-
1
-
-
79952284127
-
Hallmarks of cancer: The next generation
-
Hanahan D, Weinberg RA. 2011. Hallmarks of cancer: the next generation. Cell 144: 646-74
-
(2011)
Cell
, vol.144
, pp. 646-674
-
-
Hanahan, D.1
Weinberg, R.A.2
-
2
-
-
84955326448
-
The emerging hallmarks of cancermetabolism
-
Pavlova NN, Thompson CB. 2016. The emerging hallmarks of cancermetabolism. CellMetab. 23: 27-47
-
(2016)
CellMetab.
, vol.23
, pp. 27-47
-
-
Pavlova, N.N.1
Thompson, C.B.2
-
3
-
-
12444279265
-
On the origin of cancer cells
-
Warburg O. 1956. On the origin of cancer cells. Science 123: 309-14
-
(1956)
Science
, vol.123
, pp. 309-314
-
-
Warburg, O.1
-
4
-
-
0001221508
-
On respiratory impairment in cancer cells
-
Warburg O. 1956. On respiratory impairment in cancer cells. Science 124: 269-70
-
(1956)
Science
, vol.124
, pp. 269-270
-
-
Warburg, O.1
-
5
-
-
80054046029
-
Aerobic glycolysis: Meeting the metabolic requirements of cell proliferation
-
Lunt SY, Vander Heiden MG. 2011. Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu. Rev. Cell Dev. Biol. 27: 441-64
-
(2011)
Annu. Rev. Cell Dev. Biol.
, vol.27
, pp. 441-464
-
-
Lunt, S.Y.1
Vander Heiden, M.G.2
-
6
-
-
84880514208
-
The protooncometabolite fumarate binds glutathione to amplify ROS-dependent signaling
-
Sullivan LB, Martinez-Garcia E, Nguyen H, Mullen AR, Dufour E, et al. 2013. The protooncometabolite fumarate binds glutathione to amplify ROS-dependent signaling. Mol. Cell 51: 236-48
-
(2013)
Mol. Cell
, vol.51
, pp. 236-248
-
-
Sullivan, L.B.1
Martinez-Garcia, E.2
Nguyen, H.3
Mullen, A.R.4
Dufour, E.5
-
7
-
-
84923197588
-
Fumarate induces redoxdependent senescence by modifying glutathione metabolism
-
Zheng L, Cardaci S, Jerby L, Mackenzie ED, Sciacovelli M, et al. 2015. Fumarate induces redoxdependent senescence by modifying glutathione metabolism. Nat. Commun. 6: 4001
-
(2015)
Nat. Commun.
, vol.6
, pp. 4001
-
-
Zheng, L.1
Cardaci, S.2
Jerby, L.3
Mackenzie, E.D.4
Sciacovelli, M.5
-
8
-
-
84942991530
-
-
Cardaci S, Zheng L, Mackay G, Van Den Broek NJF, Mackenzie ED, et al. 2015. Pyruvate carboxylation enables growth of SDH-deficient cells by supporting aspartate biosynthesis. 17: 1317-26
-
(2015)
Pyruvate carboxylation enables growth of SDH-deficient cells by supporting aspartate biosynthesis
, vol.17
, pp. 1317-1326
-
-
Cardaci, S.1
Zheng, L.2
Mackay, G.3
Van Den Broek, N.J.F.4
Mackenzie, E.D.5
-
9
-
-
84863552418
-
A mitochondrial pyruvate carrier required for pyruvate uptake in yeast, Drosophila, and humans
-
Bricker DK, Taylor EB, Schell JC, Orsak T, Boutron A, et al. 2012. A mitochondrial pyruvate carrier required for pyruvate uptake in yeast, Drosophila, and humans. Science 337: 96-100
-
(2012)
Science
, vol.337
, pp. 96-100
-
-
Bricker, D.K.1
Taylor, E.B.2
Schell, J.C.3
Orsak, T.4
Boutron, A.5
-
10
-
-
84920802831
-
A mitochondrial switch promotes tumor metastasis
-
Porporato PE, Payen VL, Pérez-Escuredo J, De Saedeleer CJ, Danhier P, et al. 2014. A mitochondrial switch promotes tumor metastasis. Cell Rep. 8: 754-66
-
(2014)
Cell Rep.
, vol.8
, pp. 754-766
-
-
Porporato, P.E.1
Payen, V.L.2
Pérez-Escuredo, J.3
De Saedeleer, C.J.4
Danhier, P.5
-
11
-
-
84938232611
-
An essential role of the mitochondrial electron transport chain in cell proliferation is to enable aspartate synthesis
-
Birsoy K, Wang T, Chen WW, Freinkman E, Abu-Remaileh M, Sabatini DM. 2015. An essential role of the mitochondrial electron transport chain in cell proliferation is to enable aspartate synthesis. Cell 162: 540-51
-
(2015)
Cell
, vol.162
, pp. 540-551
-
-
Birsoy, K.1
Wang, T.2
Chen, W.W.3
Freinkman, E.4
Abu-Remaileh, M.5
Sabatini, D.M.6
-
12
-
-
33746888993
-
Mitochondriotoxic compounds for cancer therapy
-
Fantin VR, Leder P. 2006. Mitochondriotoxic compounds for cancer therapy. Oncogene 25: 4787-97
-
(2006)
Oncogene
, vol.25
, pp. 4787-4797
-
-
Fantin, V.R.1
Leder, P.2
-
14
-
-
0001246085
-
The minimum vitamin requirements of the L and HeLa cells in tissue culture, the production of specific vitamin deficiencies, and their cure
-
Eagle H. 1955. The minimum vitamin requirements of the L and HeLa cells in tissue culture, the production of specific vitamin deficiencies, and their cure. J. Exp. Med. 102: 595-600
-
(1955)
J. Exp. Med.
, vol.102
, pp. 595-600
-
-
Eagle, H.1
-
15
-
-
84890209181
-
Glutamine-driven oxidative phosphorylation is a major ATP source in transformed mammalian cells in both normoxia and hypoxia
-
Fan J, Kamphorst JJ, Mathew R, Chung MK, White E, et al. 2013. Glutamine-driven oxidative phosphorylation is a major ATP source in transformed mammalian cells in both normoxia and hypoxia. Mol. Syst. Biol. 9: 712
-
(2013)
Mol. Syst. Biol.
, vol.9
, pp. 712
-
-
Fan, J.1
Kamphorst, J.J.2
Mathew, R.3
Chung, M.K.4
White, E.5
-
16
-
-
84901624185
-
Metabolic shifts toward glutamine regulate tumor growth, invasion and bioenergetics in ovarian cancer
-
Yang L, Moss T, Mangala LS, Marini J, Zhao H, et al. 2014. Metabolic shifts toward glutamine regulate tumor growth, invasion and bioenergetics in ovarian cancer. Mol. Syst. Biol. 10: 728-728
-
(2014)
Mol. Syst. Biol.
, vol.10
, pp. 728
-
-
Yang, L.1
Moss, T.2
Mangala, L.S.3
Marini, J.4
Zhao, H.5
-
17
-
-
84975109732
-
ASCT2/SLC1A5 controls glutamine uptake and tumour growth in triple-negative basal-like breast cancer
-
vanGeldermalsen M, Wang Q, NagarajahR, Marshall AD, Thoeng A, et al. 2016. ASCT2/SLC1A5 controls glutamine uptake and tumour growth in triple-negative basal-like breast cancer. Oncogene 35: 3201-8
-
(2016)
Oncogene
, vol.35
, pp. 3201-3208
-
-
VanGeldermalsen, M.1
Wang, Q.2
Nagarajah, R.3
Marshall, A.D.4
Thoeng, A.5
-
18
-
-
0025763391
-
Amino acids in the neuronal microenvironment of focal human epileptic lesions
-
Hamberger A, Nyström B, Larsson S, Silfvenius H, Nordborg C. 1991. Amino acids in the neuronal microenvironment of focal human epileptic lesions. Epilepsy Res. 9: 32-43
-
(1991)
Epilepsy Res.
, vol.9
, pp. 32-43
-
-
Hamberger, A.1
Nyström, B.2
Larsson, S.3
Silfvenius, H.4
Nordborg, C.5
-
19
-
-
0033190871
-
Glutamine transport and human hepatocellular transformation
-
Bode BP, SoubaWW. 1999. Glutamine transport and human hepatocellular transformation. J. Parenter. Enter. Nutr. 23(5 Suppl.): S33-37
-
(1999)
J. Parenter. Enter. Nutr.
, vol.23
, Issue.5
, pp. S33-37
-
-
Bode, B.P.1
Souba, W.W.2
-
20
-
-
37449034854
-
Beyond aerobic glycolysis: Transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis
-
DeBerardinis RJ, Mancuso A, Daikhin E, Nissim I, Yudkoff M, et al. 2007. Beyond aerobic glycolysis: Transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. PNAS 104: 19345-50
-
(2007)
PNAS
, vol.104
, pp. 19345-19350
-
-
DeBerardinis, R.J.1
Mancuso, A.2
Daikhin, E.3
Nissim, I.4
Yudkoff, M.5
-
21
-
-
84961287801
-
Pyruvate carboxylase is critical for non-small-cell lung cancer proliferation
-
Sellers K, Fox MP, Bousamra M, Slone SP, Higashi RM, et al. 2015. Pyruvate carboxylase is critical for non-small-cell lung cancer proliferation. J. Clin. Investig. 125: 687-98
-
(2015)
J. Clin. Investig.
, vol.125
, pp. 687-698
-
-
Sellers, K.1
Fox, M.P.2
Bousamra, M.3
Slone, S.P.4
Higashi, R.M.5
-
22
-
-
79957774646
-
Pyruvate carboxylase is required for glutamine-independent growth of tumor cells
-
Cheng T, Sudderth J, Yang C, Mullen AR, Jin ES, et al. 2011. Pyruvate carboxylase is required for glutamine-independent growth of tumor cells. PNAS 108: 8674-79
-
(2011)
PNAS
, vol.108
, pp. 8674-8679
-
-
Cheng, T.1
Sudderth, J.2
Yang, C.3
Mullen, A.R.4
Jin, E.S.5
-
23
-
-
0028013303
-
By rat subcutaneous adipose tissue in vivo production of glutamine and utilization of glutamate production of glutamine and utilization of glutamate by rat subcutaneous adipose tissue in vivo
-
Kowalski TJ, Watford M. 2016. By rat subcutaneous adipose tissue in vivo production of glutamine and utilization of glutamate production of glutamine and utilization of glutamate by rat subcutaneous adipose tissue in vivo. Am. J. Physiol. Endocrinol. Metab. 266: E151-54
-
(2016)
Am. J. Physiol. Endocrinol. Metab.
