메뉴 건너뛰기




Volumn 19, Issue , 2017, Pages 163-194

Glutaminolysis: A Hallmark of Cancer Metabolism

Author keywords

Biosynthesis; Cancer; Global methylation; Glutaminolysis; Metabolic imaging; Metastasis; PET imaging; Proliferation; Tumor microenvironment

Indexed keywords

ALKYLATION; AMINO ACIDS; BIOCHEMISTRY; BIOSYNTHESIS; CELL SIGNALING; CYTOLOGY; DISEASES; FATTY ACIDS; METABOLISM; METHYLATION; PATHOLOGY; PATIENT TREATMENT; PHYSIOLOGY; TUMORS;

EID: 85021169322     PISSN: 15239829     EISSN: 15454274     Source Type: Book Series    
DOI: 10.1146/annurev-bioeng-071516-044546     Document Type: Article
Times cited : (561)

References (176)
  • 1
    • 79952284127 scopus 로고    scopus 로고
    • Hallmarks of cancer: The next generation
    • Hanahan D, Weinberg RA. 2011. Hallmarks of cancer: the next generation. Cell 144: 646-74
    • (2011) Cell , vol.144 , pp. 646-674
    • Hanahan, D.1    Weinberg, R.A.2
  • 2
    • 84955326448 scopus 로고    scopus 로고
    • The emerging hallmarks of cancermetabolism
    • Pavlova NN, Thompson CB. 2016. The emerging hallmarks of cancermetabolism. CellMetab. 23: 27-47
    • (2016) CellMetab. , vol.23 , pp. 27-47
    • Pavlova, N.N.1    Thompson, C.B.2
  • 3
    • 12444279265 scopus 로고
    • On the origin of cancer cells
    • Warburg O. 1956. On the origin of cancer cells. Science 123: 309-14
    • (1956) Science , vol.123 , pp. 309-314
    • Warburg, O.1
  • 4
    • 0001221508 scopus 로고
    • On respiratory impairment in cancer cells
    • Warburg O. 1956. On respiratory impairment in cancer cells. Science 124: 269-70
    • (1956) Science , vol.124 , pp. 269-270
    • Warburg, O.1
  • 5
    • 80054046029 scopus 로고    scopus 로고
    • Aerobic glycolysis: Meeting the metabolic requirements of cell proliferation
    • Lunt SY, Vander Heiden MG. 2011. Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu. Rev. Cell Dev. Biol. 27: 441-64
    • (2011) Annu. Rev. Cell Dev. Biol. , vol.27 , pp. 441-464
    • Lunt, S.Y.1    Vander Heiden, M.G.2
  • 6
    • 84880514208 scopus 로고    scopus 로고
    • The protooncometabolite fumarate binds glutathione to amplify ROS-dependent signaling
    • Sullivan LB, Martinez-Garcia E, Nguyen H, Mullen AR, Dufour E, et al. 2013. The protooncometabolite fumarate binds glutathione to amplify ROS-dependent signaling. Mol. Cell 51: 236-48
    • (2013) Mol. Cell , vol.51 , pp. 236-248
    • Sullivan, L.B.1    Martinez-Garcia, E.2    Nguyen, H.3    Mullen, A.R.4    Dufour, E.5
  • 7
    • 84923197588 scopus 로고    scopus 로고
    • Fumarate induces redoxdependent senescence by modifying glutathione metabolism
    • Zheng L, Cardaci S, Jerby L, Mackenzie ED, Sciacovelli M, et al. 2015. Fumarate induces redoxdependent senescence by modifying glutathione metabolism. Nat. Commun. 6: 4001
    • (2015) Nat. Commun. , vol.6 , pp. 4001
    • Zheng, L.1    Cardaci, S.2    Jerby, L.3    Mackenzie, E.D.4    Sciacovelli, M.5
  • 9
    • 84863552418 scopus 로고    scopus 로고
    • A mitochondrial pyruvate carrier required for pyruvate uptake in yeast, Drosophila, and humans
    • Bricker DK, Taylor EB, Schell JC, Orsak T, Boutron A, et al. 2012. A mitochondrial pyruvate carrier required for pyruvate uptake in yeast, Drosophila, and humans. Science 337: 96-100
    • (2012) Science , vol.337 , pp. 96-100
    • Bricker, D.K.1    Taylor, E.B.2    Schell, J.C.3    Orsak, T.4    Boutron, A.5
  • 11
    • 84938232611 scopus 로고    scopus 로고
    • An essential role of the mitochondrial electron transport chain in cell proliferation is to enable aspartate synthesis
    • Birsoy K, Wang T, Chen WW, Freinkman E, Abu-Remaileh M, Sabatini DM. 2015. An essential role of the mitochondrial electron transport chain in cell proliferation is to enable aspartate synthesis. Cell 162: 540-51
    • (2015) Cell , vol.162 , pp. 540-551
    • Birsoy, K.1    Wang, T.2    Chen, W.W.3    Freinkman, E.4    Abu-Remaileh, M.5    Sabatini, D.M.6
  • 12
    • 33746888993 scopus 로고    scopus 로고
    • Mitochondriotoxic compounds for cancer therapy
    • Fantin VR, Leder P. 2006. Mitochondriotoxic compounds for cancer therapy. Oncogene 25: 4787-97
    • (2006) Oncogene , vol.25 , pp. 4787-4797
    • Fantin, V.R.1    Leder, P.2
  • 14
    • 0001246085 scopus 로고
    • The minimum vitamin requirements of the L and HeLa cells in tissue culture, the production of specific vitamin deficiencies, and their cure
    • Eagle H. 1955. The minimum vitamin requirements of the L and HeLa cells in tissue culture, the production of specific vitamin deficiencies, and their cure. J. Exp. Med. 102: 595-600
    • (1955) J. Exp. Med. , vol.102 , pp. 595-600
    • Eagle, H.1
  • 15
    • 84890209181 scopus 로고    scopus 로고
    • Glutamine-driven oxidative phosphorylation is a major ATP source in transformed mammalian cells in both normoxia and hypoxia
    • Fan J, Kamphorst JJ, Mathew R, Chung MK, White E, et al. 2013. Glutamine-driven oxidative phosphorylation is a major ATP source in transformed mammalian cells in both normoxia and hypoxia. Mol. Syst. Biol. 9: 712
    • (2013) Mol. Syst. Biol. , vol.9 , pp. 712
    • Fan, J.1    Kamphorst, J.J.2    Mathew, R.3    Chung, M.K.4    White, E.5
  • 16
    • 84901624185 scopus 로고    scopus 로고
    • Metabolic shifts toward glutamine regulate tumor growth, invasion and bioenergetics in ovarian cancer
    • Yang L, Moss T, Mangala LS, Marini J, Zhao H, et al. 2014. Metabolic shifts toward glutamine regulate tumor growth, invasion and bioenergetics in ovarian cancer. Mol. Syst. Biol. 10: 728-728
    • (2014) Mol. Syst. Biol. , vol.10 , pp. 728
    • Yang, L.1    Moss, T.2    Mangala, L.S.3    Marini, J.4    Zhao, H.5
  • 17
    • 84975109732 scopus 로고    scopus 로고
    • ASCT2/SLC1A5 controls glutamine uptake and tumour growth in triple-negative basal-like breast cancer
    • vanGeldermalsen M, Wang Q, NagarajahR, Marshall AD, Thoeng A, et al. 2016. ASCT2/SLC1A5 controls glutamine uptake and tumour growth in triple-negative basal-like breast cancer. Oncogene 35: 3201-8
    • (2016) Oncogene , vol.35 , pp. 3201-3208
    • VanGeldermalsen, M.1    Wang, Q.2    Nagarajah, R.3    Marshall, A.D.4    Thoeng, A.5
  • 19
    • 0033190871 scopus 로고    scopus 로고
    • Glutamine transport and human hepatocellular transformation
