-
1
-
-
0000177227
-
The Vapnik-Chervonenkis dimension: Information versus complexity in learning
-
Abu-Mostafa Y.S. The Vapnik-Chervonenkis dimension: Information versus complexity in learning. Neural Computation. 1(3):1989;312-317.
-
(1989)
Neural Computation
, vol.1
, Issue.3
, pp. 312-317
-
-
Abu-Mostafa, Y.S.1
-
2
-
-
0028571934
-
An evaluation of neural networks and discriminant analysis methods for application in operational rain forecasting
-
Allen G., le Marshall J.F. An evaluation of neural networks and discriminant analysis methods for application in operational rain forecasting. Australian Meteorological Magazine. 43(1):1994;17-28.
-
(1994)
Australian Meteorological Magazine
, vol.43
, Issue.1
, pp. 17-28
-
-
Allen, G.1
Le Marshall, J.F.2
-
3
-
-
0031236925
-
Asymptotic statistical theory of overtraining and cross-validation
-
Amari S.-i., Murata N., Müller K.-R., Finke M., Yang H.H. Asymptotic statistical theory of overtraining and cross-validation. IEEE Transactions on Neural Networks. 8(5):1997;985-996.
-
(1997)
IEEE Transactions on Neural Networks
, vol.8
, Issue.5
, pp. 985-996
-
-
Amari, S.-i.1
Murata, N.2
Müller, K.-R.3
Finke, M.4
Yang, H.H.5
-
4
-
-
0029484103
-
A survey and critique of techniques for extracting rules from trained artificial neural networks
-
Andrews R., Diederich J., Tickle A.B. A survey and critique of techniques for extracting rules from trained artificial neural networks. Knowledge Based Systems. 8:1995;373-389.
-
(1995)
Knowledge Based Systems
, vol.8
, pp. 373-389
-
-
Andrews, R.1
Diederich, J.2
Tickle, A.B.3
-
6
-
-
0000095706
-
Predicting conductivity and acidity for small streams using neural networks
-
Bastarache D., El-Jabi N., Turkham N., Clair T.A. Predicting conductivity and acidity for small streams using neural networks. Canadian Journal of Civil Engineering. 24(6):1997;1030-1039.
-
(1997)
Canadian Journal of Civil Engineering
, vol.24
, Issue.6
, pp. 1030-1039
-
-
Bastarache, D.1
El-Jabi, N.2
Turkham, N.3
Clair, T.A.4
-
7
-
-
0001209372
-
Accelerated back-propagation learning: Two optimization methods
-
Battiti R. Accelerated back-propagation learning: Two optimization methods. Complex Systems. 3:1989;331-342.
-
(1989)
Complex Systems
, vol.3
, pp. 331-342
-
-
Battiti, R.1
-
8
-
-
0001024110
-
First- And second-order methods for learning: Between steepest descent and Newton's method
-
Battiti R. First- and second-order methods for learning: Between steepest descent and Newton's method. Neural Computation. 4:1992;141-166.
-
(1992)
Neural Computation
, vol.4
, pp. 141-166
-
-
Battiti, R.1
-
9
-
-
0028516118
-
Feed-forward neural networks: Why network size is so important
-
October-November
-
Bebis G., Georgiopoulos M. Feed-forward neural networks: Why network size is so important. IEEE Potentials. October/November:1994;27-31.
-
(1994)
IEEE Potentials
, pp. 27-31
-
-
Bebis, G.1
Georgiopoulos, M.2
-
10
-
-
0342735303
-
Comment on 'Neural networks: A review from a statistical perspective' by B. Cheng and D.M. Titterington
-
Bienenstock E., Geman S. Comment on 'Neural networks: A review from a statistical perspective' by B. Cheng and D.M. Titterington. Statistical Science. 9(1):1994;36-38.
-
(1994)
Statistical Science
, vol.9
, Issue.1
, pp. 36-38
-
-
Bienenstock, E.1
Geman, S.2
-
12
-
-
0004311217
-
-
Holden-Day Inc., San Francisco, CA
-
Box, G.E.P., Jenkins, G.M., 1976. Time Series Analysis, Forecasting and Control. Holden-Day Inc., San Francisco, CA.
-
(1976)
Time Series Analysis, Forecasting and Control
-
-
Box, G.E.P.1
Jenkins, G.M.2
-
13
-
-
0343169787
-
Feed-forward artificial neural network model for forecasting rainfall run-off
-
The Modelling and Simulation Society of Australia Inc., Hobart, Australia
-
Braddock, R.D., Kremmer, M.L., Sanzogni, L., 1997. Feed-forward artificial neural network model for forecasting rainfall run-off. Proceedings of the International Congress on Modelling and Simulation (Modsim 97), The Modelling and Simulation Society of Australia Inc., Hobart, Australia, pp. 1653-1658.
-
(1997)
Proceedings of the International Congress on Modelling and Simulation (Modsim 97)
, pp. 1653-1658
-
-
Braddock, R.D.1
Kremmer, M.L.2
Sanzogni, L.3
-
14
-
-
84972493978
-
Comment on 'Neural networks: A review from a statistical perspective' by B. Cheng and D.M. Titterington
-
Breiman L. Comment on 'Neural networks: A review from a statistical perspective' by B. Cheng and D.M. Titterington. Statistical Science. 9(1):1994;38-42.
-
(1994)
Statistical Science
, vol.9
, Issue.1
, pp. 38-42
-
-
Breiman, L.1
-
15
-
-
0000621802
-
Multivariate functional interpolation and adaptive networks
-
Broomhead D.S., Lowe D. Multivariate functional interpolation and adaptive networks. Complex Systems. 2:1988;321-355.
-
(1988)
Complex Systems
, vol.2
, pp. 321-355
-
-
Broomhead, D.S.1
Lowe, D.2
-
16
-
-
0030719953
-
Cross-validatory selection of test and validation sets in multivariate calibration and neural networks as applied to spectroscopy
-
Burden F.R., Brereton R.G., Walsh P.T. Cross-validatory selection of test and validation sets in multivariate calibration and neural networks as applied to spectroscopy. Analyst. 122(10):1997;1015-1022.
-
(1997)
Analyst
, vol.122
, Issue.10
, pp. 1015-1022
-
-
Burden, F.R.1
Brereton, R.G.2
Walsh, P.T.3
-
17
-
-
0026852344
-
Neural networks and operations research: An overview
-
Burke L.I., Ignizio J.P. Neural networks and operations research: an overview. Computer and Operations Research. 19(3/4):1992;179-189.
-
(1992)
Computer and Operations Research
, vol.19
, Issue.3-4
, pp. 179-189
-
-
Burke, L.I.1
Ignizio, J.P.2
-
19
-
-
0026954346
-
Forecasting the behaviour of multivariate time series using neural networks
-
Chakraborty K., Mehrotra K., Mohan C.K., Ranka S. Forecasting the behaviour of multivariate time series using neural networks. Neural Networks. 5:1992;961-970.
-
(1992)
Neural Networks
, vol.5
, pp. 961-970
-
-
Chakraborty, K.1
Mehrotra, K.2
Mohan, C.K.3
Ranka, S.4
-
21
-
-
35248833159
-
Neural networks: Forecasting breakthrough or just a passing fad?
-
Chatfield C. Neural networks: Forecasting breakthrough or just a passing fad? International Journal of Forecasting. 9:1993;1-3.
-
(1993)
International Journal of Forecasting
, vol.9
, pp. 1-3
-
-
Chatfield, C.1
-
22
-
-
0031194887
-
A self-generating modular neural network architecture for supervised learning
-
Chen K., Yang L.P., Yu X., Chi H.S. A self-generating modular neural network architecture for supervised learning. Neurocomputing. 16(1):1997;33-48.
