for daily streamflow forecasting
    • Sureerattanan S., Phien H.N. Back-propagation networks for daily streamflow forecasting. Water Resources Journal. December:1997;1-7.
    • (1997) Water Resources Journal , pp. 1-7
    • Sureerattanan, S.1    Phien, H.N.2
  • 151
    • 0031100287 scopus 로고    scopus 로고
    • Capabilities of a four-layered feedforward neural network: Four layers versus three
    • Tamura S.i., Tateishi M. Capabilities of a four-layered feedforward neural network: Four layers versus three. IEEE Transactions on Neural Networks. 8(2):1997;251-255.
    • (1997) IEEE Transactions on Neural Networks , vol.8 , Issue.2 , pp. 251-255
    • Tamura, S.I.1    Tateishi, M.2
  • 154
    • 0031898654 scopus 로고    scopus 로고
    • River stage forecasting using artificial neural networks
    • Thirumalaiah K., Deo M.C. River stage forecasting using artificial neural networks. Journal of Hydrologic Engineering. 3(1):1998;26-32.
    • (1998) Journal of Hydrologic Engineering , vol.3 , Issue.1 , pp. 26-32
    • Thirumalaiah, K.1    Deo, M.C.2
  • 155
    • 0009454128 scopus 로고
    • Comment on 'Neural networks: A review from a statistical perspective' by B. Cheng and D.M. Titterington
    • Tibshirani R. Comment on 'Neural networks: A review from a statistical perspective' by B. Cheng and D.M. Titterington. Statistical Science. 9(1):1994;48-49.
    • (1994) Statistical Science , vol.9 , Issue.1 , pp. 48-49
    • Tibshirani, R.1
  • 159
    • 0031276994 scopus 로고    scopus 로고
    • Fast training of multilayer perceptrons
    • Verma B. Fast training of multilayer perceptrons. IEEE Transactions on Neural Networks. 8(6):1997;1314-1320.
    • (1997) IEEE Transactions on Neural Networks , vol.8 , Issue.6 , pp. 1314-1320
    • Verma, B.1
  • 161
    • 0141759457 scopus 로고
    • Enhanced backpropagation training algorithm for transient event identification
    • Vitela J.E., Reifman J. Enhanced backpropagation training algorithm for transient event identification. Transactions of the American Nuclear Society. 69:1993;148-149.
    • (1993) Transactions of the American Nuclear Society , vol.69 , pp. 148-149
    • Vitela, J.E.1    Reifman, J.2
  • 162
    • 0031171576 scopus 로고    scopus 로고
    • Premature saturation in backpropagation networks - mechanism and necessary conditions
    • Vitela J.E., Reifman J. Premature saturation in backpropagation networks - mechanism and necessary conditions. Neural Networks. 10(4):1997;721-735.
    • (1997) Neural Networks , vol.10 , Issue.4 , pp. 721-735
    • Vitela, J.E.1    Reifman, J.2
  • 164
    • 0030142280 scopus 로고    scopus 로고
    • A fast multilayer neural-network training algorithm based on the layer-by-layer optimizing procedures
    • Wang G.-J., Chen C.-C. A fast multilayer neural-network training algorithm based on the layer-by-layer optimizing procedures. IEEE Transactions on Neural Networks. 7(3):1996;768-775.
    • (1996) IEEE Transactions on Neural Networks , vol.7 , Issue.3 , pp. 768-775
    • Wang, G.-J.1    Chen, C.-C.2
  • 165
    • 0030327681 scopus 로고    scopus 로고
    • Understanding neural networks as statistical tools
    • Warner B., Misra M. Understanding neural networks as statistical tools. American Statistician. 50(4):1996;284-293.
    • (1996) American Statistician , vol.50 , Issue.4 , pp. 284-293
    • Warner, B.1    Misra, M.2
  • 167
    • 0026955395 scopus 로고
    • Avoiding false local minima by proper initialization of connections
    • Wessels L., Barnard E. Avoiding false local minima by proper initialization of connections. IEEE Transactions on Neural Networks. 3(6):1992;899-905.
    • (1992) IEEE Transactions on Neural Networks , vol.3 , Issue.6 , pp. 899-905
    • Wessels, L.1    Barnard, E.2
  • 168
    • 0000243355 scopus 로고
    • Learning in artificial neural networks: A statistical perspective
    • White H. Learning in artificial neural networks: A statistical perspective. Neural Computation. 1:1989;425-464.