    • Bode BP, SoubaWW. 1999. Glutamine transport and human hepatocellular transformation. J. Parenter. Enter. Nutr. 23(5 Suppl.): S33-37
    • (1999) J. Parenter. Enter. Nutr. , vol.23 , Issue.5 , pp. S33-37
    • Bode, B.P.1    Souba, W.W.2
  • 20
    • 37449034854 scopus 로고    scopus 로고
    • Beyond aerobic glycolysis: Transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis
    • DeBerardinis RJ, Mancuso A, Daikhin E, Nissim I, Yudkoff M, et al. 2007. Beyond aerobic glycolysis: Transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. PNAS 104: 19345-50
    • (2007) PNAS , vol.104 , pp. 19345-19350
    • DeBerardinis, R.J.1    Mancuso, A.2    Daikhin, E.3    Nissim, I.4    Yudkoff, M.5
  • 21
    • 84961287801 scopus 로고    scopus 로고
    • Pyruvate carboxylase is critical for non-small-cell lung cancer proliferation
    • Sellers K, Fox MP, Bousamra M, Slone SP, Higashi RM, et al. 2015. Pyruvate carboxylase is critical for non-small-cell lung cancer proliferation. J. Clin. Investig. 125: 687-98
    • (2015) J. Clin. Investig. , vol.125 , pp. 687-698
    • Sellers, K.1    Fox, M.P.2    Bousamra, M.3    Slone, S.P.4    Higashi, R.M.5
  • 22
    • 79957774646 scopus 로고    scopus 로고
    • Pyruvate carboxylase is required for glutamine-independent growth of tumor cells
    • Cheng T, Sudderth J, Yang C, Mullen AR, Jin ES, et al. 2011. Pyruvate carboxylase is required for glutamine-independent growth of tumor cells. PNAS 108: 8674-79
    • (2011) PNAS , vol.108 , pp. 8674-8679
    • Cheng, T.1    Sudderth, J.2    Yang, C.3    Mullen, A.R.4    Jin, E.S.5
  • 23
    • 0028013303 scopus 로고    scopus 로고
    • By rat subcutaneous adipose tissue in vivo production of glutamine and utilization of glutamate production of glutamine and utilization of glutamate by rat subcutaneous adipose tissue in vivo
    • Kowalski TJ, Watford M. 2016. By rat subcutaneous adipose tissue in vivo production of glutamine and utilization of glutamate production of glutamine and utilization of glutamate by rat subcutaneous adipose tissue in vivo. Am. J. Physiol. Endocrinol. Metab. 266: E151-54
    • (2016) Am. J. Physiol. Endocrinol. Metab. , vol.266 , pp. E151-E154
    • Kowalski, T.J.1    Watford, M.2
  • 24
  • 25
    • 0025314287 scopus 로고
    • Glutamine-enriched diets support muscle glutamine metabolism without stimulating tumor growth
    • Klimberg VS, Souba WW, Salloum RM, Plumley DA, Cohen FS, et al. 1990. Glutamine-enriched diets support muscle glutamine metabolism without stimulating tumor growth. J. Surg. Res. 48: 319-23
    • (1990) J. Surg. Res. , vol.48 , pp. 319-323
    • Klimberg, V.S.1    Souba, W.W.2    Salloum, R.M.3    Plumley, D.A.4    Cohen, F.S.5
  • 26
    • 0029113227 scopus 로고
    • Interstitial fluid concentrations of glycerol, glucose, and amino acids in human quadricepmuscle and adipose tissue. Evidence for significant lipolysis in skeletal muscle
    • Maggs DG, Jacob R, Rife F, Lange R, Leone P, et al. 1995. Interstitial fluid concentrations of glycerol, glucose, and amino acids in human quadricepmuscle and adipose tissue. Evidence for significant lipolysis in skeletal muscle. J. Clin. Investig. 96: 370-77
    • (1995) J. Clin. Investig. , vol.96 , pp. 370-377
    • Maggs, D.G.1    Jacob, R.2    Rife, F.3    Lange, R.4    Leone, P.5
  • 28
    • 84877845591 scopus 로고    scopus 로고
    • Adipocytes cause leukemia cell resistance to L-asparaginase via release of glutamine
    • Ehsanipour EA, Sheng X, Behan JW, Wang X, Butturini A, et al. 2013. Adipocytes cause leukemia cell resistance to L-asparaginase via release of glutamine. Cancer Res. 73: 2998-3006
    • (2013) Cancer Res. , vol.73 , pp. 2998-3006
    • Ehsanipour, E.A.1    Sheng, X.2    Behan, J.W.3    Wang, X.4    Butturini, A.5
  • 29
    • 0034019630 scopus 로고    scopus 로고
    • Glutamate and glutamine in the brain compartmentation of brain glutamate metabolism in neurons and glia
    • Daikhin Y, YudkoffM. 2000. Glutamate and glutamine in the brain compartmentation of brain glutamate metabolism in neurons and glia. J. Nutr. 130: 1026-31
    • (2000) J. Nutr. , vol.130 , pp. 1026-1031
    • Daikhin, Y.1    Yudkoff, M.2
  • 30
    • 0032988976 scopus 로고    scopus 로고
    • Role of glutamine in human carbohydrate metabolism in kidney and other tissues
    • Stumvoll M, Perriello G, Meyer C, Gerich J. 1999. Role of glutamine in human carbohydrate metabolism in kidney and other tissues. Kidney Int. 55: 778-92
    • (1999) Kidney Int. , vol.55 , pp. 778-792
    • Stumvoll, M.1    Perriello, G.2    Meyer, C.3    Gerich, J.4
  • 31
    • 84915755954 scopus 로고    scopus 로고
    • Glutamine synthetase desensitizes differentiated adipocytes to proinflammatory stimuli by raising intracellular glutamine levels
    • Palmieri EM, Spera I, Menga A, Infantino V, Iacobazzi V, Castegna A. 2014. Glutamine synthetase desensitizes differentiated adipocytes to proinflammatory stimuli by raising intracellular glutamine levels. FEBS Lett. 588: 4807-14
    • (2014) FEBS Lett. , vol.588 , pp. 4807-4814
    • Palmieri, E.M.1    Spera, I.2    Menga, A.3    Infantino, V.4    Iacobazzi, V.5    Castegna, A.6
  • 32
    • 0018126186 scopus 로고
    • The regulation of skeletal muscle alanine and glutamine formation and release in experimental chronic uremia in the rat subsensitivity of adenylate cyclase and amino acid release to epinephrine and serotonin
    • Garber AJ. 1978. The regulation of skeletal muscle alanine and glutamine formation and release in experimental chronic uremia in the rat subsensitivity of adenylate cyclase and amino acid release to epinephrine and serotonin. J. Clin. Investig. 62: 633-41
    • (1978) J. Clin. Investig. , vol.62 , pp. 633-641
    • Garber, A.J.1
  • 34
    • 0015860095 scopus 로고
    • Evidence of inter-organ amino-acid transport by blood cells in humans
    • Felig P, Wahrent J, Raft L. 1973. Evidence of inter-organ amino-acid transport by blood cells in humans. PNAS 70: 1775-79
    • (1973) PNAS , vol.70 , pp. 1775-1779
    • Felig, P.1    Wahrent, J.2    Raft, L.3
  • 35
    • 0034858012 scopus 로고    scopus 로고
    • Glutamine and cell signaling in liver
    • Häussinger D, Graf D, Weiergräber OH. 2001. Glutamine and cell signaling in liver. J. Nutr. 131(9 Suppl.): S2509-24
    • (2001) J. Nutr. , vol.131 , Issue.9 , pp. S2509-S2524
    • Häussinger, D.1    Graf, D.2    Weiergräber, O.H.3