-
(1997)
Neurocomputing
, vol.16
, Issue.1
, pp. 33-48
-
-
Chen, K.1
Yang, L.P.2
Yu, X.3
Chi, H.S.4
-
23
-
-
84972539015
-
Neural networks: A review from a statistical perspective
-
Cheng B., Titterington D.M. Neural networks: A review from a statistical perspective. Statistical Science. 9(1):1994;2-54.
-
(1994)
Statistical Science
, vol.9
, Issue.1
, pp. 2-54
-
-
Cheng, B.1
Titterington, D.M.2
-
24
-
-
0029733768
-
Gradient radial basis function networks for nonlinear and nonstationary time series prediction
-
Chng E.S., Chen S., Mulgrew B. Gradient radial basis function networks for nonlinear and nonstationary time series prediction. IEEE Transactions on Neural Networks. 7(1):1996;191-194.
-
(1996)
IEEE Transactions on Neural Networks
, vol.7
, Issue.1
, pp. 191-194
-
-
Chng, E.S.1
Chen, S.2
Mulgrew, B.3
-
25
-
-
0031106678
-
Linear and nonlinear ARMA model parameter estimation using an artificial neural network
-
Chon K.H., Cohen R.J. Linear and nonlinear ARMA model parameter estimation using an artificial neural network. IEEE Transactions on Biomedical Engineering. 44(3):1997;168-174.
-
(1997)
IEEE Transactions on Biomedical Engineering
, vol.44
, Issue.3
, pp. 168-174
-
-
Chon, K.H.1
Cohen, R.J.2
-
26
-
-
21744431610
-
Development of a recurrent sigma-pi neural network rainfall forecasting system in Hong Kong
-
Chow T.W.S., Cho S.Y. Development of a recurrent sigma-pi neural network rainfall forecasting system in Hong Kong. Neural Computing and Applications. 5(2):1997;66-75.
-
(1997)
Neural Computing and Applications
, vol.5
, Issue.2
, pp. 66-75
-
-
Chow, T.W.S.1
Cho, S.Y.2
-
27
-
-
0010320018
-
A node pruning algorithm for backpropagation networks
-
Chung F.L., Lee T. A node pruning algorithm for backpropagation networks. International Journal of Neural Systems. 3(3):1992;301-314.
-
(1992)
International Journal of Neural Systems
, vol.3
, Issue.3
, pp. 301-314
-
-
Chung, F.L.1
Lee, T.2
-
28
-
-
0029849763
-
Variations in discharge and dissolved organic carbon and nitrogen export from terrestrial basins with changes in climate: A neural network approach
-
Clair T.A., Ehrman J.M. Variations in discharge and dissolved organic carbon and nitrogen export from terrestrial basins with changes in climate: a neural network approach. Limnology and Oceanography. 41(5):1996;921-927.
-
(1996)
Limnology and Oceanography
, vol.41
, Issue.5
, pp. 921-927
-
-
Clair, T.A.1
Ehrman, J.M.2
-
31
-
-
0031277503
-
Effects of learning parameters on learning procedure and performance of a BPNN
-
Dai H.C., Macbeth C. Effects of learning parameters on learning procedure and performance of a BPNN. Neural Networks. 10(8):1997;1505-1521.
-
(1997)
Neural Networks
, vol.10
, Issue.8
, pp. 1505-1521
-
-
Dai, H.C.1
Macbeth, C.2
-
32
-
-
0000595242
-
Note on learning rate schedules for stochastic optimization
-
In: Lippmann, R.P., Moody, J.E., Touretzky, D.S. (Eds.), Morgan Kaufmann, San Mateo, CA
-
Darken, C., Moody, J., 1990. Note on learning rate schedules for stochastic optimization. In: Lippmann, R.P., Moody, J.E., Touretzky, D.S. (Eds.), Advances in Neural Information Processing Systems 3. Morgan Kaufmann, San Mateo, CA.
-
(1990)
Advances in Neural Information Processing Systems
, vol.3
-
-
Darken, C.1
Moody, J.2
-
33
-
-
0001348721
-
A Markov chain framework for the simple genetic algorithm
-
Davis T.E., Principe J.C. A Markov chain framework for the simple genetic algorithm. Evolutionary Computation. 1(3):1993;269-288.
-
(1993)
Evolutionary Computation
, vol.1
, Issue.3
, pp. 269-288
-
-
Davis, T.E.1
Principe, J.C.2
-
34
-
-
0032005702
-
An artificial neural network approach to rainfall-runoff modelling
-
Dawson C.W., Wilby R. An artificial neural network approach to rainfall-runoff modelling. Hydrological Sciences Journal. 43(1):1998;47-66.
-
(1998)
Hydrological Sciences Journal
, vol.43
, Issue.1
, pp. 47-66
-
-
Dawson, C.W.1
Wilby, R.2
-
35
-
-
0026853106
-
Predicting salinity in the Chesapeake Bay using backpropagation
-
DeSilets L., Golden B., Wang Q., Kumar R. Predicting salinity in the Chesapeake Bay using backpropagation. Computer and Operations Research. 19(3/4):1992;227-285.
-
(1992)
Computer and Operations Research
, vol.19
, Issue.3-4
, pp. 227-285
-
-
Desilets, L.1
Golden, B.2
Wang, Q.3
Kumar, R.4
-
37
-
-
26444565569
-
Finding structure in time
-
Elman J.L. Finding structure in time. Cognitive Science. 14:1990;179-211.
-
(1990)
Cognitive Science
, vol.14
, pp. 179-211
-
-
Elman, J.L.1
-
39
-
-
0000155950
-
The cascade-correlation learning architecture
-
In: Touretzky, D.S. (Ed.), Morgan Kaufmann, San Mateo, CA
-
Fahlman, S.E., Lebiere, C., 1990. The cascade-correlation learning architecture. In: Touretzky, D.S. (Ed.), Advances in Neural Information Processing Systems 2. Morgan Kaufmann, San Mateo, CA.
-
(1990)
Advances in Neural Information Processing Systems
, vol.2
-
-
Fahlman, S.E.1
Lebiere, C.2
-
40
-
-
0039988139
-
Time series forecasting with neural networks: A comparative study using the airline data
-
Faraway J., Chatfield C. Time series forecasting with neural networks: a comparative study using the airline data. Applied Statistics. 47(2):1998;231-250.
-
(1998)
Applied Statistics
, vol.47
, Issue.2
, pp. 231-250
-
-
Faraway, J.1
Chatfield, C.2
-
43
-
-
0028416331
-
Neural networks in civil engineering. I: Principles and understanding
-
Flood I., Kartam N. Neural networks in civil engineering. I: Principles and understanding. Journal of Computing in Civil Engineering. 8(2):1994;131-148.
-
(1994)
Journal of Computing in Civil Engineering
, vol.8
, Issue.2
, pp. 131-148
-
-
Flood, I.1
Kartam, N.2
-
44
-
-
0003806013
-
-
Wiley, New York
-
Fogel, L.J., Owens, A.J., Walsh, M.J., 1966. Artificial Intelligence Through Simulated Evolution. Wiley, New York.
-
(1966)
Artificial Intelligence Through Simulated Evolution
-
-
Fogel, L.J.1
Owens, A.J.2
Walsh, M.J.3
-
45
-
-
0001573780
-
Comment on 'The use of artificial neural networks for the prediction of water quality parameters' by H.R. Maier and G.C. Dandy
-
Fortin V., Ouarda T.B.M.J., Bobée B. Comment on 'The use of artificial neural networks for the prediction of water quality parameters' by H.R. Maier and G.C. Dandy. Water Resources Research. 33(10):1997;2423-22424.