, vol.266
, pp. E151-E154
-
-
Kowalski, T.J.1
Watford, M.2
-
25
-
-
0025314287
-
Glutamine-enriched diets support muscle glutamine metabolism without stimulating tumor growth
-
Klimberg VS, Souba WW, Salloum RM, Plumley DA, Cohen FS, et al. 1990. Glutamine-enriched diets support muscle glutamine metabolism without stimulating tumor growth. J. Surg. Res. 48: 319-23
-
(1990)
J. Surg. Res.
, vol.48
, pp. 319-323
-
-
Klimberg, V.S.1
Souba, W.W.2
Salloum, R.M.3
Plumley, D.A.4
Cohen, F.S.5
-
26
-
-
0029113227
-
Interstitial fluid concentrations of glycerol, glucose, and amino acids in human quadricepmuscle and adipose tissue. Evidence for significant lipolysis in skeletal muscle
-
Maggs DG, Jacob R, Rife F, Lange R, Leone P, et al. 1995. Interstitial fluid concentrations of glycerol, glucose, and amino acids in human quadricepmuscle and adipose tissue. Evidence for significant lipolysis in skeletal muscle. J. Clin. Investig. 96: 370-77
-
(1995)
J. Clin. Investig.
, vol.96
, pp. 370-377
-
-
Maggs, D.G.1
Jacob, R.2
Rife, F.3
Lange, R.4
Leone, P.5
-
27
-
-
0036083952
-
Regional muscle and adipose tissue amino acid metabolism in lean and obese women
-
Patterson BW, Horowitz JF, Wu G, Watford M, Coppack SW, Klein S. 2002. Regional muscle and adipose tissue amino acid metabolism in lean and obese women. Am. J. Physiol. Endocrinol. Metab. 282: E931-36
-
(2002)
Am. J. Physiol. Endocrinol. Metab.
, vol.282
, pp. E931-E936
-
-
Patterson, B.W.1
Horowitz, J.F.2
Wu, G.3
Watford, M.4
Coppack, S.W.5
Klein, S.6
-
28
-
-
84877845591
-
Adipocytes cause leukemia cell resistance to L-asparaginase via release of glutamine
-
Ehsanipour EA, Sheng X, Behan JW, Wang X, Butturini A, et al. 2013. Adipocytes cause leukemia cell resistance to L-asparaginase via release of glutamine. Cancer Res. 73: 2998-3006
-
(2013)
Cancer Res.
, vol.73
, pp. 2998-3006
-
-
Ehsanipour, E.A.1
Sheng, X.2
Behan, J.W.3
Wang, X.4
Butturini, A.5
-
29
-
-
0034019630
-
Glutamate and glutamine in the brain compartmentation of brain glutamate metabolism in neurons and glia
-
Daikhin Y, YudkoffM. 2000. Glutamate and glutamine in the brain compartmentation of brain glutamate metabolism in neurons and glia. J. Nutr. 130: 1026-31
-
(2000)
J. Nutr.
, vol.130
, pp. 1026-1031
-
-
Daikhin, Y.1
Yudkoff, M.2
-
30
-
-
0032988976
-
Role of glutamine in human carbohydrate metabolism in kidney and other tissues
-
Stumvoll M, Perriello G, Meyer C, Gerich J. 1999. Role of glutamine in human carbohydrate metabolism in kidney and other tissues. Kidney Int. 55: 778-92
-
(1999)
Kidney Int.
, vol.55
, pp. 778-792
-
-
Stumvoll, M.1
Perriello, G.2
Meyer, C.3
Gerich, J.4
-
31
-
-
84915755954
-
Glutamine synthetase desensitizes differentiated adipocytes to proinflammatory stimuli by raising intracellular glutamine levels
-
Palmieri EM, Spera I, Menga A, Infantino V, Iacobazzi V, Castegna A. 2014. Glutamine synthetase desensitizes differentiated adipocytes to proinflammatory stimuli by raising intracellular glutamine levels. FEBS Lett. 588: 4807-14
-
(2014)
FEBS Lett.
, vol.588
, pp. 4807-4814
-
-
Palmieri, E.M.1
Spera, I.2
Menga, A.3
Infantino, V.4
Iacobazzi, V.5
Castegna, A.6
-
32
-
-
0018126186
-
The regulation of skeletal muscle alanine and glutamine formation and release in experimental chronic uremia in the rat subsensitivity of adenylate cyclase and amino acid release to epinephrine and serotonin
-
Garber AJ. 1978. The regulation of skeletal muscle alanine and glutamine formation and release in experimental chronic uremia in the rat subsensitivity of adenylate cyclase and amino acid release to epinephrine and serotonin. J. Clin. Investig. 62: 633-41
-
(1978)
J. Clin. Investig.
, vol.62
, pp. 633-641
-
-
Garber, A.J.1
-
34
-
-
0015860095
-
Evidence of inter-organ amino-acid transport by blood cells in humans
-
Felig P, Wahrent J, Raft L. 1973. Evidence of inter-organ amino-acid transport by blood cells in humans. PNAS 70: 1775-79
-
(1973)
PNAS
, vol.70
, pp. 1775-1779
-
-
Felig, P.1
Wahrent, J.2
Raft, L.3
-
35
-
-
0034858012
-
Glutamine and cell signaling in liver
-
Häussinger D, Graf D, Weiergräber OH. 2001. Glutamine and cell signaling in liver. J. Nutr. 131(9 Suppl.): S2509-24
-
(2001)
J. Nutr.
, vol.131
, Issue.9
, pp. S2509-S2524
-
-
Häussinger, D.1
Graf, D.2
Weiergräber, O.H.3
-
36
-
-
0026532176
-
Glutaminase and glutamine synthetase activities in human cirrhotic liver and hepatocellular carcinoma
-
Matsuno T, Goto L. 1992. Glutaminase and glutamine synthetase activities in human cirrhotic liver and hepatocellular carcinoma. Cancer Res. 52: 1192-94
-
(1992)
Cancer Res.
, vol.52
, pp. 1192-1194
-
-
Matsuno, T.1
Goto, L.2
-
37
-
-
84875894714
-
Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway
-
Son J, Lyssiotis CA, Ying H, Wang X, Hua S, et al. 2013. Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature 496: 101-5
-
(2013)
Nature
, vol.496
, pp. 101-105
-
-
Son, J.1
Lyssiotis, C.A.2
Ying, H.3
Wang, X.4
Hua, S.5
-
38
-
-
57749088701
-
Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction
-
Wise DR, DeBerardinis RJ, Mancuso A, Sayed N, Zhang X-Y, et al. 2008. Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. PNAS 105: 18782-87
-
(2008)
PNAS
, vol.105
, pp. 18782-18787
-
-
Wise, D.R.1
DeBerardinis, R.J.2
Mancuso, A.3
Sayed, N.4
Zhang, X.-Y.5
-
39
-
-
64749116346
-
C-Myc suppression of MIR-23 enhances mitochondrial glutaminase and glutamine metabolism
-
Gao P, Tchernyshyov I, Chang T-C, Lee Y-S, Kita K, et al. 2009. c-Myc suppression of mir-23 enhances mitochondrial glutaminase and glutamine metabolism. Nature 458: 762-65
-
(2009)
Nature
, vol.458
, pp. 762-765
-
-
Gao, P.1
Tchernyshyov, I.2
Chang, T.-C.3
Lee, Y.-S.4
Kita, K.5
-
40
-
-
48849105341
-
Direct role of nucleotide metabolism in C-MYC-dependent proliferation of melanoma cells
-
Mannava S, Grachtchouk V, Wheeler LJ, Im M, Zhuang D, et al. 2008. Direct role of nucleotide metabolism in C-MYC-dependent proliferation of melanoma cells. Cell Cycle 7: 2392-400
-
(2008)
Cell Cycle
, vol.7
, pp. 2392-2400
-
-
Mannava, S.1
Grachtchouk, V.2
Wheeler, L.J.3
Im, M.4
Zhuang, D.5
-
41
-
-
80051866908
-
Oncogenic K-Ras decouples glucose and glutamine metabolism to support cancer cell growth
-
Gaglio D, Metallo CM, Gameiro PA, Hiller K, Danna LS, et al. 2014. Oncogenic K-Ras decouples glucose and glutamine metabolism to support cancer cell growth. Mol. Syst. Biol. 7: 523-23
-
(2014)
Mol. Syst. Biol.
, vol.7
, pp. 523-623
-
-
Gaglio, D.1
Metallo, C.M.2
Gameiro, P.A.3
Hiller, K.4
Danna, L.S.5
-
42
-
-
84877720366
-
The mTORC1 pathway stimulates glutamine metabolism and cell proliferation by repressing SIRT4
-
Csibi A, Fendt S-M, Li C, Poulogiannis G, Choo AY, et al. 2013. The mTORC1 pathway stimulates glutamine metabolism and cell proliferation by repressing SIRT4. Cell 153: 840-54
-
(2013)
Cell
, vol.153
, pp. 840-854
-
-
Csibi, A.1
Fendt, S.-M.2
Li, C.3
Poulogiannis, G.4
Choo, A.Y.5
-
43
-
-
84874111758
-
The NRF2 cell defence pathway: KEAP1-dependent and-independent mechanisms of regulation
-
Bryan HK, Olayanju A, Goldring CE, Park BK. 2013. The NRF2 cell defence pathway: KEAP1-dependent and-independent mechanisms of regulation. Biochem. Pharmacol. 85: 705-17
-
(2013)
Biochem. Pharmacol.
, vol.85
, pp. 705-717
-
-
Bryan, H.K.1
Olayanju, A.2
Goldring, C.E.3
Park, B.K.4
-
44
-
-
80053452983
-
Beneficial role of NRF2 in regulating NADPH generation and consumption
-
Wu KC, Cui JY, Klaassen CD. 2011. Beneficial role of NRF2 in regulating NADPH generation and consumption. Toxicol. Sci. 123: 590-600
-
(2011)
Toxicol. Sci.