  • 36
    • 0026532176 scopus 로고
    • Glutaminase and glutamine synthetase activities in human cirrhotic liver and hepatocellular carcinoma
    • Matsuno T, Goto L. 1992. Glutaminase and glutamine synthetase activities in human cirrhotic liver and hepatocellular carcinoma. Cancer Res. 52: 1192-94
    • (1992) Cancer Res. , vol.52 , pp. 1192-1194
    • Matsuno, T.1    Goto, L.2
  • 37
    • 84875894714 scopus 로고    scopus 로고
    • Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway
    • Son J, Lyssiotis CA, Ying H, Wang X, Hua S, et al. 2013. Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature 496: 101-5
    • (2013) Nature , vol.496 , pp. 101-105
    • Son, J.1    Lyssiotis, C.A.2    Ying, H.3    Wang, X.4    Hua, S.5
  • 38
    • 57749088701 scopus 로고    scopus 로고
    • Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction
    • Wise DR, DeBerardinis RJ, Mancuso A, Sayed N, Zhang X-Y, et al. 2008. Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. PNAS 105: 18782-87
    • (2008) PNAS , vol.105 , pp. 18782-18787
    • Wise, D.R.1    DeBerardinis, R.J.2    Mancuso, A.3    Sayed, N.4    Zhang, X.-Y.5
  • 39
    • 64749116346 scopus 로고    scopus 로고
    • C-Myc suppression of MIR-23 enhances mitochondrial glutaminase and glutamine metabolism
    • Gao P, Tchernyshyov I, Chang T-C, Lee Y-S, Kita K, et al. 2009. c-Myc suppression of mir-23 enhances mitochondrial glutaminase and glutamine metabolism. Nature 458: 762-65
    • (2009) Nature , vol.458 , pp. 762-765
    • Gao, P.1    Tchernyshyov, I.2    Chang, T.-C.3    Lee, Y.-S.4    Kita, K.5
  • 40
    • 48849105341 scopus 로고    scopus 로고
    • Direct role of nucleotide metabolism in C-MYC-dependent proliferation of melanoma cells
    • Mannava S, Grachtchouk V, Wheeler LJ, Im M, Zhuang D, et al. 2008. Direct role of nucleotide metabolism in C-MYC-dependent proliferation of melanoma cells. Cell Cycle 7: 2392-400
    • (2008) Cell Cycle , vol.7 , pp. 2392-2400
    • Mannava, S.1    Grachtchouk, V.2    Wheeler, L.J.3    Im, M.4    Zhuang, D.5
  • 41
    • 80051866908 scopus 로고    scopus 로고
    • Oncogenic K-Ras decouples glucose and glutamine metabolism to support cancer cell growth
    • Gaglio D, Metallo CM, Gameiro PA, Hiller K, Danna LS, et al. 2014. Oncogenic K-Ras decouples glucose and glutamine metabolism to support cancer cell growth. Mol. Syst. Biol. 7: 523-23
    • (2014) Mol. Syst. Biol. , vol.7 , pp. 523-623
    • Gaglio, D.1    Metallo, C.M.2    Gameiro, P.A.3    Hiller, K.4    Danna, L.S.5
  • 42
    • 84877720366 scopus 로고    scopus 로고
    • The mTORC1 pathway stimulates glutamine metabolism and cell proliferation by repressing SIRT4
    • Csibi A, Fendt S-M, Li C, Poulogiannis G, Choo AY, et al. 2013. The mTORC1 pathway stimulates glutamine metabolism and cell proliferation by repressing SIRT4. Cell 153: 840-54
    • (2013) Cell , vol.153 , pp. 840-854
    • Csibi, A.1    Fendt, S.-M.2    Li, C.3    Poulogiannis, G.4    Choo, A.Y.5
  • 43
    • 84874111758 scopus 로고    scopus 로고
    • The NRF2 cell defence pathway: KEAP1-dependent and-independent mechanisms of regulation
    • Bryan HK, Olayanju A, Goldring CE, Park BK. 2013. The NRF2 cell defence pathway: KEAP1-dependent and-independent mechanisms of regulation. Biochem. Pharmacol. 85: 705-17
    • (2013) Biochem. Pharmacol. , vol.85 , pp. 705-717
    • Bryan, H.K.1    Olayanju, A.2    Goldring, C.E.3    Park, B.K.4
  • 44
    • 80053452983 scopus 로고    scopus 로고
    • Beneficial role of NRF2 in regulating NADPH generation and consumption
    • Wu KC, Cui JY, Klaassen CD. 2011. Beneficial role of NRF2 in regulating NADPH generation and consumption. Toxicol. Sci. 123: 590-600
    • (2011) Toxicol. Sci. , vol.123 , pp. 590-600
    • Wu, K.C.1    Cui, J.Y.2    Klaassen, C.D.3
  • 45
    • 0027109075 scopus 로고
    • P53, guardian of the genome
    • Lane DP. 1992. p53, guardian of the genome. Nature 358: 15-16
    • (1992) Nature , vol.358 , pp. 15-16
    • Lane, D.P.1
  • 46
    • 77952227625 scopus 로고    scopus 로고
    • Phosphate-activated glutaminase (GLS2), a p53-inducible regulator of glutamine metabolism and reactive oxygen species
    • Suzuki S, Tanaka T, Poyurovsky MV, Nagano H, Mayama T, et al. 2010. Phosphate-activated glutaminase (GLS2), a p53-inducible regulator of glutamine metabolism and reactive oxygen species. PNAS 107: 7461-66
    • (2010) PNAS , vol.107 , pp. 7461-7466
    • Suzuki, S.1    Tanaka, T.2    Poyurovsky, M.V.3    Nagano, H.4    Mayama, T.5
  • 47
    • 84895071580 scopus 로고    scopus 로고
    • Control of glutamine metabolism by the tumor suppressor Rb
    • Reynolds MR, Lane AN, Robertson B, Kemp S, Liu Y, et al. 2014. Control of glutamine metabolism by the tumor suppressor Rb. Oncogene 33: 556-66
    • (2014) Oncogene , vol.33 , pp. 556-566
    • Reynolds, M.R.1    Lane, A.N.2    Robertson, B.3    Kemp, S.4    Liu, Y.5
  • 48
    • 84894359469 scopus 로고    scopus 로고
    • Loss of the tumor suppressor LKB1 promotes metabolic reprogramming of cancer cells via HIF-1
    • Faubert B, Vincent EE, Griss T, Samborska B, Izreig S, et al. 2014. Loss of the tumor suppressor LKB1 promotes metabolic reprogramming of cancer cells via HIF-1. PNAS 111: 2554-59
    • (2014) PNAS , vol.111 , pp. 2554-2559
    • Faubert, B.1    Vincent, E.E.2    Griss, T.3    Samborska, B.4    Izreig, S.5
  • 49
    • 84924590390 scopus 로고    scopus 로고
    • A long noncoding RNA connects c-Myc to tumor metabolism
    • Hung C-L, Wang L-Y, Yu Y-L, Chen H-W, Srivastava S, et al. 2014. A long noncoding RNA connects c-Myc to tumor metabolism. PNAS 111: 18697-702
    • (2014) PNAS , vol.111 , pp. 18697-18702
    • Hung, C.-L.1    Wang, L.-Y.2    Yu, Y.-L.3    Chen, H.-W.4    Srivastava, S.5
  • 50
    • 84958109207 scopus 로고    scopus 로고
    • Allele-specific reprogramming of cancer metabolism by the long non-coding RNA CCAT2
    • Redis RS, Vela LE, Lu W, Ferreira de Oliveira J, Ivan C, et al. 2016. Allele-specific reprogramming of cancer metabolism by the long non-coding RNA CCAT2. Mol. Cell 61: 520-34
    • (2016) Mol. Cell , vol.61 , pp. 520-534
    • Redis, R.S.1    Vela, L.E.2    Lu, W.3    Ferreira De Oliveira, J.4    Ivan, C.5
  • 51
    • 84924250667 scopus 로고    scopus 로고
    • Regulation of glutamine carrier proteins by RNF5 determines breast cancer response to ER stress-inducing chemotherapies