-
(1997)
Water Resources Research
, vol.33
, Issue.10
, pp. 2423-22424
-
-
Fortin, V.1
Ouarda, T.B.M.J.2
Bobée, B.3
-
47
-
-
0000809163
-
Nonlinear modelling and prediction with feedforward and recurrent networks
-
Gençay R., Liu T. Nonlinear modelling and prediction with feedforward and recurrent networks. Physica D. 108(1)(2):1997;119-134.
-
(1997)
Physica D
, vol.108
, Issue.1-2
, pp. 119-134
-
-
Gençay, R.1
Liu, T.2
-
48
-
-
0001904039
-
The future of time series: Learning and understanding
-
In: Weigend, A.S., Gershenfeld, N.A. (Eds.), Addison-Wesley, Reading, MA
-
Gershenfeld, N.A., Weigend, A.S., 1994. The future of time series: Learning and understanding. In: Weigend, A.S., Gershenfeld, N.A. (Eds.), Time Series Prediction: Forecasting the Future and Understanding the Past. Addison-Wesley, Reading, MA.
-
(1994)
Time Series Prediction: Forecasting the Future and Understanding the Past
-
-
Gershenfeld, N.A.1
Weigend, A.S.2
-
49
-
-
0004240547
-
-
Academic Press, New York
-
Gill, P., Murray, W., Wright, M., 1981. Practical Optimization. Academic Press, New York.
-
(1981)
Practical Optimization
-
-
Gill, P.1
Murray, W.2
Wright, M.3
-
53
-
-
0000598965
-
A novel neural network design for long range prediction of rainfall pattern
-
Goswami P., Srividya A novel neural network design for long range prediction of rainfall pattern. Current Science. 70(6):1996;447-457.
-
(1996)
Current Science
, vol.70
, Issue.6
, pp. 447-457
-
-
Goswami, P.1
Srividya2
-
54
-
-
0031191950
-
Neural networks and traditional time series methods: A synergistic combination in state economic forecasts
-
Hansen J.V., Nelson R.D. Neural networks and traditional time series methods: A synergistic combination in state economic forecasts. IEEE Transactions on Neural Networks. 8(4):1997;863-873.
-
(1997)
IEEE Transactions on Neural Networks
, vol.8
, Issue.4
, pp. 863-873
-
-
Hansen, J.V.1
Nelson, R.D.2
-
56
-
-
84950630088
-
Identification of dynamic regression (distributed lag) models connecting two time series
-
Haugh L.D., Box G.E.P. Identification of dynamic regression (distributed lag) models connecting two time series. Journal of the American Statistical Association. 72(397):1977;121-130.
-
(1977)
Journal of the American Statistical Association
, vol.72
, Issue.397
, pp. 121-130
-
-
Haugh, L.D.1
Box, G.E.P.2
-
57
-
-
0023566098
-
Kolmogorov's mapping neural network existence theorem
-
San Diego, California, IEEE, New York
-
Hecht-Nielsen, R., 1987. Kolmogorov's mapping neural network existence theorem. Proceedings of the First IEEE International Joint Conference on Neural Networks, San Diego, California, pp. 11-14, IEEE, New York.
-
(1987)
Proceedings of the First IEEE International Joint Conference on Neural Networks
, pp. 11-14
-
-
Hecht-Nielsen, R.1
-
59
-
-
0343169780
-
Multiplication-free radial basis function network
-
Heiss M., Kampl S. Multiplication-free radial basis function network. IEEE Transactions on Neural Networks. 7(6):1996;1461-1464.
-
(1996)
IEEE Transactions on Neural Networks
, vol.7
, Issue.6
, pp. 1461-1464
-
-
Heiss, M.1
Kampl, S.2
-
60
-
-
77956898593
-
On-line learning processes in artificial neural networks
-
In: Taylor, J.G. (Ed.), Elsevier Science Publishers, Amsterdam
-
Heskes, T.M., Kappen, B., 1993. On-line learning processes in artificial neural networks. In: Taylor, J.G. (Ed.), Mathematical Approaches to Neural Networks. Elsevier Science Publishers, Amsterdam.
-
(1993)
Mathematical Approaches to Neural Networks
-
-
Heskes, T.M.1
Kappen, B.2
-
62
-
-
0025964567
-
Back-propagation algorithm which varies the number of hidden units
-
Hirose Y., Yamashita K., Hijiya S. Back-propagation algorithm which varies the number of hidden units. Neural Networks. 4(1):1991;61-66.
-
(1991)
Neural Networks
, vol.4
, Issue.1
, pp. 61-66
-
-
Hirose, Y.1
Yamashita, K.2
Hijiya, S.3
-
64
-
-
0024880831
-
Multilayer feedforward networks are universal approximators
-
Hornik K., Stinchcombe M., White H. Multilayer feedforward networks are universal approximators. Neural Networks. 2:1989;359-366.
-
(1989)
Neural Networks
, vol.2
, pp. 359-366
-
-
Hornik, K.1
Stinchcombe, M.2
White, H.3
-
65
-
-
0031399333
-
Precipitation estimation from remotely sensed information using artificial neural networks
-
Hsu K.L., Gao X.G., Sorooshian S., Gupta H.V. Precipitation estimation from remotely sensed information using artificial neural networks. Journal of Applied Meteorology. 36(9):1997;1176-1190.
-
(1997)
Journal of Applied Meteorology
, vol.36
, Issue.9
, pp. 1176-1190
-
-
Hsu, K.L.1
Gao, X.G.2
Sorooshian, S.3
Gupta, H.V.4
-
66
-
-
0029413797
-
Artificial neural network modeling of the rainfall-runoff process
-
Hsu K.-L., Gupta H.V., Sorooshian S. Artificial neural network modeling of the rainfall-runoff process. Water Resources Research. 31(10):1995;2517-2530.
-
(1995)
Water Resources Research
, vol.31
, Issue.10
, pp. 2517-2530
-
-
Hsu, K.-L.1
Gupta, H.V.2
Sorooshian, S.3
-
67
-
-
0025792215
-
Bounds on the number of hidden neurons in multilayer perceptrons
-
Huang S.C., Huang Y.F. Bounds on the number of hidden neurons in multilayer perceptrons. IEEE Transactions on Neural Networks. 2:1991;47-55.
-
(1991)
IEEE Transactions on Neural Networks
, vol.2
, pp. 47-55
-
-
Huang, S.C.1
Huang, Y.F.2
-
69
-
-
0026838551
-
Multiplicative, seasonal ARIMA models for Lake Erie and Lake Ontario water levels
-
Irvine K.N., Eberhardt A.J. Multiplicative, seasonal ARIMA models for Lake Erie and Lake Ontario water levels. Water Resources Bulletin. 28(2):1992;385-396.
-
(1992)
Water Resources Bulletin
, vol.28
, Issue.2
, pp. 385-396
-
-
Irvine, K.N.1
Eberhardt, A.J.2
-
70
-
-
0024137490
-
Increased rates of convergence through learning rate adaptation
-
Jacobs R.A. Increased rates of convergence through learning rate adaptation. Neural Networks. 1:1988;295-307.
-
(1988)
Neural Networks
, vol.1
, pp. 295-307
-
-
Jacobs, R.A.1
-
72
-
-
84978564324
-
Forecasting futures trading volume using neural networks
-
Kaastra I., Boyd M.S. Forecasting futures trading volume using neural networks. The Journal of Futures Markets. 15(8):1995;953-970.