, vol.123
, pp. 590-600
-
-
Wu, K.C.1
Cui, J.Y.2
Klaassen, C.D.3
-
45
-
-
0027109075
-
P53, guardian of the genome
-
Lane DP. 1992. p53, guardian of the genome. Nature 358: 15-16
-
(1992)
Nature
, vol.358
, pp. 15-16
-
-
Lane, D.P.1
-
46
-
-
77952227625
-
Phosphate-activated glutaminase (GLS2), a p53-inducible regulator of glutamine metabolism and reactive oxygen species
-
Suzuki S, Tanaka T, Poyurovsky MV, Nagano H, Mayama T, et al. 2010. Phosphate-activated glutaminase (GLS2), a p53-inducible regulator of glutamine metabolism and reactive oxygen species. PNAS 107: 7461-66
-
(2010)
PNAS
, vol.107
, pp. 7461-7466
-
-
Suzuki, S.1
Tanaka, T.2
Poyurovsky, M.V.3
Nagano, H.4
Mayama, T.5
-
47
-
-
84895071580
-
Control of glutamine metabolism by the tumor suppressor Rb
-
Reynolds MR, Lane AN, Robertson B, Kemp S, Liu Y, et al. 2014. Control of glutamine metabolism by the tumor suppressor Rb. Oncogene 33: 556-66
-
(2014)
Oncogene
, vol.33
, pp. 556-566
-
-
Reynolds, M.R.1
Lane, A.N.2
Robertson, B.3
Kemp, S.4
Liu, Y.5
-
48
-
-
84894359469
-
Loss of the tumor suppressor LKB1 promotes metabolic reprogramming of cancer cells via HIF-1
-
Faubert B, Vincent EE, Griss T, Samborska B, Izreig S, et al. 2014. Loss of the tumor suppressor LKB1 promotes metabolic reprogramming of cancer cells via HIF-1. PNAS 111: 2554-59
-
(2014)
PNAS
, vol.111
, pp. 2554-2559
-
-
Faubert, B.1
Vincent, E.E.2
Griss, T.3
Samborska, B.4
Izreig, S.5
-
49
-
-
84924590390
-
A long noncoding RNA connects c-Myc to tumor metabolism
-
Hung C-L, Wang L-Y, Yu Y-L, Chen H-W, Srivastava S, et al. 2014. A long noncoding RNA connects c-Myc to tumor metabolism. PNAS 111: 18697-702
-
(2014)
PNAS
, vol.111
, pp. 18697-18702
-
-
Hung, C.-L.1
Wang, L.-Y.2
Yu, Y.-L.3
Chen, H.-W.4
Srivastava, S.5
-
50
-
-
84958109207
-
Allele-specific reprogramming of cancer metabolism by the long non-coding RNA CCAT2
-
Redis RS, Vela LE, Lu W, Ferreira de Oliveira J, Ivan C, et al. 2016. Allele-specific reprogramming of cancer metabolism by the long non-coding RNA CCAT2. Mol. Cell 61: 520-34
-
(2016)
Mol. Cell
, vol.61
, pp. 520-534
-
-
Redis, R.S.1
Vela, L.E.2
Lu, W.3
Ferreira De Oliveira, J.4
Ivan, C.5
-
51
-
-
84924250667
-
Regulation of glutamine carrier proteins by RNF5 determines breast cancer response to ER stress-inducing chemotherapies
-
Jeon YJ, Khelifa S, Ratnikov B, Scott DA, Feng Y, et al. 2015. Regulation of glutamine carrier proteins by RNF5 determines breast cancer response to ER stress-inducing chemotherapies. Cancer Cell 27: 354-69
-
(2015)
Cancer Cell
, vol.27
, pp. 354-369
-
-
Jeon, Y.J.1
Khelifa, S.2
Ratnikov, B.3
Scott, D.A.4
Feng, Y.5
-
52
-
-
79953300698
-
The seed and soil hypothesis revisited-the role of tumor-stroma interactions in metastasis to different organs
-
Langley RR, Fidler IJ. 2011. The seed and soil hypothesis revisited-the role of tumor-stroma interactions in metastasis to different organs. Int. J. Cancer. 128: 2527-35
-
(2011)
Int. J. Cancer.
, vol.128
, pp. 2527-2535
-
-
Langley, R.R.1
Fidler, I.J.2
-
53
-
-
84924709550
-
IL4 receptor mediates enhanced glucose and glutamine metabolism to support breast cancer growth
-
Venmar KT, Kimmel DW, Cliffel DE, Fingleton B. 2015. IL4 receptor mediates enhanced glucose and glutamine metabolism to support breast cancer growth. Biochim. Biophys. Acta 1853: 1219-28
-
(2015)
Biochim. Biophys. Acta
, vol.1853
, pp. 1219-1228
-
-
Venmar, K.T.1
Kimmel, D.W.2
Cliffel, D.E.3
Fingleton, B.4
-
54
-
-
78650181190
-
The hexosamine biosynthetic pathway couples growth factor-induced glutamine uptake to glucose metabolism
-
Wellen KE, Lu C, Mancuso A, Lemons JMS, Ryczko M, et al. 2010. The hexosamine biosynthetic pathway couples growth factor-induced glutamine uptake to glucose metabolism. Genes Dev. 24: 2784-99
-
(2010)
Genes Dev.
, vol.24
, pp. 2784-2799
-
-
Wellen, K.E.1
Lu, C.2
Mancuso, A.3
Lemons, J.M.S.4
Ryczko, M.5
-
55
-
-
84921309472
-
The energy sensor AMPK regulates T cell metabolic adaptation and effector responses in vivo
-
Blagih J, Coulombe F, Vincent EE, Dupuy F, Galicia-Vázquez G, et al. 2015. The energy sensor AMPK regulates T cell metabolic adaptation and effector responses in vivo. Immunity 42: 41-54
-
(2015)
Immunity
, vol.42
, pp. 41-54
-
-
Blagih, J.1
Coulombe, F.2
Vincent, E.E.3
Dupuy, F.4
Galicia-Vázquez, G.5
-
56
-
-
84255199079
-
The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation
-
Wang R, Dillon CP, Shi LZ, Milasta S, Carter R, et al. 2011. The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. Immunity 35: 871-82
-
(2011)
Immunity
, vol.35
, pp. 871-882
-
-
Wang, R.1
Dillon, C.P.2
Shi, L.Z.3
Milasta, S.4
Carter, R.5
-
57
-
-
84883501150
-
HIF-1 mediates metabolic responses to intratumoral hypoxia and oncogenic mutations
-
Semenza GL. 2013. HIF-1 mediates metabolic responses to intratumoral hypoxia and oncogenic mutations. J. Clin. Investig. 123: 3664-71
-
(2013)
J. Clin. Investig.
, vol.123
, pp. 3664-3671
-
-
Semenza, G.L.1
-
58
-
-
84893465244
-
Hypoxic regulation of glutamine metabolism through HIF1 and SIAH2 supports lipid synthesis that is necessary for tumor growth
-
Sun RC, Denko NC. 2014. Hypoxic regulation of glutamine metabolism through HIF1 and SIAH2 supports lipid synthesis that is necessary for tumor growth. Cell Metab. 19: 285-92
-
(2014)
Cell Metab.
, vol.19
, pp. 285-292
-
-
Sun, R.C.1
Denko, N.C.2
-
59
-
-
84964300029
-
Lactate promotes glutamine uptake and metabolism in oxidative cancer cells
-
Pérez-Escuredo J, Dadhich RK, Dhup S, Cacace A, VanHée VF, et al. 2015. Lactate promotes glutamine uptake and metabolism in oxidative cancer cells. Cell Cycle 15: 72-83
-
(2015)
Cell Cycle
, vol.15
, pp. 72-83
-
-
Pérez-Escuredo, J.1
Dadhich, R.K.2
Dhup, S.3
Cacace, A.4
VanHée, V.F.5
-
60
-
-
84904645105
-
Antitumor activity of the glutaminase inhibitor CB-839 in triple-negative breast cancer
-
Gross MI, Demo SD, Dennison JB, Chen L, Chernov-Rogan T, et al. 2014. Antitumor activity of the glutaminase inhibitor CB-839 in triple-negative breast cancer. Mol. Cancer Ther. 13: 890-901
-
(2014)
Mol. Cancer Ther.
, vol.13
, pp. 890-901
-
-
Gross, M.I.1
Demo, S.D.2
Dennison, J.B.3
Chen, L.4
Chernov-Rogan, T.5
-
61
-
-
84926304829
-
Compensatory glutamine metabolism promotes glioblastoma resistance to mTOR inhibitor treatment
-
Tanaka K, Sasayama T, Irino Y, Takata K, Nagashima H, et al. 2015. Compensatory glutamine metabolism promotes glioblastoma resistance to mTOR inhibitor treatment. J. Clin. Investig. 125: 1591-602
-
(2015)
J. Clin. Investig.
, vol.125
, pp. 1591-1602
-
-
Tanaka, K.1
Sasayama, T.2
Irino, Y.3
Takata, K.4
Nagashima, H.5
-
63
-
-
84920447418
-
Pyruvate kinase isoform expression alters nucleotide synthesis to impact cell proliferation
-
Lunt SY, Muralidhar V, Hosios AM, Israelsen WJ, Gui DY, et al. 2015. Pyruvate kinase isoform expression alters nucleotide synthesis to impact cell proliferation. Mol. Cell 57: 95-107
-
(2015)
Mol. Cell
, vol.57
, pp. 95-107
-
-
Lunt, S.Y.1
Muralidhar, V.2
Hosios, A.M.3
Israelsen, W.J.4
Gui, D.Y.5
-
64
-
-
84875894714
-
Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway
-
Son J, Lyssiotis CA, Ying H, Wang X, Hua S, et al. 2013. Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature 496: 101-5
-
(2013)
Nature
, vol.496
, pp. 101-105
-
-
Son, J.1
Lyssiotis, C.A.2
Ying, H.3
Wang, X.4
Hua, S.5
-
65
-
-
84938234308
-
Supporting aspartate biosynthesis is an essential function of respiration in proliferating cells
-
Sullivan LB, Gui DY, Hosios AM, Bush LN, Freinkman E, Vander Heiden MG. 2015. Supporting aspartate biosynthesis is an essential function of respiration in proliferating cells. Cell 162: 552-63
-
(2015)
Cell
, vol.162
, pp. 552-563
-
-
Sullivan, L.B.1
Gui, D.Y.2
Hosios, A.M.3
Bush, L.N.4
Freinkman, E.5
Vander Heiden, M.G.6
-
66
-
-
84938232611
-
An essential role of the mitochondrial electron transport chain in cell proliferation is to enable aspartate synthesis
-
Birsoy K, Wang T, Chen WW, Freinkman E, Abu-Remaileh M, Sabatini DM. 2015. An essential role of the mitochondrial electron transport chain in cell proliferation is to enable aspartate synthesis. Cell 162: 540-51
-
(2015)
Cell
, vol.162
, pp. 540-551
-
-
Birsoy, K.1
Wang, T.2
Chen, W.W.3
Freinkman, E.4
Abu-Remaileh, M.5
Sabatini, D.M.6
-
67
-
-
84881177291
-
Serine, glycine and one-carbon units: Cancer metabolism in full circle
-
Locasale JW. 2013. Serine, glycine and one-carbon units: cancer metabolism in full circle. Nat. Rev. Cancer 13: 572-83
-
(2013)
Nat. Rev. Cancer
, vol.13
, pp. 572-583
-
-
Locasale, J.W.1
-
68
-
-
85069238542
-
Mitochondria as biosynthetic factories for cancer proliferation
-
Ahn CS, Metallo CM. 2015. Mitochondria as biosynthetic factories for cancer proliferation. Cancer Metab. 3: 1
-
(2015)
Cancer Metab.
, vol.3
, pp. 1
-
-
Ahn, C.S.1
Metallo, C.M.2
-
69
-
-
51449121886
-
Evaluation of lactate and alanine as metabolic biomarkers of prostate cancer using 1H HR-MAS spectroscopy of biopsy tissues
-
Tessem M-B, Swanson MG, Keshari KR, Albers MJ, Joun D, et al. 2008. Evaluation of lactate and alanine as metabolic biomarkers of prostate cancer using 1H HR-MAS spectroscopy of biopsy tissues. Magn. Reson. Med. 60: 510-16
-
(2008)
Magn. Reson. Med.