    • Jeon YJ, Khelifa S, Ratnikov B, Scott DA, Feng Y, et al. 2015. Regulation of glutamine carrier proteins by RNF5 determines breast cancer response to ER stress-inducing chemotherapies. Cancer Cell 27: 354-69
    • (2015) Cancer Cell , vol.27 , pp. 354-369
    • Jeon, Y.J.1    Khelifa, S.2    Ratnikov, B.3    Scott, D.A.4    Feng, Y.5
  • 52
    • 79953300698 scopus 로고    scopus 로고
    • The seed and soil hypothesis revisited-the role of tumor-stroma interactions in metastasis to different organs
    • Langley RR, Fidler IJ. 2011. The seed and soil hypothesis revisited-the role of tumor-stroma interactions in metastasis to different organs. Int. J. Cancer. 128: 2527-35
    • (2011) Int. J. Cancer. , vol.128 , pp. 2527-2535
    • Langley, R.R.1    Fidler, I.J.2
  • 53
    • 84924709550 scopus 로고    scopus 로고
    • IL4 receptor mediates enhanced glucose and glutamine metabolism to support breast cancer growth
    • Venmar KT, Kimmel DW, Cliffel DE, Fingleton B. 2015. IL4 receptor mediates enhanced glucose and glutamine metabolism to support breast cancer growth. Biochim. Biophys. Acta 1853: 1219-28
    • (2015) Biochim. Biophys. Acta , vol.1853 , pp. 1219-1228
    • Venmar, K.T.1    Kimmel, D.W.2    Cliffel, D.E.3    Fingleton, B.4
  • 54
    • 78650181190 scopus 로고    scopus 로고
    • The hexosamine biosynthetic pathway couples growth factor-induced glutamine uptake to glucose metabolism
    • Wellen KE, Lu C, Mancuso A, Lemons JMS, Ryczko M, et al. 2010. The hexosamine biosynthetic pathway couples growth factor-induced glutamine uptake to glucose metabolism. Genes Dev. 24: 2784-99
    • (2010) Genes Dev. , vol.24 , pp. 2784-2799
    • Wellen, K.E.1    Lu, C.2    Mancuso, A.3    Lemons, J.M.S.4    Ryczko, M.5
  • 55
    • 84921309472 scopus 로고    scopus 로고
    • The energy sensor AMPK regulates T cell metabolic adaptation and effector responses in vivo
    • Blagih J, Coulombe F, Vincent EE, Dupuy F, Galicia-Vázquez G, et al. 2015. The energy sensor AMPK regulates T cell metabolic adaptation and effector responses in vivo. Immunity 42: 41-54
    • (2015) Immunity , vol.42 , pp. 41-54
    • Blagih, J.1    Coulombe, F.2    Vincent, E.E.3    Dupuy, F.4    Galicia-Vázquez, G.5
  • 56
    • 84255199079 scopus 로고    scopus 로고
    • The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation
    • Wang R, Dillon CP, Shi LZ, Milasta S, Carter R, et al. 2011. The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. Immunity 35: 871-82
    • (2011) Immunity , vol.35 , pp. 871-882
    • Wang, R.1    Dillon, C.P.2    Shi, L.Z.3    Milasta, S.4    Carter, R.5
  • 57
    • 84883501150 scopus 로고    scopus 로고
    • HIF-1 mediates metabolic responses to intratumoral hypoxia and oncogenic mutations
    • Semenza GL. 2013. HIF-1 mediates metabolic responses to intratumoral hypoxia and oncogenic mutations. J. Clin. Investig. 123: 3664-71
    • (2013) J. Clin. Investig. , vol.123 , pp. 3664-3671
    • Semenza, G.L.1
  • 58
    • 84893465244 scopus 로고    scopus 로고
    • Hypoxic regulation of glutamine metabolism through HIF1 and SIAH2 supports lipid synthesis that is necessary for tumor growth
    • Sun RC, Denko NC. 2014. Hypoxic regulation of glutamine metabolism through HIF1 and SIAH2 supports lipid synthesis that is necessary for tumor growth. Cell Metab. 19: 285-92
    • (2014) Cell Metab. , vol.19 , pp. 285-292
    • Sun, R.C.1    Denko, N.C.2
  • 59
  • 60
    • 84904645105 scopus 로고    scopus 로고
    • Antitumor activity of the glutaminase inhibitor CB-839 in triple-negative breast cancer
    • Gross MI, Demo SD, Dennison JB, Chen L, Chernov-Rogan T, et al. 2014. Antitumor activity of the glutaminase inhibitor CB-839 in triple-negative breast cancer. Mol. Cancer Ther. 13: 890-901
    • (2014) Mol. Cancer Ther. , vol.13 , pp. 890-901
    • Gross, M.I.1    Demo, S.D.2    Dennison, J.B.3    Chen, L.4    Chernov-Rogan, T.5
  • 61
    • 84926304829 scopus 로고    scopus 로고
    • Compensatory glutamine metabolism promotes glioblastoma resistance to mTOR inhibitor treatment
    • Tanaka K, Sasayama T, Irino Y, Takata K, Nagashima H, et al. 2015. Compensatory glutamine metabolism promotes glioblastoma resistance to mTOR inhibitor treatment. J. Clin. Investig. 125: 1591-602
    • (2015) J. Clin. Investig. , vol.125 , pp. 1591-1602
    • Tanaka, K.1    Sasayama, T.2    Irino, Y.3    Takata, K.4    Nagashima, H.5
  • 62
    • 0017926507 scopus 로고
    • Increased CTP synthetase activity in cancer cells
    • Williams JC, Kizaki H, Weber G, Morris HP. 1978. Increased CTP synthetase activity in cancer cells. Nature 271: 71-73
    • (1978) Nature , vol.271 , pp. 71-73
    • Williams, J.C.1    Kizaki, H.2    Weber, G.3    Morris, H.P.4
  • 63
    • 84920447418 scopus 로고    scopus 로고
    • Pyruvate kinase isoform expression alters nucleotide synthesis to impact cell proliferation
    • Lunt SY, Muralidhar V, Hosios AM, Israelsen WJ, Gui DY, et al. 2015. Pyruvate kinase isoform expression alters nucleotide synthesis to impact cell proliferation. Mol. Cell 57: 95-107
    • (2015) Mol. Cell , vol.57 , pp. 95-107
    • Lunt, S.Y.1    Muralidhar, V.2    Hosios, A.M.3    Israelsen, W.J.4    Gui, D.Y.5
  • 64
    • 84875894714 scopus 로고    scopus 로고
    • Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway
    • Son J, Lyssiotis CA, Ying H, Wang X, Hua S, et al. 2013. Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature 496: 101-5
    • (2013) Nature , vol.496 , pp. 101-105
    • Son, J.1    Lyssiotis, C.A.2    Ying, H.3    Wang, X.4    Hua, S.5
  • 65
    • 84938234308 scopus 로고    scopus 로고
    • Supporting aspartate biosynthesis is an essential function of respiration in proliferating cells
    • Sullivan LB, Gui DY, Hosios AM, Bush LN, Freinkman E, Vander Heiden MG. 2015. Supporting aspartate biosynthesis is an essential function of respiration in proliferating cells. Cell 162: 552-63
    • (2015) Cell , vol.162 , pp. 552-563
    • Sullivan, L.B.1    Gui, D.Y.2    Hosios, A.M.3    Bush, L.N.4    Freinkman, E.5    Vander Heiden, M.G.6
  • 66
    • 84938232611 scopus 로고    scopus 로고
    • An essential role of the mitochondrial electron transport chain in cell proliferation is to enable aspartate synthesis