-
(1995)
The Journal of Futures Markets
, vol.15
, Issue.8
, pp. 953-970
-
-
Kaastra, I.1
Boyd, M.S.2
-
73
-
-
85107185747
-
Why Tanh? Choosing a sigmoidal function
-
Baltimore, MD IEEE, New York
-
Kalman, B.L., Kwasny, S.C., 1992. Why Tanh? Choosing a sigmoidal function. In: Proceedings of the International Joint Conference on Neural Networks, Baltimore, MD IEEE, New York.
-
(1992)
In: Proceedings of the International Joint Conference on Neural Networks
-
-
Kalman, B.L.1
Kwasny, S.C.2
-
74
-
-
0025447562
-
A simple procedure for pruning backpropagation trained neural networks
-
Karnin E.D. A simple procedure for pruning backpropagation trained neural networks. IEEE Transactions on Neural Networks. 1:1990;239-242.
-
(1990)
IEEE Transactions on Neural Networks
, vol.1
, pp. 239-242
-
-
Karnin, E.D.1
-
75
-
-
0028667489
-
Neural networks for river flow prediction
-
Karunanithi N., Grenney W.J., Whitley D., Bovee K. Neural networks for river flow prediction. Journal of Computing in Civil Engineeirng. 8(2):1994;201-220.
-
(1994)
Journal of Computing in Civil Engineeirng
, vol.8
, Issue.2
, pp. 201-220
-
-
Karunanithi, N.1
Grenney, W.J.2
Whitley, D.3
Bovee, K.4
-
76
-
-
0031188039
-
ANNSTLF - A neural-network-based electric load forecasting system
-
Khotanzad A., Afkhami-Rohani R., Lu T.-L., Abaye A., Davis M., Maratukulam D.J. ANNSTLF - a neural-network-based electric load forecasting system. IEEE Transactions on Neural Networks. 8(4):1997;835-846.
-
(1997)
IEEE Transactions on Neural Networks
, vol.8
, Issue.4
, pp. 835-846
-
-
Khotanzad, A.1
Afkhami-Rohani, R.2
Lu, T.-L.3
Abaye, A.4
Davis, M.5
Maratukulam, D.J.6
-
78
-
-
0024715766
-
An adaptive least square algorithm for the efficient training of artificial neural networks
-
Kollias S., Anastrassiou D. An adaptive least square algorithm for the efficient training of artificial neural networks. IEEE Transactions on Circuits and Systems. 36:1989;1092-1101.
-
(1989)
IEEE Transactions on Circuits and Systems
, vol.36
, pp. 1092-1101
-
-
Kollias, S.1
Anastrassiou, D.2
-
80
-
-
0000632352
-
Experiments in short-term precipitation forecasting using artificial neural networks
-
Kuligowski R.J., Barros A.P. Experiments in short-term precipitation forecasting using artificial neural networks. Monthly Weather Review. 126:1998;470-482.
-
(1998)
Monthly Weather Review
, vol.126
, pp. 470-482
-
-
Kuligowski, R.J.1
Barros, A.P.2
-
81
-
-
0032434569
-
Localized precipitation forecasts from a numerical weather prediction model using artificial neural networks
-
Kuligowski R.J., Barros A.P. Localized precipitation forecasts from a numerical weather prediction model using artificial neural networks. Weather and Forecasting. 13:1998;1194-1204.
-
(1998)
Weather and Forecasting
, vol.13
, pp. 1194-1204
-
-
Kuligowski, R.J.1
Barros, A.P.2
-
83
-
-
0040527546
-
Optimization of the neural net connectivity pattern using a backpropagation algorithm
-
Kumar K.K. Optimization of the neural net connectivity pattern using a backpropagation algorithm. Neurocomputing. 5:1993;273-286.
-
(1993)
Neurocomputing
, vol.5
, pp. 273-286
-
-
Kumar, K.K.1
-
84
-
-
0031146959
-
Constructive algorithms for structure learning in feedforward neural networks for regression problems
-
Kwok T.-Y., Yeung D.-Y. Constructive algorithms for structure learning in feedforward neural networks for regression problems. IEEE Transactions on Neural Networks. 8(3):1997;630-645.
-
(1997)
IEEE Transactions on Neural Networks
, vol.8
, Issue.3
, pp. 630-645
-
-
Kwok, T.-Y.1
Yeung, D.-Y.2
-
85
-
-
0031236099
-
Objective functions for training new hidden units in constructive neural networks
-
Kwok T.-Y., Yeung D.-Y. Objective functions for training new hidden units in constructive neural networks. IEEE Transactions on Neural Networks. 8(5):1997;1131-1148.
-
(1997)
IEEE Transactions on Neural Networks
, vol.8
, Issue.5
, pp. 1131-1148
-
-
Kwok, T.-Y.1
Yeung, D.-Y.2
-
86
-
-
0001006264
-
Backpropagation in hydrological time series forecasting
-
In: Hipel, K.W., McLeod, A.I., Panu, U.S., Singh, V.P. (Eds.), Kluwer Academic, Dordrecht
-
Lachtermacher, G., Fuller, J.D., 1994. Backpropagation in hydrological time series forecasting. In: Hipel, K.W., McLeod, A.I., Panu, U.S., Singh, V.P. (Eds.), Stochastic and Statistical Methods in Hydrology and Environmental Engineering. Kluwer Academic, Dordrecht.
-
(1994)
Stochastic and Statistical Methods in Hydrology and Environmental Engineering
-
-
Lachtermacher, G.1
Fuller, J.D.2
-
87
-
-
0001278980
-
A self-optimizing, nonsymmetrical neural net for content addressable memory and pattern recognition
-
Lapedes A., Farber R. A self-optimizing, nonsymmetrical neural net for content addressable memory and pattern recognition. Physica D. 22:1986;247-259.
-
(1986)
Physica D
, vol.22
, pp. 247-259
-
-
Lapedes, A.1
Farber, R.2
-
89
-
-
0030428001
-
Application of neural networks to modelling nonlinear relationships in ecology
-
Lek S., Delacoste M., Baran P., Dimopoulos I., Lauga J., Aulagnier S. Application of neural networks to modelling nonlinear relationships in ecology. Ecological Modelling. 90:1996;39-52.
-
(1996)
Ecological Modelling
, vol.90
, pp. 39-52
-
-
Lek, S.1
Delacoste, M.2
Baran, P.3
Dimopoulos, I.4
Lauga, J.5
Aulagnier, S.6
-
90
-
-
0029777584
-
Robust error measure for supervised neural network learning with outliers
-
Liano K. Robust error measure for supervised neural network learning with outliers. IEEE Transactions on Neural Networks. 7(1):1996;246-250.
-
(1996)
IEEE Transactions on Neural Networks
, vol.7
, Issue.1
, pp. 246-250
-
-
Liano, K.1
-
91
-
-
33646241633
-
Learning long-term dependencies in NARX recurrent neural networks
-
Lin T., Horne B.G., Tiño P., Giles C.L. Learning long-term dependencies in NARX recurrent neural networks. IEEE Transactions on Neural Networks. 7(6):1996;1329-1338.
-
(1996)
IEEE Transactions on Neural Networks
, vol.7
, Issue.6
, pp. 1329-1338
-
-
Lin, T.1
Horne, B.G.2
Tiño, P.3
Giles, C.L.4
-
93
-
-
0031451881
-
Artificial neural networks as a tool in urban storm drainage
-
Loke E., Warnaars E.A., Jacobsen P., Nelen F., Almeida M.D. Artificial neural networks as a tool in urban storm drainage. Water Science and Technology. 36(8)(9):1997;101-109.