, vol.60
, pp. 510-516
-
-
Tessem, M.-B.1
Swanson, M.G.2
Keshari, K.R.3
Albers, M.J.4
Joun, D.5
-
70
-
-
84964619842
-
Differential glutamate metabolism in proliferating and quiescent mammary epithelial cells
-
Coloff JL, Murphy JP, Braun CR, Harris IS, Shelton LM, et al. 2016. Differential glutamate metabolism in proliferating and quiescent mammary epithelial cells. Cell Metab. 23: 867-80
-
(2016)
Cell Metab.
, vol.23
, pp. 867-880
-
-
Coloff, J.L.1
Murphy, J.P.2
Braun, C.R.3
Harris, I.S.4
Shelton, L.M.5
-
71
-
-
33751221961
-
The downregulation of asparagine synthetase expression can increase the sensitivity of cells resistant to L-asparaginase
-
Li BS, Gu LJ, Luo CY, Li WS, Jiang LM, et al. 2006. The downregulation of asparagine synthetase expression can increase the sensitivity of cells resistant to L-asparaginase. Leukemia 20: 2199-201
-
(2006)
Leukemia
, vol.20
, pp. 2199-2201
-
-
Li, B.S.1
Gu, L.J.2
Luo, C.Y.3
Li, W.S.4
Jiang, L.M.5
-
72
-
-
84888231872
-
Asparaginase unveils glutamine-addicted AML
-
Samudio I, Konopleva M. 2013. Asparaginase unveils glutamine-addicted AML. Blood 122: 3398-400
-
(2013)
Blood
, vol.122
, pp. 3398-3400
-
-
Samudio, I.1
Konopleva, M.2
-
73
-
-
84922270824
-
Asparagine plays a critical role in regulating cellular adaptation to glutamine depletion
-
Zhang J, Fan J, Venneti S, Cross JR, Takagi T, et al. 2014. Asparagine plays a critical role in regulating cellular adaptation to glutamine depletion. Mol. Cell 56: 205-18
-
(2014)
Mol. Cell
, vol.56
, pp. 205-218
-
-
Zhang, J.1
Fan, J.2
Venneti, S.3
Cross, J.R.4
Takagi, T.5
-
74
-
-
0021836855
-
Conversion of glutamate to ornithine and proline: Pyrroline-5-carboxylate, a possible modulator of arginine requirements
-
Jones ME. 1985. Conversion of glutamate to ornithine and proline: pyrroline-5-carboxylate, a possible modulator of arginine requirements. J. Nutr. 115: 509-15
-
(1985)
J. Nutr.
, vol.115
, pp. 509-515
-
-
Jones, M.E.1
-
75
-
-
79959852243
-
Polyamines mediate glutamine-dependent induction of the intestinal epithelial heat shock response
-
Iwashita Y, Sakiyama T, Musch MW, Ropeleski MJ, Tsubouchi H, Chang EB. 2011. Polyamines mediate glutamine-dependent induction of the intestinal epithelial heat shock response. Am. J. Physiol. Gastrointest. Liver Physiol. 301: G181-87
-
(2011)
Am. J. Physiol. Gastrointest. Liver Physiol.
, vol.301
, pp. G181-G187
-
-
Iwashita, Y.1
Sakiyama, T.2
Musch, M.W.3
Ropeleski, M.J.4
Tsubouchi, H.5
Chang, E.B.6
-
76
-
-
33845945135
-
NAD+ synthetase. How a two-domain, threesubstrate enzyme avoids waste
-
Wojcik M, Seidle HF, Bieganowski P, Brenner C. 2006. NAD+ synthetase. How a two-domain, threesubstrate enzyme avoids waste. J. Biol. Chem. 281: 33395-402
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 33395-33402
-
-
Wojcik, M.1
Seidle, H.F.2
Bieganowski, P.3
Brenner, C.4
-
77
-
-
0029971427
-
Inhibition of fatty acid synthesis delays disease progression in a xenograft model of ovarian cancer
-
Pizer ES, Wood FD, Heine HS, Romantsev FE, Pasternack GR, Kuhajda FP. 1996. Inhibition of fatty acid synthesis delays disease progression in a xenograft model of ovarian cancer. Cancer Res. 56: 1189-93
-
(1996)
Cancer Res.
, vol.56
, pp. 1189-1193
-
-
Pizer, E.S.1
Wood, F.D.2
Heine, H.S.3
Romantsev, F.E.4
Pasternack, G.R.5
Kuhajda, F.P.6
-
78
-
-
84856014884
-
Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia
-
Metallo CM, Gameiro PA, Bell EL, Mattaini KR, Yang J, et al. 2011. Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature 481: 380-84
-
(2011)
Nature
, vol.481
, pp. 380-384
-
-
Metallo, C.M.1
Gameiro, P.A.2
Bell, E.L.3
Mattaini, K.R.4
Yang, J.5
-
79
-
-
72049125350
-
Cancer-associated IDH1mutations produce 2-hydroxyglutarate
-
Dang L, WhiteDW, Gross S, Bennett BD, Bittinger MA, et al. 2009. Cancer-associated IDH1mutations produce 2-hydroxyglutarate. Nature 462: 739-44
-
(2009)
Nature
, vol.462
, pp. 739-744
-
-
Dang, L.1
White, D.W.2
Gross, S.3
Bennett, B.D.4
Bittinger, M.A.5
-
80
-
-
84964374713
-
Reductive carboxylation supports redox homeostasis during anchorage-independent growth
-
Jiang L, Shestov AA, Swain P, Yang C, Parker SJ, et al. 2016. Reductive carboxylation supports redox homeostasis during anchorage-independent growth. Nature 532: 255-58
-
(2016)
Nature
, vol.532
, pp. 255-258
-
-
Jiang, L.1
Shestov, A.A.2
Swain, P.3
Yang, C.4
Parker, S.J.5
-
81
-
-
84855987831
-
Reductive carboxylation supports growth in tumour cells with defective mitochondria
-
MullenAR, WheatonWW, JinES, Chen P-H, Sullivan LB, et al. 2011. Reductive carboxylation supports growth in tumour cells with defective mitochondria. Nature 481: 385-88
-
(2011)
Nature
, vol.481
, pp. 385-388
-
-
Mullen, A.R.1
Wheaton, W.W.2
Jin, E.S.3
Chen, P.-H.4
Sullivan, L.B.5
-
82
-
-
83755178091
-
Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of ketoglutarate to citrate to support cell growth and viability
-
Wise DR, Ward PS, Shay JES, Cross JR, Gruber JJ, et al. 2011. Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of ketoglutarate to citrate to support cell growth and viability. PNAS 108: 19611-16
-
(2011)
PNAS
, vol.108
, pp. 19611-19616
-
-
Wise, D.R.1
Ward, P.S.2
Shay, J.E.S.3
Cross, J.R.4
Gruber, J.J.5
-
83
-
-
84881329062
-
Reductive glutaminemetabolism is a function of the ketoglutarate to citrate ratio in cells
-
Fendt S-M, Bell EL, KeiblerMA, OlenchockBA, Mayers JR, et al. 2013. Reductive glutaminemetabolism is a function of the ketoglutarate to citrate ratio in cells. Nat. Commun. 4: 2236
-
(2013)
Nat. Commun.
, vol.4
, pp. 2236
-
-
Fendt, S.-M.1
Bell, E.L.2
Keibler, M.A.3
Olenchock, B.A.4
Mayers, J.R.5
-
84
-
-
84902343371
-
Oxidation of ketoglutarate is required for reductive carboxylation in cancer cells with mitochondrial defects
-
Mullen AR, Hu Z, Shi X, Jiang L, Boroughs LK, et al. 2014. Oxidation of ketoglutarate is required for reductive carboxylation in cancer cells with mitochondrial defects. Cell Rep. 7: 1679-90
-
(2014)
Cell Rep.
, vol.7
, pp. 1679-1690
-
-
Mullen, A.R.1
Hu, Z.2
Shi, X.3
Jiang, L.4
Boroughs, L.K.5
-
85
-
-
77952737658
-
Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity
-
Weinberg F, Hamanaka R, WheatonWW, Weinberg S, Joseph J, et al. 2010. Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. PNAS 107: 8788-93
-
(2010)
PNAS
, vol.107
, pp. 8788-8793
-
-
Weinberg, F.1
Hamanaka, R.2
Wheaton, W.W.3
Weinberg, S.4
Joseph, J.5
-
86
-
-
84861880210
-
Chromosomal instability and aneuploidy in cancer: From yeast to man
-
Pfau SJ, Amon A. 2012. Chromosomal instability and aneuploidy in cancer: from yeast to man. EMBO Rep. 13: 515-27
-
(2012)
EMBO Rep.
, vol.13
, pp. 515-527
-
-
Pfau, S.J.1
Amon, A.2
-
87
-
-
84902332213
-
Quantitative flux analysis reveals folate-dependent NADPH production
-
Fan J, Ye J, Kamphorst JJ, Shlomi T, Thompson CB, Rabinowitz JD. 2014. Quantitative flux analysis reveals folate-dependent NADPH production. Nature 510: 298-302
-
(2014)
Nature
, vol.510
, pp. 298-302
-
-
Fan, J.1
Ye, J.2
Kamphorst, J.J.3
Shlomi, T.4
Thompson, C.B.5
Rabinowitz, J.D.6
-
88
-
-
84860321700
-
OncogenicKrasmaintains pancreatic tumors through regulation of anabolic glucose metabolism
-
Ying H, Kimmelman AC, Lyssiotis CA, Hua S, ChuGC, et al. 2012. OncogenicKrasmaintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell 149: 656-70
-
(2012)
Cell
, vol.149
, pp. 656-670
-
-
Ying, H.1
Kimmelman, A.C.2
Lyssiotis, C.A.3
Hua, S.4
Chu, G.C.5
-
89
-
-
84915735656
-
Mitochondrial one-carbon metabolism maintains redox balance during hypoxia
-
Martnez-Reyes I, Chandel NS. 2014. Mitochondrial one-carbon metabolism maintains redox balance during hypoxia. Cancer Discov. 4: 1371-73
-
(2014)
Cancer Discov.