    • Birsoy K, Wang T, Chen WW, Freinkman E, Abu-Remaileh M, Sabatini DM. 2015. An essential role of the mitochondrial electron transport chain in cell proliferation is to enable aspartate synthesis. Cell 162: 540-51
    • (2015) Cell , vol.162 , pp. 540-551
    • Birsoy, K.1    Wang, T.2    Chen, W.W.3    Freinkman, E.4    Abu-Remaileh, M.5    Sabatini, D.M.6
  • 67
    • 84881177291 scopus 로고    scopus 로고
    • Serine, glycine and one-carbon units: Cancer metabolism in full circle
    • Locasale JW. 2013. Serine, glycine and one-carbon units: cancer metabolism in full circle. Nat. Rev. Cancer 13: 572-83
    • (2013) Nat. Rev. Cancer , vol.13 , pp. 572-583
    • Locasale, J.W.1
  • 68
    • 85069238542 scopus 로고    scopus 로고
    • Mitochondria as biosynthetic factories for cancer proliferation
    • Ahn CS, Metallo CM. 2015. Mitochondria as biosynthetic factories for cancer proliferation. Cancer Metab. 3: 1
    • (2015) Cancer Metab. , vol.3 , pp. 1
    • Ahn, C.S.1    Metallo, C.M.2
  • 69
    • 51449121886 scopus 로고    scopus 로고
    • Evaluation of lactate and alanine as metabolic biomarkers of prostate cancer using 1H HR-MAS spectroscopy of biopsy tissues
    • Tessem M-B, Swanson MG, Keshari KR, Albers MJ, Joun D, et al. 2008. Evaluation of lactate and alanine as metabolic biomarkers of prostate cancer using 1H HR-MAS spectroscopy of biopsy tissues. Magn. Reson. Med. 60: 510-16
    • (2008) Magn. Reson. Med. , vol.60 , pp. 510-516
    • Tessem, M.-B.1    Swanson, M.G.2    Keshari, K.R.3    Albers, M.J.4    Joun, D.5
  • 70
    • 84964619842 scopus 로고    scopus 로고
    • Differential glutamate metabolism in proliferating and quiescent mammary epithelial cells
    • Coloff JL, Murphy JP, Braun CR, Harris IS, Shelton LM, et al. 2016. Differential glutamate metabolism in proliferating and quiescent mammary epithelial cells. Cell Metab. 23: 867-80
    • (2016) Cell Metab. , vol.23 , pp. 867-880
    • Coloff, J.L.1    Murphy, J.P.2    Braun, C.R.3    Harris, I.S.4    Shelton, L.M.5
  • 71
    • 33751221961 scopus 로고    scopus 로고
    • The downregulation of asparagine synthetase expression can increase the sensitivity of cells resistant to L-asparaginase
    • Li BS, Gu LJ, Luo CY, Li WS, Jiang LM, et al. 2006. The downregulation of asparagine synthetase expression can increase the sensitivity of cells resistant to L-asparaginase. Leukemia 20: 2199-201
    • (2006) Leukemia , vol.20 , pp. 2199-2201
    • Li, B.S.1    Gu, L.J.2    Luo, C.Y.3    Li, W.S.4    Jiang, L.M.5
  • 72
    • 84888231872 scopus 로고    scopus 로고
    • Asparaginase unveils glutamine-addicted AML
    • Samudio I, Konopleva M. 2013. Asparaginase unveils glutamine-addicted AML. Blood 122: 3398-400
    • (2013) Blood , vol.122 , pp. 3398-3400
    • Samudio, I.1    Konopleva, M.2
  • 73
    • 84922270824 scopus 로고    scopus 로고
    • Asparagine plays a critical role in regulating cellular adaptation to glutamine depletion
    • Zhang J, Fan J, Venneti S, Cross JR, Takagi T, et al. 2014. Asparagine plays a critical role in regulating cellular adaptation to glutamine depletion. Mol. Cell 56: 205-18
    • (2014) Mol. Cell , vol.56 , pp. 205-218
    • Zhang, J.1    Fan, J.2    Venneti, S.3    Cross, J.R.4    Takagi, T.5
  • 74
    • 0021836855 scopus 로고
    • Conversion of glutamate to ornithine and proline: Pyrroline-5-carboxylate, a possible modulator of arginine requirements
    • Jones ME. 1985. Conversion of glutamate to ornithine and proline: pyrroline-5-carboxylate, a possible modulator of arginine requirements. J. Nutr. 115: 509-15
    • (1985) J. Nutr. , vol.115 , pp. 509-515
    • Jones, M.E.1
  • 76
    • 33845945135 scopus 로고    scopus 로고
    • NAD+ synthetase. How a two-domain, threesubstrate enzyme avoids waste
    • Wojcik M, Seidle HF, Bieganowski P, Brenner C. 2006. NAD+ synthetase. How a two-domain, threesubstrate enzyme avoids waste. J. Biol. Chem. 281: 33395-402
    • (2006) J. Biol. Chem. , vol.281 , pp. 33395-33402
    • Wojcik, M.1    Seidle, H.F.2    Bieganowski, P.3    Brenner, C.4
  • 77
    • 0029971427 scopus 로고    scopus 로고
    • Inhibition of fatty acid synthesis delays disease progression in a xenograft model of ovarian cancer
    • Pizer ES, Wood FD, Heine HS, Romantsev FE, Pasternack GR, Kuhajda FP. 1996. Inhibition of fatty acid synthesis delays disease progression in a xenograft model of ovarian cancer. Cancer Res. 56: 1189-93
    • (1996) Cancer Res. , vol.56 , pp. 1189-1193
    • Pizer, E.S.1    Wood, F.D.2    Heine, H.S.3    Romantsev, F.E.4    Pasternack, G.R.5    Kuhajda, F.P.6
  • 78
    • 84856014884 scopus 로고    scopus 로고
    • Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia
    • Metallo CM, Gameiro PA, Bell EL, Mattaini KR, Yang J, et al. 2011. Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature 481: 380-84
    • (2011) Nature , vol.481 , pp. 380-384
    • Metallo, C.M.1    Gameiro, P.A.2    Bell, E.L.3    Mattaini, K.R.4    Yang, J.5
  • 79
    • 72049125350 scopus 로고    scopus 로고
    • Cancer-associated IDH1mutations produce 2-hydroxyglutarate
    • Dang L, WhiteDW, Gross S, Bennett BD, Bittinger MA, et al. 2009. Cancer-associated IDH1mutations produce 2-hydroxyglutarate. Nature 462: 739-44
    • (2009) Nature , vol.462 , pp. 739-744
    • Dang, L.1    White, D.W.2    Gross, S.3    Bennett, B.D.4    Bittinger, M.A.5
  • 80
    • 84964374713 scopus 로고    scopus 로고
    • Reductive carboxylation supports redox homeostasis during anchorage-independent growth
    • Jiang L, Shestov AA, Swain P, Yang C, Parker SJ, et al. 2016. Reductive carboxylation supports redox homeostasis during anchorage-independent growth. Nature 532: 255-58
    • (2016) Nature , vol.532 , pp. 255-258
    • Jiang, L.1    Shestov, A.A.2    Swain, P.3    Yang, C.4    Parker, S.J.5
  • 81
    • 84855987831 scopus 로고    scopus 로고
    • Reductive carboxylation supports growth in tumour cells with defective mitochondria
    • MullenAR, WheatonWW, JinES, Chen P-H, Sullivan LB, et al. 2011. Reductive carboxylation supports growth in tumour cells with defective mitochondria. Nature 481: 385-88
    • (2011) Nature , vol.481 , pp. 385-388
    • Mullen, A.R.1    Wheaton, W.W.2    Jin, E.S.3    Chen, P.-H.4    Sullivan, L.B.5
  • 82
    • 83755178091 scopus 로고    scopus 로고
    • Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of ketoglutarate to citrate to support cell growth and viability