-
(1997)
Water Science and Technology
, vol.36
, Issue.8-9
, pp. 101-109
-
-
Loke, E.1
Warnaars, E.A.2
Jacobsen, P.3
Nelen, F.4
Almeida, M.D.5
-
94
-
-
0029413502
-
Neural nets for modelling rainfall-runoff transformations
-
Lorrai M., Sechi G.M. Neural nets for modelling rainfall-runoff transformations. Water Resources Management. 9(4):1995;299-313.
-
(1995)
Water Resources Management
, vol.9
, Issue.4
, pp. 299-313
-
-
Lorrai, M.1
Sechi, G.M.2
-
95
-
-
0031105693
-
An efficient EM-based training algorithm for feedforward neural networks
-
Ma S., Ji C.Y., Farmer J. An efficient EM-based training algorithm for feedforward neural networks. Neural Networks. 10(2):1997;243-256.
-
(1997)
Neural Networks
, vol.10
, Issue.2
, pp. 243-256
-
-
Ma, S.1
Ji, C.Y.2
Farmer, J.3
-
97
-
-
0030405597
-
Neural network models for forecasting univariate time series
-
Maier H.R., Dandy G.C. Neural network models for forecasting univariate time series. Neural Network World. 6(5):1996;747-771.
-
(1996)
Neural Network World
, vol.6
, Issue.5
, pp. 747-771
-
-
Maier, H.R.1
Dandy, G.C.2
-
98
-
-
0029663621
-
The use of artificial neural networks for the prediction of water quality parameters
-
Maier H.R., Dandy G.C. The use of artificial neural networks for the prediction of water quality parameters. Water Resources Research. 32(4):1996;1013-1022.
-
(1996)
Water Resources Research
, vol.32
, Issue.4
, pp. 1013-1022
-
-
Maier, H.R.1
Dandy, G.C.2
-
99
-
-
0031222587
-
Determining inputs for neural network models of multivariate time series
-
Maier H.R., Dandy G.C. Determining inputs for neural network models of multivariate time series. Microcomputers in Civil Engineering. 12(5):1997;353-368.
-
(1997)
Microcomputers in Civil Engineering
, vol.12
, Issue.5
, pp. 353-368
-
-
Maier, H.R.1
Dandy, G.C.2
-
100
-
-
0031096422
-
Modelling cyanobacteria (blue-green algae) in the River Murray using artificial neural networks
-
(4)(5)
-
Maier H.R., Dandy G.C. Modelling cyanobacteria (blue-green algae) in the River Murray using artificial neural networks. Mathematics and Computers in Simulation. 43(3)(4)(5)(6):1997;377-386.
-
(1997)
Mathematics and Computers in Simulation
, vol.43
, Issue.3-6
, pp. 377-386
-
-
Maier, H.R.1
Dandy, G.C.2
-
101
-
-
0032051569
-
The effect of internal parameters and geometry on the performance of back-propagation neural networks: An empirical study
-
Maier H.R., Dandy G.C. The effect of internal parameters and geometry on the performance of back-propagation neural networks: An empirical study. Environmental Modelling and Software. 13(2):1998;193-209.
-
(1998)
Environmental Modelling and Software
, vol.13
, Issue.2
, pp. 193-209
-
-
Maier, H.R.1
Dandy, G.C.2
-
102
-
-
0032034197
-
Understanding the behaviour and optimising the performance of back-propagation neural networks: An empirical study
-
Maier H.R., Dandy G.C. Understanding the behaviour and optimising the performance of back-propagation neural networks: An empirical study. Environmental Modelling and Software. 13(2):1998;179-191.
-
(1998)
Environmental Modelling and Software
, vol.13
, Issue.2
, pp. 179-191
-
-
Maier, H.R.1
Dandy, G.C.2
-
103
-
-
0032855262
-
Empirical comparison of various methods for training feedforward neural networks for salinity forecasting
-
submitted
-
Maier, H.R., Dandy, G.C., 1999a. Empirical comparison of various methods for training feedforward neural networks for salinity forecasting. Water Resources Research, submitted.
-
(1999)
Water Resources Research
-
-
Maier, H.R.1
Dandy, G.C.2
-
104
-
-
85010652906
-
Neural network based modelling of environmental variables: A systematic approach
-
in press
-
Maier, H.R., Dandy, G.C. 1999b. Neural network based modelling of environmental variables: A systematic approach. Mathematical and Computer Modelling, in press.
-
(1999)
Mathematical and Computer Modelling
-
-
Maier, H.R.1
Dandy, G.C.2
-
105
-
-
0031933254
-
Use of artificial neural networks for modelling cyanobacteria Anabaena spp. in the River Murray, South Australia
-
Maier H.R., Dandy G.C., Burch M.D. Use of artificial neural networks for modelling cyanobacteria Anabaena spp. in the River Murray, South Australia. Ecological Modelling. 105(2/3):1998;257-272.
-
(1998)
Ecological Modelling
, vol.105
, Issue.2-3
, pp. 257-272
-
-
Maier, H.R.1
Dandy, G.C.2
Burch, M.D.3
-
106
-
-
0003692623
-
-
Academic Press, San Diego, CA
-
Maren, A., Harston, C., Pap, R., 1990. Handbook of Neural Computing Applications. Academic Press, San Diego, CA.
-
(1990)
Handbook of Neural Computing Applications
-
-
Maren, A.1
Harston, C.2
Pap, R.3
-
109
-
-
0000072338
-
Designing neural networks using genetic algorithms
-
Arlington, Morgan Kaufman, San Meteo
-
Miller, G.F., Todd, P.M., Hedge, S.U., 1989. Designing neural networks using genetic algorithms. In: Proceedings of the Third International Conference on Genetic Algorithms, Arlington, pp. 379-384. Morgan Kaufman, San Meteo.
-
(1989)
In: Proceedings of the Third International Conference on Genetic Algorithms
, pp. 379-384
-
-
Miller, G.F.1
Todd, P.M.2
Hedge, S.U.3
-
110
-
-
0342300249
-
Rain rate estimation using neural networks
-
Miller S.W. Rain rate estimation using neural networks. AI Applications. 11(1):1997;95-98.
-
(1997)
AI Applications
, vol.11
, Issue.1
, pp. 95-98
-
-
Miller, S.W.1
-
111
-
-
0030159380
-
Artificial neural networks as rainfall-runoff models
-
Minns A.W., Hall M.J. Artificial neural networks as rainfall-runoff models. Hydrological Sciences Journal. 41(3):1996;399-417.
-
(1996)
Hydrological Sciences Journal
, vol.41
, Issue.3
, pp. 399-417
-
-
Minns, A.W.1
Hall, M.J.2
-
112
-
-
0027205884
-
A scaled conjugate gradient algorithm for fast supervised learning
-
Møller M.S. A scaled conjugate gradient algorithm for fast supervised learning. Neural Networks. 6(4):1993;525-534.
-
(1993)
Neural Networks
, vol.6
, Issue.4
, pp. 525-534
-
-
Møller, M.S.1
-
113
-
-
0242401012
-
Networks with learned unit response functions
-
In: Moody, J.E., Hanson, S.J., Lippmann, R.P. (Eds.), Morgan Kaufmann, San Mateo, CA
-
Moody, J., Yarvin, N., 1992. Networks with learned unit response functions. In: Moody, J.E., Hanson, S.J., Lippmann, R.P. (Eds.), Advances in Neural Information Processing Systems 4. Morgan Kaufmann, San Mateo, CA.