, vol.4
, pp. 1371-1373
-
-
Martnez-Reyes, I.1
Chandel, N.S.2
-
91
-
-
84866665390
-
Mitochondria and cancer
-
Wallace DC. 2012. Mitochondria and cancer. Nat. Rev. Cancer 12: 685-98
-
(2012)
Nat. Rev. Cancer
, vol.12
, pp. 685-698
-
-
Wallace, D.C.1
-
92
-
-
84863763440
-
AMPK regulates NADPH homeostasis to promote tumour cell survival during energy stress
-
Jeon S-M, Chandel NS, Hay N. 2012. AMPK regulates NADPH homeostasis to promote tumour cell survival during energy stress. Nature 485: 661-65
-
(2012)
Nature
, vol.485
, pp. 661-665
-
-
Jeon, S.-M.1
Chandel, N.S.2
Hay, N.3
-
93
-
-
84859031263
-
The oxidative stress-inducible cystine/glutamate antiporter, system xc : Cystine supplier and beyond
-
Conrad M, Sato H. 2012. The oxidative stress-inducible cystine/glutamate antiporter, system xc : cystine supplier and beyond. Amino Acids 42: 231-46
-
(2012)
Amino Acids
, vol.42
, pp. 231-246
-
-
Conrad, M.1
Sato, H.2
-
94
-
-
0037178786
-
MTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery
-
Kim D-H, Sarbassov DD, Ali SM, King JE, Latek RR, et al. 2002. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 110: 163-75
-
(2002)
Cell
, vol.110
, pp. 163-175
-
-
Kim, D.-H.1
Sarbassov, D.D.2
Ali, S.M.3
King, J.E.4
Latek, R.R.5
-
95
-
-
79959409830
-
Amino acid signaling in TOR activation
-
Kim J, Guan K-L. 2011. Amino acid signaling in TOR activation. Annu. Rev. Biochem. 80: 1001-32
-
(2011)
Annu. Rev. Biochem.
, vol.80
, pp. 1001-1032
-
-
Kim, J.1
Guan, K.-L.2
-
96
-
-
59049100116
-
An amino acid shuffle activates mTORC1
-
Cohen A, Hall MN. 2009. An amino acid shuffle activates mTORC1. Cell 136: 399-400
-
(2009)
Cell
, vol.136
, pp. 399-400
-
-
Cohen, A.1
Hall, M.N.2
-
97
-
-
59049087460
-
Bidirectional transport of amino acids regulates mTOR and autophagy
-
Nicklin P, Bergman P, Zhang B, Triantafellow E, Wang H, et al. 2009. Bidirectional transport of amino acids regulates mTOR and autophagy. Cell 136: 521-34
-
(2009)
Cell
, vol.136
, pp. 521-534
-
-
Nicklin, P.1
Bergman, P.2
Zhang, B.3
Triantafellow, E.4
Wang, H.5
-
98
-
-
59449108595
-
Deletion of glutamate dehydrogenase in cells abolishes part of the insulin secretory response not required for glucose homeostasis
-
Carobbio S, Frigerio F, Rubi B, Vetterli L, Bloksgaard M, et al. 2009. Deletion of glutamate dehydrogenase in cells abolishes part of the insulin secretory response not required for glucose homeostasis. J. Biol. Chem. 284: 921-29
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 921-929
-
-
Carobbio, S.1
Frigerio, F.2
Rubi, B.3
Vetterli, L.4
Bloksgaard, M.5
-
99
-
-
84864931233
-
Glutaminolysis activates Rag-mTORC1 signaling
-
Duran RV, Oppliger W, Robitaille AM, Heiserich L, Skendaj R, et al. 2012. Glutaminolysis activates Rag-mTORC1 signaling. Mol. Cell 47: 349-58
-
(2012)
Mol. Cell
, vol.47
, pp. 349-358
-
-
Duran, R.V.1
Oppliger, W.2
Robitaille, A.M.3
Heiserich, L.4
Skendaj, R.5
-
100
-
-
45849105156
-
The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1
-
Sancak Y, Peterson TR, Shaul YD, Lindquist RA, Thoreen CC, et al. 2008. The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 320: 1496-501
-
(2008)
Science
, vol.320
, pp. 1496-1501
-
-
Sancak, Y.1
Peterson, T.R.2
Shaul, Y.D.3
Lindquist, R.A.4
Thoreen, C.C.5
-
101
-
-
84872272443
-
Metabolic stress controls mTORC1 lysosomal localization and dimerization by regulating the TTT-RUVBL1/2 complex
-
Kim SG, Hoffman GR, Poulogiannis G, Buel GR, Jang YJ, et al. 2013. Metabolic stress controls mTORC1 lysosomal localization and dimerization by regulating the TTT-RUVBL1/2 complex. Mol. Cell 49: 172-85
-
(2013)
Mol. Cell
, vol.49
, pp. 172-185
-
-
Kim, S.G.1
Hoffman, G.R.2
Poulogiannis, G.3
Buel, G.R.4
Jang, Y.J.5
-
103
-
-
84876359638
-
Sirt4 has tumor-suppressive activity and regulates the cellular metabolic response to DNA damage by inhibiting mitochondrial glutamine metabolism
-
Jeong SM, Xiao C, Finley LWS, Lahusen T, Souza AL, et al. 2013. Sirt4 has tumor-suppressive activity and regulates the cellular metabolic response to DNA damage by inhibiting mitochondrial glutamine metabolism. Cancer Cell 23: 450-63
-
(2013)
Cancer Cell
, vol.23
, pp. 450-463
-
-
Jeong, S.M.1
Xiao, C.2
Finley, L.W.S.3
Lahusen, T.4
Souza, A.L.5
-
104
-
-
84923239727
-
Glutamine deprivation stimulates mTOR-JNK-dependent chemokine secretion
-
Shanware NP, Bray K, Eng CH, Wang F, Follettie M, et al. 2014. Glutamine deprivation stimulates mTOR-JNK-dependent chemokine secretion. Nat. Commun. 5: 4900
-
(2014)
Nat. Commun.
, vol.5
, pp. 4900
-
-
Shanware, N.P.1
Bray, K.2
Eng, C.H.3
Wang, F.4
Follettie, M.5
-
105
-
-
0034771851
-
Glutamine deprivation-mediated cell shrinkage induces ligand-independent CD95 receptor signaling and apoptosis
-
Fumarola C, Zerbini A, Guidotti GG. 2001. Glutamine deprivation-mediated cell shrinkage induces ligand-independent CD95 receptor signaling and apoptosis. Cell Death Differ. 8: 1004-13
-
(2001)
Cell Death Differ.
, vol.8
, pp. 1004-1013
-
-
Fumarola, C.1
Zerbini, A.2
Guidotti, G.G.3
-
106
-
-
34347402459
-
Deficiency in glutamine but not glucose induces MYC-dependent apoptosis in human cells
-
Yuneva M, Zamboni N, Oefner P, Sachidanandam R, Lazebnik Y. 2007. Deficiency in glutamine but not glucose induces MYC-dependent apoptosis in human cells. J. Cell Biol. 178: 93-105
-
(2007)
J. Cell Biol.
, vol.178
, pp. 93-105
-
-
Yuneva, M.1
Zamboni, N.2
Oefner, P.3
Sachidanandam, R.4
Lazebnik, Y.5
-
107
-
-
84894184722
-
Cisplatin induces a mitochondrial-ROS response that contributes to cytotoxicity depending on mitochondrial redox status and bioenergetic functions
-
Marullo R, Werner E, Degtyareva N, Moore B, Altavilla G, et al. 2013. Cisplatin induces a mitochondrial-ROS response that contributes to cytotoxicity depending on mitochondrial redox status and bioenergetic functions. PLOS ONE 8: e81162
-
(2013)
PLOS ONE
, vol.8
, pp. e81162
-
-
Marullo, R.1
Werner, E.2
Degtyareva, N.3
Moore, B.4
Altavilla, G.5
-
108
-
-
84859771379
-
Molecular mechanisms of cisplatin resistance
-
Galluzzi L, Senovilla L, Vitale I, Michels J, Martins I, et al. 2012. Molecular mechanisms of cisplatin resistance. Oncogene 31: 1869-83
-
(2012)
Oncogene
, vol.31
, pp. 1869-1883
-
-
Galluzzi, L.1
Senovilla, L.2
Vitale, I.3
Michels, J.4
Martins, I.5
-
109
-
-
84928037804
-
Glutathione depletion sensitizes cisplatin-and temozolomide-resistant glioma cells in vitro and in vivo
-
Rocha CRR, Garcia CCM, Vieira DB, Quinet A, de Andrade-Lima LC, et al. 2014. Glutathione depletion sensitizes cisplatin-and temozolomide-resistant glioma cells in vitro and in vivo. Cell Death Dis. 5: e1505
-
(2014)
Cell Death Dis.
, vol.5
, pp. e1505
-
-
Rocha, C.R.R.1
Garcia, C.C.M.2
Vieira, D.B.3
Quinet, A.4
De Andrade-Lima, L.C.5
-
110
-
-
84964637801
-
EffectorTcells abrogate stroma-mediated chemoresistance in ovarian cancer
-
WangW, Kryczek I, DostáL, MunkarahA, Liu JR, et al. 2016. EffectorTcells abrogate stroma-mediated chemoresistance in ovarian cancer. Cell 165: 1-14
-
(2016)
Cell
, vol.165
, pp. 1-14
-
-
Wang, W.1
Kryczek, I.2
Dostá, L.3
Munkarah, A.4
Liu, J.R.5
-
111
-
-
77956460390
-
Environmental control of invasiveness and metastatic dissemination of tumor cells: The role of tumor cell-host cell interactions
-
Calorini L, Bianchini F. 2010. Environmental control of invasiveness and metastatic dissemination of tumor cells: the role of tumor cell-host cell interactions. Cell Commun. Signal. 8: 24
-
(2010)
Cell Commun. Signal.
, vol.8
, pp. 24
-
-
Calorini, L.1
Bianchini, F.2
-
112
-
-
84920616812
-
PGC-1mediates mitochondrial biogenesis and oxidative phosphorylation in cancer cells to promote metastasis
-
LeBleu VS, O'Connell JT, Gonzalez Herrera KN, Wikman H, Pantel K, et al. 2014. PGC-1mediates mitochondrial biogenesis and oxidative phosphorylation in cancer cells to promote metastasis. Nat. Cell Biol. 16: 992-1003
-
(2014)
Nat. Cell Biol.