    • Wise DR, Ward PS, Shay JES, Cross JR, Gruber JJ, et al. 2011. Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of ketoglutarate to citrate to support cell growth and viability. PNAS 108: 19611-16
    • (2011) PNAS , vol.108 , pp. 19611-19616
    • Wise, D.R.1    Ward, P.S.2    Shay, J.E.S.3    Cross, J.R.4    Gruber, J.J.5
  • 83
    • 84881329062 scopus 로고    scopus 로고
    • Reductive glutaminemetabolism is a function of the ketoglutarate to citrate ratio in cells
    • Fendt S-M, Bell EL, KeiblerMA, OlenchockBA, Mayers JR, et al. 2013. Reductive glutaminemetabolism is a function of the ketoglutarate to citrate ratio in cells. Nat. Commun. 4: 2236
    • (2013) Nat. Commun. , vol.4 , pp. 2236
    • Fendt, S.-M.1    Bell, E.L.2    Keibler, M.A.3    Olenchock, B.A.4    Mayers, J.R.5
  • 84
    • 84902343371 scopus 로고    scopus 로고
    • Oxidation of ketoglutarate is required for reductive carboxylation in cancer cells with mitochondrial defects
    • Mullen AR, Hu Z, Shi X, Jiang L, Boroughs LK, et al. 2014. Oxidation of ketoglutarate is required for reductive carboxylation in cancer cells with mitochondrial defects. Cell Rep. 7: 1679-90
    • (2014) Cell Rep. , vol.7 , pp. 1679-1690
    • Mullen, A.R.1    Hu, Z.2    Shi, X.3    Jiang, L.4    Boroughs, L.K.5
  • 85
    • 77952737658 scopus 로고    scopus 로고
    • Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity
    • Weinberg F, Hamanaka R, WheatonWW, Weinberg S, Joseph J, et al. 2010. Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. PNAS 107: 8788-93
    • (2010) PNAS , vol.107 , pp. 8788-8793
    • Weinberg, F.1    Hamanaka, R.2    Wheaton, W.W.3    Weinberg, S.4    Joseph, J.5
  • 86
    • 84861880210 scopus 로고    scopus 로고
    • Chromosomal instability and aneuploidy in cancer: From yeast to man
    • Pfau SJ, Amon A. 2012. Chromosomal instability and aneuploidy in cancer: from yeast to man. EMBO Rep. 13: 515-27
    • (2012) EMBO Rep. , vol.13 , pp. 515-527
    • Pfau, S.J.1    Amon, A.2
  • 88
    • 84860321700 scopus 로고    scopus 로고
    • OncogenicKrasmaintains pancreatic tumors through regulation of anabolic glucose metabolism
    • Ying H, Kimmelman AC, Lyssiotis CA, Hua S, ChuGC, et al. 2012. OncogenicKrasmaintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell 149: 656-70
    • (2012) Cell , vol.149 , pp. 656-670
    • Ying, H.1    Kimmelman, A.C.2    Lyssiotis, C.A.3    Hua, S.4    Chu, G.C.5
  • 89
    • 84915735656 scopus 로고    scopus 로고
    • Mitochondrial one-carbon metabolism maintains redox balance during hypoxia
    • Martnez-Reyes I, Chandel NS. 2014. Mitochondrial one-carbon metabolism maintains redox balance during hypoxia. Cancer Discov. 4: 1371-73
    • (2014) Cancer Discov. , vol.4 , pp. 1371-1373
    • Martnez-Reyes, I.1    Chandel, N.S.2
  • 91
    • 84866665390 scopus 로고    scopus 로고
    • Mitochondria and cancer
    • Wallace DC. 2012. Mitochondria and cancer. Nat. Rev. Cancer 12: 685-98
    • (2012) Nat. Rev. Cancer , vol.12 , pp. 685-698
    • Wallace, D.C.1
  • 92
    • 84863763440 scopus 로고    scopus 로고
    • AMPK regulates NADPH homeostasis to promote tumour cell survival during energy stress
    • Jeon S-M, Chandel NS, Hay N. 2012. AMPK regulates NADPH homeostasis to promote tumour cell survival during energy stress. Nature 485: 661-65
    • (2012) Nature , vol.485 , pp. 661-665
    • Jeon, S.-M.1    Chandel, N.S.2    Hay, N.3
  • 93
    • 84859031263 scopus 로고    scopus 로고
    • The oxidative stress-inducible cystine/glutamate antiporter, system xc : Cystine supplier and beyond
    • Conrad M, Sato H. 2012. The oxidative stress-inducible cystine/glutamate antiporter, system xc : cystine supplier and beyond. Amino Acids 42: 231-46
    • (2012) Amino Acids , vol.42 , pp. 231-246
    • Conrad, M.1    Sato, H.2
  • 94
    • 0037178786 scopus 로고    scopus 로고
    • MTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery
    • Kim D-H, Sarbassov DD, Ali SM, King JE, Latek RR, et al. 2002. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 110: 163-75
    • (2002) Cell , vol.110 , pp. 163-175
    • Kim, D.-H.1    Sarbassov, D.D.2    Ali, S.M.3    King, J.E.4    Latek, R.R.5
  • 95
    • 79959409830 scopus 로고    scopus 로고
    • Amino acid signaling in TOR activation
    • Kim J, Guan K-L. 2011. Amino acid signaling in TOR activation. Annu. Rev. Biochem. 80: 1001-32
    • (2011) Annu. Rev. Biochem. , vol.80 , pp. 1001-1032
    • Kim, J.1    Guan, K.-L.2
  • 96
    • 59049100116 scopus 로고    scopus 로고
    • An amino acid shuffle activates mTORC1
    • Cohen A, Hall MN. 2009. An amino acid shuffle activates mTORC1. Cell 136: 399-400
    • (2009) Cell , vol.136 , pp. 399-400
    • Cohen, A.1    Hall, M.N.2
  • 97
    • 59049087460 scopus 로고    scopus 로고
    • Bidirectional transport of amino acids regulates mTOR and autophagy
    • Nicklin P, Bergman P, Zhang B, Triantafellow E, Wang H, et al. 2009. Bidirectional transport of amino acids regulates mTOR and autophagy. Cell 136: 521-34
    • (2009) Cell , vol.136 , pp. 521-534
    • Nicklin, P.1    Bergman, P.2    Zhang, B.3    Triantafellow, E.4    Wang, H.5
  • 98
    • 59449108595 scopus 로고    scopus 로고
    • Deletion of glutamate dehydrogenase in cells abolishes part of the insulin secretory response not required for glucose homeostasis
    • Carobbio S, Frigerio F, Rubi B, Vetterli L, Bloksgaard M, et al. 2009. Deletion of glutamate dehydrogenase in cells abolishes part of the insulin secretory response not required for glucose homeostasis. J. Biol. Chem. 284: 921-29
    • (2009) J. Biol. Chem. , vol.284 , pp. 921-929
    • Carobbio, S.1    Frigerio, F.2    Rubi, B.3    Vetterli, L.4    Bloksgaard, M.5
  • 100
    • 45849105156 scopus 로고    scopus 로고
    • The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1
    • Sancak Y, Peterson TR, Shaul YD, Lindquist RA, Thoreen CC, et al. 2008. The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 320: 1496-501
    • (2008) Science , vol.320 , pp. 1496-1501
    • Sancak, Y.1    Peterson, T.R.2    Shaul, Y.D.3    Lindquist, R.A.4    Thoreen, C.C.5
  • 101
    • 84872272443 scopus 로고    scopus 로고
    • Metabolic stress controls mTORC1 lysosomal localization and dimerization by regulating the TTT-RUVBL1/2 complex