-
(1992)
Advances in Neural Information Processing Systems
, vol.4
-
-
Moody, J.1
Yarvin, N.2
-
114
-
-
0028544395
-
Network information criterion - Determining the number of hidden units for an artificial neural network model
-
Murata N., Yoshizawa S., Amari S. Network information criterion - Determining the number of hidden units for an artificial neural network model. IEEE Transactions on Neural Networks. 5:1994;865-872.
-
(1994)
IEEE Transactions on Neural Networks
, vol.5
, pp. 865-872
-
-
Murata, N.1
Yoshizawa, S.2
Amari, S.3
-
118
-
-
0032170668
-
The application of neural techniques to the modelling of time-series of atmospheric pollution data
-
Nunnari G., Nucifora A.F.M., Randieri C. The application of neural techniques to the modelling of time-series of atmospheric pollution data. Ecological Modelling. 111(2)(3):1998;187-205.
-
(1998)
Ecological Modelling
, vol.111
, Issue.2-3
, pp. 187-205
-
-
Nunnari, G.1
Nucifora, A.F.M.2
Randieri, C.3
-
119
-
-
0030477946
-
Fast second order learning algorithm for feedforward multilayer neural networks and its applications
-
Osowski S., Bojarczak P., Stodolski M. Fast second order learning algorithm for feedforward multilayer neural networks and its applications. Neural Networks. 9(9):1996;1583-1596.
-
(1996)
Neural Networks
, vol.9
, Issue.9
, pp. 1583-1596
-
-
Osowski, S.1
Bojarczak, P.2
Stodolski, M.3
-
120
-
-
0000014434
-
A generalized learning paradigm exploiting the structure of feedforward neural networks
-
Parisi R., Di Claudio E.D., Orlandi G., Rao B.D. A generalized learning paradigm exploiting the structure of feedforward neural networks. IEEE Transactions on Neural Networks. 7(6):1996;1451-1460.
-
(1996)
IEEE Transactions on Neural Networks
, vol.7
, Issue.6
, pp. 1451-1460
-
-
Parisi, R.1
Di Claudio, E.D.2
Orlandi, G.3
Rao, B.D.4
-
121
-
-
0001969496
-
Learning sets of filters using backpropagation
-
Plaut D.C., Hinton G.E. Learning sets of filters using backpropagation. Comput. Speech Language. 2:1987;35-61.
-
(1987)
Comput. Speech Language
, vol.2
, pp. 35-61
-
-
Plaut, D.C.1
Hinton, G.E.2
-
122
-
-
0012733832
-
Stream hydrological and ecological responses to climate change assessed with an artificial neural network
-
Poff N.L., Tokar S., Johnson P. Stream hydrological and ecological responses to climate change assessed with an artificial neural network. Limnology and Oceanography. 41(5):1996;857-863.
-
(1996)
Limnology and Oceanography
, vol.41
, Issue.5
, pp. 857-863
-
-
Poff, N.L.1
Tokar, S.2
Johnson, P.3
-
123
-
-
0031194103
-
Connection pruning with static and adaptive pruning schedules
-
Prechelt L. Connection pruning with static and adaptive pruning schedules. Neurocomputing. 16(1):1997;49-61.
-
(1997)
Neurocomputing
, vol.16
, Issue.1
, pp. 49-61
-
-
Prechelt, L.1
-
124
-
-
0029413038
-
Multivariate modelling of water resources time series using artificial neural networks
-
Raman H., Sunilkumar N. Multivariate modelling of water resources time series using artificial neural networks. Hydrological Sciences Journal. 40(2):1995;145-163.
-
(1995)
Hydrological Sciences Journal
, vol.40
, Issue.2
, pp. 145-163
-
-
Raman, H.1
Sunilkumar, N.2
-
125
-
-
0030809170
-
ANNA - Artificial neural network model for predicting species abundance and succession of blue-green algae
-
Recknagel F. ANNA - Artificial neural network model for predicting species abundance and succession of blue-green algae. Hydrobiologia. 349:1997;47-57.
-
(1997)
Hydrobiologia
, vol.349
, pp. 47-57
-
-
Recknagel, F.1
-
129
-
-
0000696616
-
Neural networks and related methods of classification
-
Ripley B.D. Neural networks and related methods of classification. Journal of the Royal Statistical Society B. 56(3):1994;409-456.
-
(1994)
Journal of the Royal Statistical Society B
, vol.56
, Issue.3
, pp. 409-456
-
-
Ripley, B.D.1
-
130
-
-
0031191037
-
Modeling complex environmental data
-
Roadknight C.M., Balls G.R., Mills G.E., Palmer-Brown D. Modeling complex environmental data. IEEE Transactions on Neural Networks. 8(4):1997;852-862.
-
(1997)
IEEE Transactions on Neural Networks
, vol.8
, Issue.4
, pp. 852-862
-
-
Roadknight, C.M.1
Balls, G.R.2
Mills, G.E.3
Palmer-Brown, D.4
-
132
-
-
0028174533
-
Optimization of groundwater remediation using artificial neural networks with parallel solute transport modeling
-
Rogers L.L., Dowla F.U. Optimization of groundwater remediation using artificial neural networks with parallel solute transport modeling. Water Resources Research. 30(2):1994;457-481.
-
(1994)
Water Resources Research
, vol.30
, Issue.2
, pp. 457-481
-
-
Rogers, L.L.1
Dowla, F.U.2
-
134
-
-
0000646059
-
Learning internal representations by error propagation
-
In: Rumelhart, D.E., McClelland, J.L. (Eds.), MIT Press, Cambridge
-
Rumelhart, D.E., Hinton, G.E., Williams, R.J., 1986a. Learning internal representations by error propagation. In: Rumelhart, D.E., McClelland, J.L. (Eds.), Parallel Distributed Processing. MIT Press, Cambridge.
-
(1986)
Parallel Distributed Processing
-
-
Rumelhart, D.E.1
Hinton, G.E.2
Williams, R.J.3
-
135
-
-
0022471098
-
Learning representations by backpropagating errors
-
Rumelhart D.E., Hinton G.E., Williams R.J. Learning representations by backpropagating errors. Nature. 323:1986;533-536.
-
(1986)
Nature
, vol.323
, pp. 533-536
-
-
Rumelhart, D.E.1
Hinton, G.E.2
Williams, R.J.3
-
137
-
-
0000120766
-
Estimating the dimension of a model
-
Schwarz G. Estimating the dimension of a model. Annals of Statistics. 6:1978;461-464.
-
(1978)
Annals of Statistics
, vol.6
, pp. 461-464
-
-
Schwarz, G.1
-
138
-
-
0030633575
-
A penalty-function approach for pruning feedforward neural networks
-
Setiono R. A penalty-function approach for pruning feedforward neural networks. Neural Computation. 9(1):1997;185-204.
-
(1997)
Neural Computation
, vol.9
, Issue.1
, pp. 185-204
-
-
Setiono, R.1
-
139
-
-
0029185114
-
Use of a quasi-Newton method in a feedforward neural-network construction algorithm
-
Setiono R., Hui L.C.K. Use of a quasi-Newton method in a feedforward neural-network construction algorithm. IEEE Transactions on Neural Networks. 6:1995;273-277.
-
(1995)
IEEE Transactions on Neural Networks
, vol.6
, pp. 273-277
-
-
Setiono, R.1
Hui, L.C.K.2
-
140
-
-
0342506462
-
Application of a neural network technique to rainfall-runoff modelling
-
Shamseldin A.Y. Application of a neural network technique to rainfall-runoff modelling. Journal of Hydrology. 199:1997;272-294.