, vol.16
, pp. 992-1003
-
-
LeBleu, V.S.1
O'Connell, J.T.2
Gonzalez Herrera, K.N.3
Wikman, H.4
Pantel, K.5
-
113
-
-
84874635096
-
Mitochondrial complex i activity and NAD+/NADH balance regulate breast cancer progression
-
Santidrian AF, Matsuno-Yagi A, Ritland M, Seo BB, LeBoeuf SE, et al. 2013. Mitochondrial complex I activity and NAD+/NADH balance regulate breast cancer progression. J. Clin. Investig. 123: 1068-81
-
(2013)
J. Clin. Investig.
, vol.123
, pp. 1068-1081
-
-
Santidrian, A.F.1
Matsuno-Yagi, A.2
Ritland, M.3
Seo, B.B.4
LeBoeuf, S.E.5
-
114
-
-
84929402212
-
Glutamate dehydrogenase is a novel prognostic marker and predicts metastases in colorectal cancer patients
-
Liu G, Zhu J, Yu M, Cai C, Zhou Y, et al. 2015. Glutamate dehydrogenase is a novel prognostic marker and predicts metastases in colorectal cancer patients. J. Transl. Med. 13: 144
-
(2015)
J. Transl. Med.
, vol.13
, pp. 144
-
-
Liu, G.1
Zhu, J.2
Yu, M.3
Cai, C.4
Zhou, Y.5
-
115
-
-
52949127312
-
An integrated genomic analysis of human glioblastoma multiforme
-
Parsons DW, Jones S, Zhang X, Lin JC-H, Leary RJ, et al. 2008. An integrated genomic analysis of human glioblastoma multiforme. Science 321: 1807-12
-
(2008)
Science
, vol.321
, pp. 1807-1812
-
-
Parsons, D.W.1
Jones, S.2
Zhang, X.3
Jc-H, L.4
Leary, R.J.5
-
116
-
-
60849115270
-
IDH1 and IDH2 mutations in gliomas
-
Yan H, Parsons DW, Jin G, McLendon R, Rasheed BA, et al. 2009. IDH1 and IDH2 mutations in gliomas. N. Engl. J. Med. 360: 765-73
-
(2009)
N. Engl. J. Med.
, vol.360
, pp. 765-773
-
-
Yan, H.1
Parsons, D.W.2
Jin, G.3
McLendon, R.4
Rasheed, B.A.5
-
117
-
-
77649305610
-
The common feature of leukemiaassociated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting ketoglutarate to 2-hydroxyglutarate
-
Ward PS, Patel J, Wise DR, Abdel-WahabO, Bennett BD, et al. 2010. The common feature of leukemiaassociated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting ketoglutarate to 2-hydroxyglutarate. Cancer Cell 17: 225-34
-
(2010)
Cancer Cell
, vol.17
, pp. 225-234
-
-
Ward, P.S.1
Patel, J.2
Wise, D.R.3
Abdel-Wahab, O.4
Bennett, B.D.5
-
118
-
-
78651463452
-
Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of ketoglutarate-dependent dioxygenases
-
Xu W, Yang H, Liu Y, Yang Y, Wang P, et al. 2011. Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of ketoglutarate-dependent dioxygenases. Cancer Cell 19: 17-30
-
(2011)
Cancer Cell
, vol.19
, pp. 17-30
-
-
Xu, W.1
Yang, H.2
Liu, Y.3
Yang, Y.4
Wang, P.5
-
119
-
-
84925503908
-
Intracellular ketoglutarate maintains the pluripotency of embryonic stem cells
-
Carey BW, Finley LWS, Cross JR, Allis CD, Thompson CB. 2014. Intracellular ketoglutarate maintains the pluripotency of embryonic stem cells. Nature 518: 413-16
-
(2014)
Nature
, vol.518
, pp. 413-416
-
-
Carey, B.W.1
Finley, L.W.S.2
Cross, J.R.3
Allis, C.D.4
Thompson, C.B.5
-
120
-
-
78651082042
-
Defects in succinate dehydrogenase in gastrointestinal stromal tumors lacking KIT and PDGFRA mutations
-
Janeway KA, Kim SY, Lodish M, Nosé V, Rustin P, et al. 2011. Defects in succinate dehydrogenase in gastrointestinal stromal tumors lacking KIT and PDGFRA mutations. PNAS 108: 314-18
-
(2011)
PNAS
, vol.108
, pp. 314-318
-
-
Janeway, K.A.1
Kim, S.Y.2
Lodish, M.3
Nosé, V.4
Rustin, P.5
-
121
-
-
84862632865
-
Inhibition of KG-dependent histone and DNA demethylases by fumarate and succinate that are accumulated in mutations of FH and SDH tumor suppressors
-
Xiao M, Yang H, Xu W, Ma S, Lin H, et al. 2012. Inhibition of KG-dependent histone and DNA demethylases by fumarate and succinate that are accumulated in mutations of FH and SDH tumor suppressors. Genes Dev. 26: 1326-38
-
(2012)
Genes Dev.
, vol.26
, pp. 1326-1338
-
-
Xiao, M.1
Yang, H.2
Xu, W.3
Ma, S.4
Lin, H.5
-
122
-
-
84938568011
-
Hypoxia induces production of L-2-hydroxyglutarate
-
Intlekofer AM, Dematteo RG, Venneti S, Finley LWS, Lu C, et al. 2015. Hypoxia induces production of L-2-hydroxyglutarate. Cell Metab. 22: 304-11
-
(2015)
Cell Metab.
, vol.22
, pp. 304-311
-
-
Intlekofer, A.M.1
Dematteo, R.G.2
Venneti, S.3
Finley, L.W.S.4
Lu, C.5
-
123
-
-
84938599103
-
Hypoxia-mediated increases in L-2-hydroxyglutarate coordinate the metabolic response to reductive stress
-
Oldham WM, Clish CB, Yang Y, Loscalzo J. 2015. Hypoxia-mediated increases in L-2-hydroxyglutarate coordinate the metabolic response to reductive stress. Cell Metab. 22: 291-303
-
(2015)
Cell Metab.
, vol.22
, pp. 291-303
-
-
Oldham, W.M.1
Clish, C.B.2
Yang, Y.3
Loscalzo, J.4
-
124
-
-
84989882540
-
Cerebral blood flow in small vessel disease: A systematic review and meta-analysis
-
Shi Y, Thrippleton MJ, Makin SD, Marshall I, Geerlings MI, et al. 2016. Cerebral blood flow in small vessel disease: a systematic review and meta-analysis. J. Cereb. Blood Flow Metab. 36: 1653-67
-
(2016)
J. Cereb. Blood Flow Metab.
, vol.36
, pp. 1653-1667
-
-
Shi, Y.1
Thrippleton, M.J.2
Makin, S.D.3
Marshall, I.4
Geerlings, M.I.5
-
125
-
-
0029160069
-
Protein kinase B (c-Akt) in phosphatidylinositol-3-OH kinase signal transduction
-
Burgering BM, Coffer PJ. 1995. Protein kinase B (c-Akt) in phosphatidylinositol-3-OH kinase signal transduction. Nature 376: 599-602
-
(1995)
Nature
, vol.376
, pp. 599-602
-
-
Burgering, B.M.1
Coffer, P.J.2
-
126
-
-
0032578999
-
Protein kinase B kinases that mediate phosphatidylinositol 3, 4, 5-trisphosphate-dependent activation of protein kinase B
-
Stephens L, Anderson K, Stokoe D, Erdjument-Bromage H, Painter GF, et al. 1998. Protein kinase B kinases that mediate phosphatidylinositol 3, 4, 5-trisphosphate-dependent activation of protein kinase B. Science 279: 710-14
-
(1998)
Science
, vol.279
, pp. 710-714
-
-
Stephens, L.1
Anderson, K.2
Stokoe, D.3
Erdjument-Bromage, H.4
Painter, G.F.5
-
127
-
-
84864878724
-
Modulation of glutamine metabolism by the PI(3)K-PKB-FOXO network regulates autophagy
-
van der Vos KE, Eliasson P, Proikas-Cezanne T, Vervoort SJ, van Boxtel R, et al. 2012. Modulation of glutamine metabolism by the PI(3)K-PKB-FOXO network regulates autophagy. Nat. Cell Biol. 14: 829-37
-
(2012)
Nat. Cell Biol.
, vol.14
, pp. 829-837
-
-
Van Der Vos, K.E.1
Eliasson, P.2
Proikas-Cezanne, T.3
Vervoort, S.J.4
Van Boxtel, R.5
-
128
-
-
84951070852
-
OncogenicMyc induces expression of glutamine synthetase through promoter demethylation
-
Bott AJ, Peng I-C, Fan Y, Faubert B, Zhao L, et al. 2015. OncogenicMyc induces expression of glutamine synthetase through promoter demethylation. Cell Metab. 22: 1068-77
-
(2015)
Cell Metab.
, vol.22
, pp. 1068-1077
-
-
Bott, A.J.1
Peng, I.-C.2
Fan, Y.3
Faubert, B.4
Zhao, L.5
-
129
-
-
80052338863
-
Glutamine synthetase is a genetic determinant of cell type-specific glutamine independence in breast epithelia
-
Kung H-N, Marks JR, Chi J-T. 2011. Glutamine synthetase is a genetic determinant of cell type-specific glutamine independence in breast epithelia. PLOS Genet. 7: e1002229
-
(2011)
PLOS Genet.
, vol.7
, pp. e1002229
-
-
Kung, H.-N.1
Marks, J.R.2
Chi, J.-T.3
-
130
-
-
33845924783
-
AMP-activated protein kinase and the regulation of autophagic proteolysis
-
MeleyD, Bauvy C, Houben-Weerts JHPM, Dubbelhuis PF, HelmondMTJ, et al. 2006. AMP-activated protein kinase and the regulation of autophagic proteolysis. J. Biol. Chem. 281: 34870-79
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 34870-34879
-
-
Meley, D.1
Bauvy, C.2
Houben-Weerts, J.H.P.M.3
Dubbelhuis, P.F.4
Helmond, M.T.J.5
-
131
-
-
84920415711
-
The role for autophagy in cancer
-
White E. 2015. The role for autophagy in cancer. J. Clin. Investig. 125: 42-46
-
(2015)
J. Clin. Investig.
, vol.125
, pp. 42-46
-
-
White, E.1
-
132
-
-
84920407208
-
Development of autophagy inducers in clinical medicine
-
Levine B, Packer M, Codogno P. 2015. Development of autophagy inducers in clinical medicine. J. Clin. Investig. 12514-24
-
(2015)
J. Clin. Investig.
, pp. 12514-12524
-
-
Levine, B.1
Packer, M.2
Codogno, P.3
-
133
-
-
84885350394
-
Autophagy sustains mitochondrial glutaminemetabolism and growth of BRAFV600E-driven lung tumors
-
Strohecker AM, Guo JY, Karsli-Uzunbas G, Price SM, Chen GJ, et al. 2013. Autophagy sustains mitochondrial glutaminemetabolism and growth of BRAFV600E-driven lung tumors. Cancer Discov. 3: 1272-85
-
(2013)
Cancer Discov.