    • (1989) Neural Computation , vol.1 , pp. 425-464
    • White, H.1
  • 169
    • 0030729974 scopus 로고    scopus 로고
    • Modelling algal growth and transport in rivers - A comparison of time series analysis, dynamic mass balance and neural network techniques
    • Whitehead P.G., Howard A., Arulmani C. Modelling algal growth and transport in rivers - a comparison of time series analysis, dynamic mass balance and neural network techniques. Hydrobiologia. 349:1997;39-46.
    • (1997) Hydrobiologia , vol.349 , pp. 39-46
    • Whitehead, P.G.1    Howard, A.2    Arulmani, C.3
  • 170
    • 0032920119 scopus 로고    scopus 로고
    • Approximate confidence intervals for design floods for a single site using a neural network
    • Whitley R., Hromadka T.V. Approximate confidence intervals for design floods for a single site using a neural network. Water Resources Research. 35(1):1999;203-210.
    • (1999) Water Resources Research , vol.35 , Issue.1 , pp. 203-210
    • Whitley, R.1    Hromadka, T.V.2
  • 171
    • 0001202594 scopus 로고
    • A learning algorithm for continually running fully recurrent networks
    • Williams R.J., Zipser D. A learning algorithm for continually running fully recurrent networks. Neural Computation. 1:1989;270-280.
    • (1989) Neural Computation , vol.1 , pp. 270-280
    • Williams, R.J.1    Zipser, D.2
  • 172
    • 0030784223 scopus 로고    scopus 로고
    • Development of a neural network based algorithm for rainfall estimation from radar observations
    • Xiao R.R., Chandrasekar V. Development of a neural network based algorithm for rainfall estimation from radar observations. IEEE Transactions on Geoscience and Remote Sensing. 35(1):1997;160-171.
    • (1997) IEEE Transactions on Geoscience and Remote Sensing , vol.35 , Issue.1 , pp. 160-171
    • Xiao, R.R.1    Chandrasekar, V.2
  • 173
    • 0030725850 scopus 로고    scopus 로고
    • Novel application of back-propagation artificial neural network model formulated to predict algal bloom
    • Yabunaka K.-i., Hosomi M., Murakami A. Novel application of back-propagation artificial neural network model formulated to predict algal bloom. Water Science and Technology. 36(5):1997;89-97.
    • (1997) Water Science and Technology , vol.36 , Issue.5 , pp. 89-97
    • Yabunaka, K.-i.1    Hosomi, M.2    Murakami, A.3
  • 174
    • 0030512054 scopus 로고    scopus 로고
    • Applications of artificial neural networks to land drainage engineering
    • Yang C.C., Prasher C.O., Lacroix R. Applications of artificial neural networks to land drainage engineering. Transactions of the ASAE. 39(2):1996;525-533.
    • (1996) Transactions of the ASAE , vol.39 , Issue.2 , pp. 525-533
    • Yang, C.C.1    Prasher, C.O.2    Lacroix, R.3
  • 175
    • 0342735290 scopus 로고
    • Backpropagation with homotopy
    • Yang L., Yu W. Backpropagation with homotopy. Neural Computation. 5(3):1993;363-366.
    • (1993) Neural Computation , vol.5 , Issue.3 , pp. 363-366
    • Yang, L.1    Yu, W.2
  • 176
    • 0027574256 scopus 로고
    • A review of evolutionary artificial neural networks
    • Yao X. A review of evolutionary artificial neural networks. Int. J. Intell. Syst. 8(4):1993;539-567.
    • (1993) Int. J. Intell. Syst. , vol.8 , Issue.4 , pp. 539-567
    • Yao, X.1
  • 177
    • 0031143030 scopus 로고    scopus 로고
    • A new evolutionary system for evolving artificial neural networks
    • Yao X., Liu Y. A new evolutionary system for evolving artificial neural networks. IEEE Transactions on Neural Networks. 8(3):1997;694-713.
    • (1997) IEEE Transactions on Neural Networks , vol.8 , Issue.3 , pp. 694-713
    • Yao, X.1    Liu, Y.2
  • 178
    • 0031127257 scopus 로고    scopus 로고
    • Efficient backpropagation learning using optimal learning rate and momentum
    • Yu X.H., Chen G.A. Efficient backpropagation learning using optimal learning rate and momentum. Neural Networks. 10(3):1997;517-527.
    • (1997) Neural Networks , vol.10 , Issue.3 , pp. 517-527
    • Yu, X.H.1    Chen, G.A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.