    • Kim SG, Hoffman GR, Poulogiannis G, Buel GR, Jang YJ, et al. 2013. Metabolic stress controls mTORC1 lysosomal localization and dimerization by regulating the TTT-RUVBL1/2 complex. Mol. Cell 49: 172-85
    • (2013) Mol. Cell , vol.49 , pp. 172-185
    • Kim, S.G.1    Hoffman, G.R.2    Poulogiannis, G.3    Buel, G.R.4    Jang, Y.J.5
  • 103
    • 84876359638 scopus 로고    scopus 로고
    • Sirt4 has tumor-suppressive activity and regulates the cellular metabolic response to DNA damage by inhibiting mitochondrial glutamine metabolism
    • Jeong SM, Xiao C, Finley LWS, Lahusen T, Souza AL, et al. 2013. Sirt4 has tumor-suppressive activity and regulates the cellular metabolic response to DNA damage by inhibiting mitochondrial glutamine metabolism. Cancer Cell 23: 450-63
    • (2013) Cancer Cell , vol.23 , pp. 450-463
    • Jeong, S.M.1    Xiao, C.2    Finley, L.W.S.3    Lahusen, T.4    Souza, A.L.5
  • 104
    • 84923239727 scopus 로고    scopus 로고
    • Glutamine deprivation stimulates mTOR-JNK-dependent chemokine secretion
    • Shanware NP, Bray K, Eng CH, Wang F, Follettie M, et al. 2014. Glutamine deprivation stimulates mTOR-JNK-dependent chemokine secretion. Nat. Commun. 5: 4900
    • (2014) Nat. Commun. , vol.5 , pp. 4900
    • Shanware, N.P.1    Bray, K.2    Eng, C.H.3    Wang, F.4    Follettie, M.5
  • 105
    • 0034771851 scopus 로고    scopus 로고
    • Glutamine deprivation-mediated cell shrinkage induces ligand-independent CD95 receptor signaling and apoptosis
    • Fumarola C, Zerbini A, Guidotti GG. 2001. Glutamine deprivation-mediated cell shrinkage induces ligand-independent CD95 receptor signaling and apoptosis. Cell Death Differ. 8: 1004-13
    • (2001) Cell Death Differ. , vol.8 , pp. 1004-1013
    • Fumarola, C.1    Zerbini, A.2    Guidotti, G.G.3
  • 106
    • 34347402459 scopus 로고    scopus 로고
    • Deficiency in glutamine but not glucose induces MYC-dependent apoptosis in human cells
    • Yuneva M, Zamboni N, Oefner P, Sachidanandam R, Lazebnik Y. 2007. Deficiency in glutamine but not glucose induces MYC-dependent apoptosis in human cells. J. Cell Biol. 178: 93-105
    • (2007) J. Cell Biol. , vol.178 , pp. 93-105
    • Yuneva, M.1    Zamboni, N.2    Oefner, P.3    Sachidanandam, R.4    Lazebnik, Y.5
  • 107
    • 84894184722 scopus 로고    scopus 로고
    • Cisplatin induces a mitochondrial-ROS response that contributes to cytotoxicity depending on mitochondrial redox status and bioenergetic functions
    • Marullo R, Werner E, Degtyareva N, Moore B, Altavilla G, et al. 2013. Cisplatin induces a mitochondrial-ROS response that contributes to cytotoxicity depending on mitochondrial redox status and bioenergetic functions. PLOS ONE 8: e81162
    • (2013) PLOS ONE , vol.8 , pp. e81162
    • Marullo, R.1    Werner, E.2    Degtyareva, N.3    Moore, B.4    Altavilla, G.5
  • 109
    • 84928037804 scopus 로고    scopus 로고
    • Glutathione depletion sensitizes cisplatin-and temozolomide-resistant glioma cells in vitro and in vivo
    • Rocha CRR, Garcia CCM, Vieira DB, Quinet A, de Andrade-Lima LC, et al. 2014. Glutathione depletion sensitizes cisplatin-and temozolomide-resistant glioma cells in vitro and in vivo. Cell Death Dis. 5: e1505
    • (2014) Cell Death Dis. , vol.5 , pp. e1505
    • Rocha, C.R.R.1    Garcia, C.C.M.2    Vieira, D.B.3    Quinet, A.4    De Andrade-Lima, L.C.5
  • 110
    • 84964637801 scopus 로고    scopus 로고
    • EffectorTcells abrogate stroma-mediated chemoresistance in ovarian cancer
    • WangW, Kryczek I, DostáL, MunkarahA, Liu JR, et al. 2016. EffectorTcells abrogate stroma-mediated chemoresistance in ovarian cancer. Cell 165: 1-14
    • (2016) Cell , vol.165 , pp. 1-14
    • Wang, W.1    Kryczek, I.2    Dostá, L.3    Munkarah, A.4    Liu, J.R.5
  • 111
    • 77956460390 scopus 로고    scopus 로고
    • Environmental control of invasiveness and metastatic dissemination of tumor cells: The role of tumor cell-host cell interactions
    • Calorini L, Bianchini F. 2010. Environmental control of invasiveness and metastatic dissemination of tumor cells: the role of tumor cell-host cell interactions. Cell Commun. Signal. 8: 24
    • (2010) Cell Commun. Signal. , vol.8 , pp. 24
    • Calorini, L.1    Bianchini, F.2
  • 112
    • 84920616812 scopus 로고    scopus 로고
    • PGC-1mediates mitochondrial biogenesis and oxidative phosphorylation in cancer cells to promote metastasis
    • LeBleu VS, O'Connell JT, Gonzalez Herrera KN, Wikman H, Pantel K, et al. 2014. PGC-1mediates mitochondrial biogenesis and oxidative phosphorylation in cancer cells to promote metastasis. Nat. Cell Biol. 16: 992-1003
    • (2014) Nat. Cell Biol. , vol.16 , pp. 992-1003
    • LeBleu, V.S.1    O'Connell, J.T.2    Gonzalez Herrera, K.N.3    Wikman, H.4    Pantel, K.5
  • 113
    • 84874635096 scopus 로고    scopus 로고
    • Mitochondrial complex i activity and NAD+/NADH balance regulate breast cancer progression
    • Santidrian AF, Matsuno-Yagi A, Ritland M, Seo BB, LeBoeuf SE, et al. 2013. Mitochondrial complex I activity and NAD+/NADH balance regulate breast cancer progression. J. Clin. Investig. 123: 1068-81
    • (2013) J. Clin. Investig. , vol.123 , pp. 1068-1081
    • Santidrian, A.F.1    Matsuno-Yagi, A.2    Ritland, M.3    Seo, B.B.4    LeBoeuf, S.E.5
  • 114
    • 84929402212 scopus 로고    scopus 로고
    • Glutamate dehydrogenase is a novel prognostic marker and predicts metastases in colorectal cancer patients
    • Liu G, Zhu J, Yu M, Cai C, Zhou Y, et al. 2015. Glutamate dehydrogenase is a novel prognostic marker and predicts metastases in colorectal cancer patients. J. Transl. Med. 13: 144
    • (2015) J. Transl. Med. , vol.13 , pp. 144
    • Liu, G.1    Zhu, J.2    Yu, M.3    Cai, C.4    Zhou, Y.5
  • 115
    • 52949127312 scopus 로고    scopus 로고
    • An integrated genomic analysis of human glioblastoma multiforme
    • Parsons DW, Jones S, Zhang X, Lin JC-H, Leary RJ, et al. 2008. An integrated genomic analysis of human glioblastoma multiforme. Science 321: 1807-12
    • (2008) Science , vol.321 , pp. 1807-1812
    • Parsons, D.W.1    Jones, S.2    Zhang, X.3    Jc-H, L.4    Leary, R.J.5
  • 117
    • 77649305610 scopus 로고    scopus 로고
    • The common feature of leukemiaassociated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting ketoglutarate to 2-hydroxyglutarate