, vol.3
, pp. 1272-1285
-
-
Strohecker, A.M.1
Guo, J.Y.2
Karsli-Uzunbas, G.3
Price, S.M.4
Chen, G.J.5
-
134
-
-
84878464291
-
Hypoxic and Ras-transformed cells support growth by scavenging unsaturated fatty acids from lysophospholipids
-
Kamphorst JJ, Cross JR, Fan J, de Stanchina E, Mathew R, et al. 2013. Hypoxic and Ras-transformed cells support growth by scavenging unsaturated fatty acids from lysophospholipids. PNAS 110: 8882-87
-
(2013)
PNAS
, vol.110
, pp. 8882-8887
-
-
Kamphorst, J.J.1
Cross, J.R.2
Fan, J.3
De Stanchina, E.4
Mathew, R.5
-
135
-
-
84878396462
-
Macropinocytosis of protein is an amino acid supply route in Ras-transformed cells
-
Commisso C, Davidson SM, Soydaner-Azeloglu RG, Parker SJ, Kamphorst JJ, et al. 2013. Macropinocytosis of protein is an amino acid supply route in Ras-transformed cells. Nature 497: 633-37
-
(2013)
Nature
, vol.497
, pp. 633-637
-
-
Commisso, C.1
Davidson, S.M.2
Soydaner-Azeloglu, R.G.3
Parker, S.J.4
Kamphorst, J.J.5
-
136
-
-
84964445423
-
Tumor microenvironment derived exosomes pleiotropically modulate cancer cell metabolism
-
Zhao H, Yang L, Baddour J, Achreja A, Bernard V, et al. 2016. Tumor microenvironment derived exosomes pleiotropically modulate cancer cell metabolism. eLife 5: e10250
-
(2016)
ELife
, vol.5
, pp. e10250
-
-
Zhao, H.1
Yang, L.2
Baddour, J.3
Achreja, A.4
Bernard, V.5
-
137
-
-
84858590826
-
Accessories to the crime: Functions of cells recruited to the tumor microenvironment
-
Hanahan D, Coussens LM. 2012. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 21: 309-22
-
(2012)
Cancer Cell
, vol.21
, pp. 309-322
-
-
Hanahan, D.1
Coussens, L.M.2
-
138
-
-
84897544161
-
Catabolic cancer-associated fibroblasts transfer energy and biomass to anabolic cancer cells, fueling tumor growth
-
Martinez-Outschoorn UE, Lisanti MP, Sotgia F. 2014. Catabolic cancer-associated fibroblasts transfer energy and biomass to anabolic cancer cells, fueling tumor growth. Semin. Cancer Biol. 25: 47-60
-
(2014)
Semin. Cancer Biol.
, vol.25
, pp. 47-60
-
-
Martinez-Outschoorn, U.E.1
Lisanti, M.P.2
Sotgia, F.3
-
139
-
-
84883575585
-
Oncogenes induce the cancer-associated fibroblast phenotype: Metabolic symbiosis and "fibroblast addiction" are new therapeutic targets for drug discovery
-
Lisanti MP, Martinez-Outschoorn UE, Sotgia F. 2013. Oncogenes induce the cancer-associated fibroblast phenotype: Metabolic symbiosis and "fibroblast addiction" are new therapeutic targets for drug discovery. Cell Cycle 12: 2723-32
-
(2013)
Cell Cycle
, vol.12
, pp. 2723-2732
-
-
Lisanti, M.P.1
Martinez-Outschoorn, U.E.2
Sotgia, F.3
-
140
-
-
84994680371
-
Targeting stromal glutamine synthetase in tumors disrupts tumor microenvironment-regulated cancer cell growth
-
Yang L, Achreja A, Yeung TL, Mangala LS, JiangD, et al. 2016. Targeting stromal glutamine synthetase in tumors disrupts tumor microenvironment-regulated cancer cell growth. Cell Metab. 24: 685-700
-
(2016)
Cell Metab.
, vol.24
, pp. 685-700
-
-
Yang, L.1
Achreja, A.2
Yeung, T.L.3
Mangala, L.S.4
Jiang, D.5
-
141
-
-
20244376908
-
Progress and promise of FDG-PET imaging for cancer patient management and oncologic drug development
-
Kelloff GJ, Hoffman JM, Johnson B, ScherHI, Siegel BA, et al. 2005. Progress and promise of FDG-PET imaging for cancer patient management and oncologic drug development. Clin. Cancer Res. 11: 2785-808
-
(2005)
Clin. Cancer Res.
, vol.11
, pp. 2785-2808
-
-
Kelloff, G.J.1
Hoffman, J.M.2
Johnson, B.3
Scher, H.I.4
Siegel, B.A.5
-
142
-
-
0021798805
-
Prediction of survival in glioma patients by means of positron emission tomography
-
Patronas NJ, Di Chiro G, Kufta C, Bairamian D, Kornblith PL, et al. 1985. Prediction of survival in glioma patients by means of positron emission tomography. J. Neurosurg. 62: 816-22
-
(1985)
J. Neurosurg.
, vol.62
, pp. 816-822
-
-
Patronas, N.J.1
Di Chiro, G.2
Kufta, C.3
Bairamian, D.4
Kornblith, P.L.5
-
143
-
-
84885759123
-
Prognostic significance of 2-hydroxyglutarate levels in acute myeloid leukemia in China
-
Wang J-H, Chen W-L, Li J-M, Wu S-F, Chen T-L, et al. 2013. Prognostic significance of 2-hydroxyglutarate levels in acute myeloid leukemia in China. PNAS 110: 17017-22
-
(2013)
PNAS
, vol.110
, pp. 17017-17022
-
-
Wang, J.-H.1
Chen, W.-L.2
Li, J.-M.3
Wu, S.-F.4
Chen, T.-L.5
-
144
-
-
83755168277
-
PET imaging of glutaminolysis in tumors by 18F-(2S, 4R)4-fluoroglutamine
-
Lieberman BP, Ploessl K, Wang L, Qu W, Zha Z, et al. 2011. PET imaging of glutaminolysis in tumors by 18F-(2S, 4R)4-fluoroglutamine. J. Nucl. Med. 52: 1947-55
-
(2011)
J. Nucl. Med.
, vol.52
, pp. 1947-1955
-
-
Lieberman, B.P.1
Ploessl, K.2
Wang, L.3
Qu, W.4
Zha, Z.5
-
145
-
-
79851483342
-
Synthesis of optically pure 4-fluoroglutamines as potential metabolic imaging agents for tumors
-
Qu W, Zha Z, Ploessl K, Lieberman BP, Zhu L, et al. 2011. Synthesis of optically pure 4-fluoroglutamines as potential metabolic imaging agents for tumors. J. Am. Chem. Soc. 133: 1122-33
-
(2011)
J. Am. Chem. Soc.
, vol.133
, pp. 1122-1133
-
-
Qu, W.1
Zha, Z.2
Ploessl, K.3
Lieberman, B.P.4
Zhu, L.5
-
146
-
-
84922634886
-
[18F](2S, 4S)-4-(3-Fluoropropyl)glutamine as a tumor imaging agent
-
Wu Z, Zha Z, Li G, Lieberman BP, Choi SR, et al. 2014. [18F](2S, 4S)-4-(3-Fluoropropyl)glutamine as a tumor imaging agent. Mol. Pharm. 11: 3852-66
-
(2014)
Mol. Pharm.
, vol.11
, pp. 3852-3866
-
-
Wu, Z.1
Zha, Z.2
Li, G.3
Lieberman, B.P.4
Choi, S.R.5
-
147
-
-
84926661140
-
Glutamine-based PET imaging facilitates enhanced metabolic evaluation of gliomas in vivo
-
Venneti S, Dunphy MP, Zhang H, Pitter KL, Zanzonico P, et al. 2015. Glutamine-based PET imaging facilitates enhanced metabolic evaluation of gliomas in vivo. Sci. Transl. Med. 7: 274ra17
-
(2015)
Sci. Transl. Med.
, vol.7
, pp. 274ra17
-
-
Venneti, S.1
Dunphy, M.P.2
Zhang, H.3
Pitter, K.L.4
Zanzonico, P.5
-
148
-
-
84867036906
-
Comparative evaluation of 18F-labeled glutamic acid and glutamine as tumor metabolic imaging agents
-
Ploessl K, Wang L, Lieberman BP, Qu W, Kung HF. 2012. Comparative evaluation of 18F-labeled glutamic acid and glutamine as tumor metabolic imaging agents. J. Nucl. Med. 53: 1616-24
-
(2012)
J. Nucl. Med.
, vol.53
, pp. 1616-1624
-
-
Ploessl, K.1
Wang, L.2
Lieberman, B.P.3
Qu, W.4
Kung, H.F.5
-
149
-
-
79952154676
-
Metabolic tumor imaging using magnetic resonance spectroscopy
-
Glunde K, Bhujwalla ZM. 2011. Metabolic tumor imaging using magnetic resonance spectroscopy. Semin. Oncol. 38: 26-41
-
(2011)
Semin. Oncol.
, vol.38
, pp. 26-41
-
-
Glunde, K.1
Bhujwalla, Z.M.2
-
152
-
-
74049134924
-
Role of proton magnetic resonance spectroscopy in differentiating oligodendrogliomas from astrocytomas
-
Chawla S, Oleaga L, Wang S, Krejza J, Wolf RL, et al. 2010. Role of proton magnetic resonance spectroscopy in differentiating oligodendrogliomas from astrocytomas. J. Neuroimaging 20: 3-8
-
(2010)
J. Neuroimaging
, vol.20
, pp. 3-8
-
-
Chawla, S.1
Oleaga, L.2
Wang, S.3
Krejza, J.4
Wolf, R.L.5
-
153
-
-
35349022542
-
Arterial spin-labeling and MR spectroscopy in the differentiation of gliomas
-
Chawla S, Wang S, Wolf RL, Woo JH, Wang J, et al. 2007. Arterial spin-labeling and MR spectroscopy in the differentiation of gliomas. Am. J. Neuroradiol. 28: 1683-89
-
(2007)
Am. J. Neuroradiol.
, vol.28
, pp. 1683-1689
-
-
Chawla, S.1
Wang, S.2
Wolf, R.L.3
Woo, J.H.4
Wang, J.5
-
154
-
-
16644397087
-
Brain tumor classification by proton MR spectroscopy: Comparison of diagnostic accuracy at short and long TE
-
Majós C, Julià-Sapé M, Alonso J, Serrallonga M, Aguilera C, et al. 2004. Brain tumor classification by proton MR spectroscopy: comparison of diagnostic accuracy at short and long TE. Am. J. Neuroradiol. 25: 1696-704
-
(2004)
Am. J. Neuroradiol.
, vol.25
, pp. 1696-1704
-
-
Majós, C.1
Julià-Sapé, M.2
Alonso, J.3
Serrallonga, M.4
Aguilera, C.5
-
155
-
-
84964314980
-
Noninvasive detection of glutamate predicts survival in pediatric medulloblastoma
-
Wilson M, Gill SK, MacPherson L, EnglishM, Arvanitis TN, Peet AC. 2014. Noninvasive detection of glutamate predicts survival in pediatric medulloblastoma. Clin. Cancer Res. 20: 4532-39
-
(2014)
Clin. Cancer Res.
, vol.20
, pp. 4532-4539
-
-
Wilson, M.1
Gill, S.K.2
MacPherson, L.3
English, M.4
Arvanitis, T.N.5
Peet, A.C.6
-
156
-
-
84923596826
-
A roadmap for interpreting 13C metabolite labeling patterns from cells
-
Buescher JM, Antoniewicz MR, Boros LG, Burgess SC, Brunengraber H, et al. 2015. A roadmap for interpreting 13C metabolite labeling patterns from cells. Curr. Opin. Biotechnol. 34: 189-201
-
(2015)
Curr. Opin. Biotechnol.
, vol.34
, pp. 189-201
-
-
Buescher, J.M.1
Antoniewicz, M.R.2
Boros, L.G.3
Burgess, S.C.4
Brunengraber, H.5
-
157
-
-
84863011452
-
The metabolic profile of tumors depends on both the responsible genetic lesion and tissue type
-
Yuneva MO, Fan TWM, Allen TD, Higashi RM, Ferraris DV, et al. 2012. The metabolic profile of tumors depends on both the responsible genetic lesion and tissue type. Cell Metab. 15: 157-70
-
(2012)
Cell Metab.