-
(1997)
Journal of Hydrology
, vol.199
, pp. 272-294
-
-
Shamseldin, A.Y.1
-
141
-
-
0000618748
-
Conjugate gradient methods with inexact line searches
-
Shanno D.F. Conjugate gradient methods with inexact line searches. Mathematics of Operations Research. 3:1978;244-256.
-
(1978)
Mathematics of Operations Research
, vol.3
, pp. 244-256
-
-
Shanno, D.F.1
-
142
-
-
0029656894
-
Use of artificial neural networks in transient drainage design
-
Shukla M.B., Kok R., Prasher S.O., Clark G., Lacroix R. Use of artificial neural networks in transient drainage design. Transactions of the ASAE. 39(1):1996;119-124.
-
(1996)
Transactions of the ASAE
, vol.39
, Issue.1
, pp. 119-124
-
-
Shukla, M.B.1
Kok, R.2
Prasher, S.O.3
Clark, G.4
Lacroix, R.5
-
143
-
-
0031124173
-
Computational capabilities of recurrent NARX neural networks
-
Siegelmann H.T., Horne B.G., Giles C.L. Computational capabilities of recurrent NARX neural networks. IEEE Transactions on Systems Man and Cybernetics, Part B: Cybernetics. 27(2):1997;208-215.
-
(1997)
IEEE Transactions on Systems Man and Cybernetics, Part B: Cybernetics
, vol.27
, Issue.2
, pp. 208-215
-
-
Siegelmann, H.T.1
Horne, B.G.2
Giles, C.L.3
-
144
-
-
0024124323
-
Neural net pruning - Why and how
-
San Diego, CA, IEEE, New York
-
Sietsma, J., Dow, R.J.F., 1988. Neural net pruning - Why and how. In: Proceedings of the IEEE International Conference on Neural Networks, San Diego, CA, pp. 325-333. IEEE, New York.
-
(1988)
In: Proceedings of the IEEE International Conference on Neural Networks
, pp. 325-333
-
-
Sietsma, J.1
Dow, R.J.F.2
-
145
-
-
0026017007
-
Creating artificial neural networks that generalize
-
Sietsma J., Dow R.J.F. Creating artificial neural networks that generalize. Neural Networks. 4:1991;67-79.
-
(1991)
Neural Networks
, vol.4
, pp. 67-79
-
-
Sietsma, J.1
Dow, R.J.F.2
-
146
-
-
0024945041
-
Training feedforward networks with the extended Kalman algorithm
-
Scotland, IEEE, New York
-
Singhal, S., Wu, L., 1989. Training feedforward networks with the extended Kalman algorithm. In: Proceedings of the International Conference on Acoustics, Speech and Signal Processing, Scotland, pp. 1187-1190. IEEE, New York.
-
(1989)
In: Proceedings of the International Conference on Acoustics, Speech and Signal Processing
, pp. 1187-1190
-
-
Singhal, S.1
Wu, L.2
-
148
-
-
0001336749
-
Accelerated learning in layered neural networks
-
Solla S.A., Levin E., Fleisher M. Accelerated learning in layered neural networks. Complex Systems. 2:1988;625-639.
-
(1988)
Complex Systems
, vol.2
, pp. 625-639
-
-
Solla, S.A.1
Levin, E.2
Fleisher, M.3
-
149
-
-
0000629975
-
Cross-validatory choice and assessment of statistical predictions
-
Stone M. Cross-validatory choice and assessment of statistical predictions. Journal of the Royal Statistical Society B. 36:1974;111-147.
-
(1974)
Journal of the Royal Statistical Society B
, vol.36
, pp. 111-147
-
-
Stone, M.1
-
150
-
-
0002472775
-
Back-propagation networks for daily streamflow forecasting
-
Sureerattanan S., Phien H.N. Back-propagation networks for daily streamflow forecasting. Water Resources Journal. December:1997;1-7.
-
(1997)
Water Resources Journal
, pp. 1-7
-
-
Sureerattanan, S.1
Phien, H.N.2
-
151
-
-
0031100287
-
Capabilities of a four-layered feedforward neural network: Four layers versus three
-
Tamura S.i., Tateishi M. Capabilities of a four-layered feedforward neural network: Four layers versus three. IEEE Transactions on Neural Networks. 8(2):1997;251-255.
-
(1997)
IEEE Transactions on Neural Networks
, vol.8
, Issue.2
, pp. 251-255
-
-
Tamura, S.I.1
Tateishi, M.2
-
154
-
-
0031898654
-
River stage forecasting using artificial neural networks
-
Thirumalaiah K., Deo M.C. River stage forecasting using artificial neural networks. Journal of Hydrologic Engineering. 3(1):1998;26-32.
-
(1998)
Journal of Hydrologic Engineering
, vol.3
, Issue.1
, pp. 26-32
-
-
Thirumalaiah, K.1
Deo, M.C.2
-
155
-
-
0009454128
-
Comment on 'Neural networks: A review from a statistical perspective' by B. Cheng and D.M. Titterington
-
Tibshirani R. Comment on 'Neural networks: A review from a statistical perspective' by B. Cheng and D.M. Titterington. Statistical Science. 9(1):1994;48-49.
-
(1994)
Statistical Science
, vol.9
, Issue.1
, pp. 48-49
-
-
Tibshirani, R.1
-
156
-
-
84898184690
-
Constructive induction in knowledge-based neural networks
-
Morgan Kaufman, San Mateo
-
Towell, G.G., Craven, M.K., Shavlik, J.W., 1991. Constructive induction in knowledge-based neural networks. In; Proceedings of the 8th International Workshop on Machine Learning, pp. 213-217. Morgan Kaufman, San Mateo.
-
(1991)
In; Proceedings of the 8th International Workshop on Machine Learning
, pp. 213-217
-
-
Towell, G.G.1
Craven, M.K.2
Shavlik, J.W.3
-
157
-
-
0031236248
-
A neural network approach to estimating rainfall from spaceborne microwave data
-
Tsintikidis D., Haferman J.L., Anagnostou E.N., Krajewski W.F., Smith T.F. A neural network approach to estimating rainfall from spaceborne microwave data. IEEE Transactions on Geoscience and Remote Sensing. 35(5):1997;1079-1093.
-
(1997)
IEEE Transactions on Geoscience and Remote Sensing
, vol.35
, Issue.5
, pp. 1079-1093
-
-
Tsintikidis, D.1
Haferman, J.L.2
Anagnostou, E.N.3
Krajewski, W.F.4
Smith, T.F.5
-
158
-
-
0031504678
-
Prediction of all India summer monsoon rainfall using error-back-propagation neural networks
-
Venkatesan C., Raskar S.D., Tambe S.S., Kulkarni B.D., Keshavamurty R.N. Prediction of all India summer monsoon rainfall using error-back-propagation neural networks. Meteorology and Atmospheric Physics. 62(3)(4):1997;225-240.
-
(1997)
Meteorology and Atmospheric Physics
, vol.62
, Issue.3-4
, pp. 225-240
-
-
Venkatesan, C.1
Raskar, S.D.2
Tambe, S.S.3
Kulkarni, B.D.4
Keshavamurty, R.N.5
-
159
-
-
0031276994
-
Fast training of multilayer perceptrons
-
Verma B. Fast training of multilayer perceptrons. IEEE Transactions on Neural Networks. 8(6):1997;1314-1320.
-
(1997)
IEEE Transactions on Neural Networks
, vol.8
, Issue.6
, pp. 1314-1320
-
-
Verma, B.1
-
161
-
-
0141759457
-
Enhanced backpropagation training algorithm for transient event identification
-
Vitela J.E., Reifman J. Enhanced backpropagation training algorithm for transient event identification. Transactions of the American Nuclear Society. 69:1993;148-149.