, vol.15
, pp. 157-170
-
-
Yuneva, M.O.1
Fan, T.W.M.2
Allen, T.D.3
Higashi, R.M.4
Ferraris, D.V.5
-
158
-
-
84862016091
-
Analysis of tumor metabolism reveals mitochondrial glucose oxidation in genetically diverse human glioblastomas in the mouse brain in vivo
-
Marin-Valencia I, Yang C, MashimoT, Cho S, Baek H, et al. 2012. Analysis of tumor metabolism reveals mitochondrial glucose oxidation in genetically diverse human glioblastomas in the mouse brain in vivo. Cell Metab. 15: 827-37
-
(2012)
Cell Metab.
, vol.15
, pp. 827-837
-
-
Marin-Valencia, I.1
Yang, C.2
Mashimo, T.3
Cho, S.4
Baek, H.5
-
159
-
-
84919903877
-
Acetate is a bioenergetic substrate for human glioblastoma and brain metastases
-
Mashimo T, Pichumani K, Vemireddy V, Hatanpaa KJ, Singh DK, et al. 2014. Acetate is a bioenergetic substrate for human glioblastoma and brain metastases. Cell 159: 1603-14
-
(2014)
Cell
, vol.159
, pp. 1603-1614
-
-
Mashimo, T.1
Pichumani, K.2
Vemireddy, V.3
Hatanpaa, K.J.4
Singh, D.K.5
-
160
-
-
84958138936
-
Environment impacts the metabolic dependencies of Ras-driven non-small-cell lung cancer
-
Davidson SM, Papagiannakopoulos T, OlenchockBA, HeymanJE, KeiblerMA, et al. 2016. Environment impacts the metabolic dependencies of Ras-driven non-small-cell lung cancer. Cell Metab. 23: 517-28
-
(2016)
Cell Metab.
, vol.23
, pp. 517-528
-
-
Davidson, S.M.1
Papagiannakopoulos, T.2
Olenchock, B.A.3
Heyman, J.E.4
Keibler, M.A.5
-
161
-
-
84948701108
-
Glutamine synthetase activity fuels nucleotide biosynthesis and supports growth of glutamine-restricted glioblastoma
-
Tardito S, Oudin A, Ahmed SU, Fack F, Keunen O, et al. 2015. Glutamine synthetase activity fuels nucleotide biosynthesis and supports growth of glutamine-restricted glioblastoma. Nat. Cell Biol. 17: 1556-68
-
(2015)
Nat. Cell Biol.
, vol.17
, pp. 1556-1568
-
-
Tardito, S.1
Oudin, A.2
Ahmed, S.U.3
Fack, F.4
Keunen, O.5
-
162
-
-
84883879044
-
Metabolic imaging of patients with prostate cancer using hyperpolarized [1-13C]pyruvate
-
Nelson SJ, Kurhanewicz J, Vigneron DB, Larson PEZ, Harzstark AL, et al. 2013. Metabolic imaging of patients with prostate cancer using hyperpolarized [1-13C]pyruvate. Sci. Transl. Med. 5: 198ra108
-
(2013)
Sci. Transl. Med.
, vol.5
, pp. 198ra108
-
-
Nelson, S.J.1
Kurhanewicz, J.2
Vigneron, D.B.3
Larson, P.E.Z.4
Harzstark, A.L.5
-
163
-
-
84907487069
-
Hyperpolarized 13C MR for molecular imaging of prostate cancer
-
Wilson DM, Kurhanewicz J. 2014. Hyperpolarized 13C MR for molecular imaging of prostate cancer. J. Nucl. Med. 55: 1567-72
-
(2014)
J. Nucl. Med.
, vol.55
, pp. 1567-1572
-
-
Wilson, D.M.1
Kurhanewicz, J.2
-
164
-
-
0042763165
-
Increase in signal-tonoise ratio of >10, 000 times in liquid-state NMR
-
Ardenkjaer-Larsen JH, Fridlund B, Gram A, Hansson G, Hansson L, et al. 2003. Increase in signal-tonoise ratio of >10, 000 times in liquid-state NMR. PNAS 100: 10158-63
-
(2003)
PNAS
, vol.100
, pp. 10158-10163
-
-
Ardenkjaer-Larsen, J.H.1
Fridlund, B.2
Gram, A.3
Hansson, G.4
Hansson, L.5
-
165
-
-
49049096675
-
13C MR spectroscopy measurements of glutaminase activity in human hepatocellular carcinoma cells using hyperpolarized 13C-labeled glutamine
-
Gallagher FA, Kettunen MI, Day SE, Lerche M, Brindle KM. 2008. 13C MR spectroscopy measurements of glutaminase activity in human hepatocellular carcinoma cells using hyperpolarized 13C-labeled glutamine. Magn. Reson. Med. 60: 253-57
-
(2008)
Magn. Reson. Med.
, vol.60
, pp. 253-257
-
-
Gallagher, F.A.1
Kettunen, M.I.2
Day, S.E.3
Lerche, M.4
Brindle, K.M.5
-
166
-
-
84885597727
-
In vivo and in vitro liver cancer metabolism observed with hyperpolarized [5-13C]glutamine
-
Cabella C, KarlssonM, Canapè C, Catanzaro G, Colombo Serra S, et al. 2013. In vivo and in vitro liver cancer metabolism observed with hyperpolarized [5-13C]glutamine. J. Magn. Reson. 232: 45-52
-
(2013)
J. Magn. Reson.
, vol.232
, pp. 45-52
-
-
Cabella, C.1
Karlsson, M.2
Canapè, C.3
Catanzaro, G.4
Colombo Serra, S.5
-
167
-
-
80053237267
-
Exchange facilitated indirect detection of hyperpolarized 15ND2-amido-glutamine
-
Barb AW, Hekmatyar SK, Glushka JN, Prestegard JH. 2011. Exchange facilitated indirect detection of hyperpolarized 15ND2-amido-glutamine. J. Magn. Reson. 212: 304-10
-
(2011)
J. Magn. Reson.
, vol.212
, pp. 304-310
-
-
Barb, A.W.1
Hekmatyar, S.K.2
Glushka, J.N.3
Prestegard, J.H.4
-
168
-
-
84873363313
-
SLC1A5 mediates glutamine transport required for lung cancer cell growth and survival
-
Hassanein M, Hoeksema MD, Shiota M, Qian J, Harris BK, et al. 2013. SLC1A5 mediates glutamine transport required for lung cancer cell growth and survival. Clin. Cancer Res. 19: 560-70
-
(2013)
Clin. Cancer Res.
, vol.19
, pp. 560-570
-
-
Hassanein, M.1
Hoeksema, M.D.2
Shiota, M.3
Qian, J.4
Harris, B.K.5
-
169
-
-
84943399154
-
Targeting SLC1A5-mediated glutamine dependence in non-small-cell lung cancer
-
Hassanein M, Qian J, Hoeksema MD, Wang J, JacobovitzM, et al. 2015. Targeting SLC1A5-mediated glutamine dependence in non-small-cell lung cancer. Int. J. Cancer 137: 1587-97
-
(2015)
Int. J. Cancer
, vol.137
, pp. 1587-1597
-
-
Hassanein, M.1
Qian, J.2
Hoeksema, M.D.3
Wang, J.4
Jacobovitz, M.5
-
170
-
-
34548789512
-
Novel mechanism of inhibition of rat kidney-type glutaminase by bis-2-(5-phenylacetamido-1, 2, 4-thiadiazol-2-yl)ethyl sulfide (BPTES)
-
Robinson MM, McBryant SJ, Tsukamoto T, Rojas C, Ferraris DV, et al. 2007. Novel mechanism of inhibition of rat kidney-type glutaminase by bis-2-(5-phenylacetamido-1, 2, 4-thiadiazol-2-yl)ethyl sulfide (BPTES). Biochem. J. 406: 407-14
-
(2007)
Biochem. J.
, vol.406
, pp. 407-414
-
-
Robinson, M.M.1
McBryant, S.J.2
Tsukamoto, T.3
Rojas, C.4
Ferraris, D.V.5
-
171
-
-
84904645105
-
Antitumor activity of the glutaminase inhibitor CB-839 in triple-negative breast cancer
-
Gross MI, Demo SD, Dennison JB, Chen L, Chernov-Rogan T, et al. 2014. Antitumor activity of the glutaminase inhibitor CB-839 in triple-negative breast cancer. Mol. Cancer Ther. 13: 890-901
-
(2014)
Mol. Cancer Ther.
, vol.13
, pp. 890-901
-
-
Gross, M.I.1
Demo, S.D.2
Dennison, J.B.3
Chen, L.4
Chernov-Rogan, T.5
-
172
-
-
77956497712
-
Targeting mitochondrial glutaminase activity inhibits oncogenic transformation
-
Wang J-B, Erickson JW, Fuji R, Ramachandran S, Gao P, et al. 2010. Targeting mitochondrial glutaminase activity inhibits oncogenic transformation. Cancer Cell 18: 207-19
-
(2010)
Cancer Cell
, vol.18
, pp. 207-219
-
-
Wang, J.-B.1
Erickson, J.W.2
Fuji, R.3
Ramachandran, S.4
Gao, P.5
-
174
-
-
33744527647
-
Green tea polyphenols modulate insulin secretion by inhibiting glutamate dehydrogenase
-
Li C, Allen A, Kwagh J, Doliba NM, Qin W, et al. 2006. Green tea polyphenols modulate insulin secretion by inhibiting glutamate dehydrogenase. J. Biol. Chem. 281: 10214-21
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 10214-10221
-
-
Li, C.1
Allen, A.2
Kwagh, J.3
Doliba, N.M.4
Qin, W.5
-
175
-
-
84942849765
-
Targeting glutamine metabolism in breast cancer with aminooxyacetate
-
Korangath P, TeoWW, SadikH, Han L, Mori N, et al. 2015. Targeting glutamine metabolism in breast cancer with aminooxyacetate. Clin. Cancer Res. 3263-73
-
(2015)
Clin. Cancer Res.
, pp. 3263-3273
-
-
Korangath, P.1
Teo, W.W.2
Sadik, H.3
Han, L.4
Mori, N.5
-
176
-
-
78651010566
-
Temporary remissions in acute leukemia in children produced by folic acid antagonist, 4-aminopteroyl-glutamic acid (aminopterin)
-
Farber S, Diamond LK, Mercer RD, Sylvester RFJ, Wolff JA. 1948. Temporary remissions in acute leukemia in children produced by folic acid antagonist, 4-aminopteroyl-glutamic acid (aminopterin). N. Engl. J. Med. 238: 787-93
-
(1948)
N. Engl. J. Med.
, vol.238
, pp. 787-793
-
-
Farber, S.1
Diamond, L.K.2
Mercer, R.D.3
Sylvester, R.F.J.4
Wolff, J.A.5
|