-
(1993)
Transactions of the American Nuclear Society
, vol.69
, pp. 148-149
-
-
Vitela, J.E.1
Reifman, J.2
-
162
-
-
0031171576
-
Premature saturation in backpropagation networks - mechanism and necessary conditions
-
Vitela J.E., Reifman J. Premature saturation in backpropagation networks - mechanism and necessary conditions. Neural Networks. 10(4):1997;721-735.
-
(1997)
Neural Networks
, vol.10
, Issue.4
, pp. 721-735
-
-
Vitela, J.E.1
Reifman, J.2
-
163
-
-
0024124040
-
Factors influencing learning by back-propagation
-
San Diego, CA, IEEE, New York
-
Von Lehman, A., Paek, E.G., Liao, P.F., Marrakchi, A., Patel, J.S., 1988. Factors influencing learning by back-propagation. In: Proceedings of the IEEE International Conference on Neural Networks, San Diego, CA, pp. 335-341. IEEE, New York.
-
(1988)
In: Proceedings of the IEEE International Conference on Neural Networks
, pp. 335-341
-
-
Von Lehman, A.1
Paek, E.G.2
Liao, P.F.3
Marrakchi, A.4
Patel, J.S.5
-
164
-
-
0030142280
-
A fast multilayer neural-network training algorithm based on the layer-by-layer optimizing procedures
-
Wang G.-J., Chen C.-C. A fast multilayer neural-network training algorithm based on the layer-by-layer optimizing procedures. IEEE Transactions on Neural Networks. 7(3):1996;768-775.
-
(1996)
IEEE Transactions on Neural Networks
, vol.7
, Issue.3
, pp. 768-775
-
-
Wang, G.-J.1
Chen, C.-C.2
-
165
-
-
0030327681
-
Understanding neural networks as statistical tools
-
Warner B., Misra M. Understanding neural networks as statistical tools. American Statistician. 50(4):1996;284-293.
-
(1996)
American Statistician
, vol.50
, Issue.4
, pp. 284-293
-
-
Warner, B.1
Misra, M.2
-
167
-
-
0026955395
-
Avoiding false local minima by proper initialization of connections
-
Wessels L., Barnard E. Avoiding false local minima by proper initialization of connections. IEEE Transactions on Neural Networks. 3(6):1992;899-905.
-
(1992)
IEEE Transactions on Neural Networks
, vol.3
, Issue.6
, pp. 899-905
-
-
Wessels, L.1
Barnard, E.2
-
168
-
-
0000243355
-
Learning in artificial neural networks: A statistical perspective
-
White H. Learning in artificial neural networks: A statistical perspective. Neural Computation. 1:1989;425-464.
-
(1989)
Neural Computation
, vol.1
, pp. 425-464
-
-
White, H.1
-
169
-
-
0030729974
-
Modelling algal growth and transport in rivers - A comparison of time series analysis, dynamic mass balance and neural network techniques
-
Whitehead P.G., Howard A., Arulmani C. Modelling algal growth and transport in rivers - a comparison of time series analysis, dynamic mass balance and neural network techniques. Hydrobiologia. 349:1997;39-46.
-
(1997)
Hydrobiologia
, vol.349
, pp. 39-46
-
-
Whitehead, P.G.1
Howard, A.2
Arulmani, C.3
-
170
-
-
0032920119
-
Approximate confidence intervals for design floods for a single site using a neural network
-
Whitley R., Hromadka T.V. Approximate confidence intervals for design floods for a single site using a neural network. Water Resources Research. 35(1):1999;203-210.
-
(1999)
Water Resources Research
, vol.35
, Issue.1
, pp. 203-210
-
-
Whitley, R.1
Hromadka, T.V.2
-
171
-
-
0001202594
-
A learning algorithm for continually running fully recurrent networks
-
Williams R.J., Zipser D. A learning algorithm for continually running fully recurrent networks. Neural Computation. 1:1989;270-280.
-
(1989)
Neural Computation
, vol.1
, pp. 270-280
-
-
Williams, R.J.1
Zipser, D.2
-
172
-
-
0030784223
-
Development of a neural network based algorithm for rainfall estimation from radar observations
-
Xiao R.R., Chandrasekar V. Development of a neural network based algorithm for rainfall estimation from radar observations. IEEE Transactions on Geoscience and Remote Sensing. 35(1):1997;160-171.
-
(1997)
IEEE Transactions on Geoscience and Remote Sensing
, vol.35
, Issue.1
, pp. 160-171
-
-
Xiao, R.R.1
Chandrasekar, V.2
-
173
-
-
0030725850
-
Novel application of back-propagation artificial neural network model formulated to predict algal bloom
-
Yabunaka K.-i., Hosomi M., Murakami A. Novel application of back-propagation artificial neural network model formulated to predict algal bloom. Water Science and Technology. 36(5):1997;89-97.
-
(1997)
Water Science and Technology
, vol.36
, Issue.5
, pp. 89-97
-
-
Yabunaka, K.-i.1
Hosomi, M.2
Murakami, A.3
-
174
-
-
0030512054
-
Applications of artificial neural networks to land drainage engineering
-
Yang C.C., Prasher C.O., Lacroix R. Applications of artificial neural networks to land drainage engineering. Transactions of the ASAE. 39(2):1996;525-533.
-
(1996)
Transactions of the ASAE
, vol.39
, Issue.2
, pp. 525-533
-
-
Yang, C.C.1
Prasher, C.O.2
Lacroix, R.3
-
175
-
-
0342735290
-
Backpropagation with homotopy
-
Yang L., Yu W. Backpropagation with homotopy. Neural Computation. 5(3):1993;363-366.
-
(1993)
Neural Computation
, vol.5
, Issue.3
, pp. 363-366
-
-
Yang, L.1
Yu, W.2
-
176
-
-
0027574256
-
A review of evolutionary artificial neural networks
-
Yao X. A review of evolutionary artificial neural networks. Int. J. Intell. Syst. 8(4):1993;539-567.
-
(1993)
Int. J. Intell. Syst.
, vol.8
, Issue.4
, pp. 539-567
-
-
Yao, X.1
-
177
-
-
0031143030
-
A new evolutionary system for evolving artificial neural networks
-
Yao X., Liu Y. A new evolutionary system for evolving artificial neural networks. IEEE Transactions on Neural Networks. 8(3):1997;694-713.
-
(1997)
IEEE Transactions on Neural Networks
, vol.8
, Issue.3
, pp. 694-713
-
-
Yao, X.1
Liu, Y.2
-
178
-
-
0031127257
-
Efficient backpropagation learning using optimal learning rate and momentum
-
Yu X.H., Chen G.A. Efficient backpropagation learning using optimal learning rate and momentum. Neural Networks. 10(3):1997;517-527.
-
(1997)
Neural Networks
, vol.10
, Issue.3
, pp. 517-527
-
-
Yu, X.H.1
Chen, G.A.2
-
179
-
-
0000413739
-
Application of neural networks to runoff prediction
-
In: Hipel, K.W., McLeod, A.I., Panu, U.S., Singh, V.P. (Eds.), Kluwer Academic, Dordrecht
-
Zhu, M.-L., Fujita, M., Hashimoto, N., 1994. Application of neural networks to runoff prediction. In: Hipel, K.W., McLeod, A.I., Panu, U.S., Singh, V.P. (Eds.), Stochastic and Statistical Methods in Hydrology and Environmental Engineering. Kluwer Academic, Dordrecht.
-
(1994)
Stochastic and Statistical Methods in Hydrology and Environmental Engineering
-
-
Zhu, M.-L.1
Fujita, M.2
Hashimoto, N.3
|