    • Ward PS, Patel J, Wise DR, Abdel-WahabO, Bennett BD, et al. 2010. The common feature of leukemiaassociated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting ketoglutarate to 2-hydroxyglutarate. Cancer Cell 17: 225-34
    • (2010) Cancer Cell , vol.17 , pp. 225-234
    • Ward, P.S.1    Patel, J.2    Wise, D.R.3    Abdel-Wahab, O.4    Bennett, B.D.5
  • 118
    • 78651463452 scopus 로고    scopus 로고
    • Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of ketoglutarate-dependent dioxygenases
    • Xu W, Yang H, Liu Y, Yang Y, Wang P, et al. 2011. Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of ketoglutarate-dependent dioxygenases. Cancer Cell 19: 17-30
    • (2011) Cancer Cell , vol.19 , pp. 17-30
    • Xu, W.1    Yang, H.2    Liu, Y.3    Yang, Y.4    Wang, P.5
  • 119
    • 84925503908 scopus 로고    scopus 로고
    • Intracellular ketoglutarate maintains the pluripotency of embryonic stem cells
    • Carey BW, Finley LWS, Cross JR, Allis CD, Thompson CB. 2014. Intracellular ketoglutarate maintains the pluripotency of embryonic stem cells. Nature 518: 413-16
    • (2014) Nature , vol.518 , pp. 413-416
    • Carey, B.W.1    Finley, L.W.S.2    Cross, J.R.3    Allis, C.D.4    Thompson, C.B.5
  • 120
    • 78651082042 scopus 로고    scopus 로고
    • Defects in succinate dehydrogenase in gastrointestinal stromal tumors lacking KIT and PDGFRA mutations
    • Janeway KA, Kim SY, Lodish M, Nosé V, Rustin P, et al. 2011. Defects in succinate dehydrogenase in gastrointestinal stromal tumors lacking KIT and PDGFRA mutations. PNAS 108: 314-18
    • (2011) PNAS , vol.108 , pp. 314-318
    • Janeway, K.A.1    Kim, S.Y.2    Lodish, M.3    Nosé, V.4    Rustin, P.5
  • 121
    • 84862632865 scopus 로고    scopus 로고
    • Inhibition of KG-dependent histone and DNA demethylases by fumarate and succinate that are accumulated in mutations of FH and SDH tumor suppressors
    • Xiao M, Yang H, Xu W, Ma S, Lin H, et al. 2012. Inhibition of KG-dependent histone and DNA demethylases by fumarate and succinate that are accumulated in mutations of FH and SDH tumor suppressors. Genes Dev. 26: 1326-38
    • (2012) Genes Dev. , vol.26 , pp. 1326-1338
    • Xiao, M.1    Yang, H.2    Xu, W.3    Ma, S.4    Lin, H.5
  • 123
    • 84938599103 scopus 로고    scopus 로고
    • Hypoxia-mediated increases in L-2-hydroxyglutarate coordinate the metabolic response to reductive stress
    • Oldham WM, Clish CB, Yang Y, Loscalzo J. 2015. Hypoxia-mediated increases in L-2-hydroxyglutarate coordinate the metabolic response to reductive stress. Cell Metab. 22: 291-303
    • (2015) Cell Metab. , vol.22 , pp. 291-303
    • Oldham, W.M.1    Clish, C.B.2    Yang, Y.3    Loscalzo, J.4
  • 125
    • 0029160069 scopus 로고
    • Protein kinase B (c-Akt) in phosphatidylinositol-3-OH kinase signal transduction
    • Burgering BM, Coffer PJ. 1995. Protein kinase B (c-Akt) in phosphatidylinositol-3-OH kinase signal transduction. Nature 376: 599-602
    • (1995) Nature , vol.376 , pp. 599-602
    • Burgering, B.M.1    Coffer, P.J.2
  • 126
    • 0032578999 scopus 로고    scopus 로고
    • Protein kinase B kinases that mediate phosphatidylinositol 3, 4, 5-trisphosphate-dependent activation of protein kinase B
    • Stephens L, Anderson K, Stokoe D, Erdjument-Bromage H, Painter GF, et al. 1998. Protein kinase B kinases that mediate phosphatidylinositol 3, 4, 5-trisphosphate-dependent activation of protein kinase B. Science 279: 710-14
    • (1998) Science , vol.279 , pp. 710-714
    • Stephens, L.1    Anderson, K.2    Stokoe, D.3    Erdjument-Bromage, H.4    Painter, G.F.5
  • 128
    • 84951070852 scopus 로고    scopus 로고
    • OncogenicMyc induces expression of glutamine synthetase through promoter demethylation
    • Bott AJ, Peng I-C, Fan Y, Faubert B, Zhao L, et al. 2015. OncogenicMyc induces expression of glutamine synthetase through promoter demethylation. Cell Metab. 22: 1068-77
    • (2015) Cell Metab. , vol.22 , pp. 1068-1077
    • Bott, A.J.1    Peng, I.-C.2    Fan, Y.3    Faubert, B.4    Zhao, L.5
  • 129
    • 80052338863 scopus 로고    scopus 로고
    • Glutamine synthetase is a genetic determinant of cell type-specific glutamine independence in breast epithelia
    • Kung H-N, Marks JR, Chi J-T. 2011. Glutamine synthetase is a genetic determinant of cell type-specific glutamine independence in breast epithelia. PLOS Genet. 7: e1002229
    • (2011) PLOS Genet. , vol.7 , pp. e1002229
    • Kung, H.-N.1    Marks, J.R.2    Chi, J.-T.3
  • 131
    • 84920415711 scopus 로고    scopus 로고
    • The role for autophagy in cancer
    • White E. 2015. The role for autophagy in cancer. J. Clin. Investig. 125: 42-46
    • (2015) J. Clin. Investig. , vol.125 , pp. 42-46
    • White, E.1
  • 132
    • 84920407208 scopus 로고    scopus 로고
    • Development of autophagy inducers in clinical medicine
    • Levine B, Packer M, Codogno P. 2015. Development of autophagy inducers in clinical medicine. J. Clin. Investig. 12514-24
    • (2015) J. Clin. Investig. , pp. 12514-12524
    • Levine, B.1    Packer, M.2    Codogno, P.3
  • 133
    • 84885350394 scopus 로고    scopus 로고
    • Autophagy sustains mitochondrial glutaminemetabolism and growth of BRAFV600E-driven lung tumors
    • Strohecker AM, Guo JY, Karsli-Uzunbas G, Price SM, Chen GJ, et al. 2013. Autophagy sustains mitochondrial glutaminemetabolism and growth of BRAFV600E-driven lung tumors. Cancer Discov. 3: 1272-85
    • (2013) Cancer Discov. , vol.3 , pp. 1272-1285
    • Strohecker, A.M.1    Guo, J.Y.2    Karsli-Uzunbas, G.3    Price, S.M.4    Chen, G.J.5
  • 134
    • 84878464291 scopus 로고    scopus 로고
    • Hypoxic and Ras-transformed cells support growth by scavenging unsaturated fatty acids from lysophospholipids
    • Kamphorst JJ, Cross JR, Fan J, de Stanchina E, Mathew R, et al. 2013. Hypoxic and Ras-transformed cells support growth by scavenging unsaturated fatty acids from lysophospholipids. PNAS 110: 8882-87
    • (2013) PNAS , vol.110 , pp. 8882-8887
    • Kamphorst, J.J.1    Cross, J.R.2    Fan, J.3    De Stanchina, E.4    Mathew, R.5
  • 136
    • 84964445423 scopus 로고    scopus 로고
    • Tumor microenvironment derived exosomes pleiotropically modulate cancer cell metabolism
    • Zhao H, Yang L, Baddour J, Achreja A, Bernard V, et al. 2016. Tumor microenvironment derived exosomes pleiotropically modulate cancer cell metabolism. eLife 5: e10250
    • (2016) ELife , vol.5 , pp. e10250
    • Zhao, H.1    Yang, L.2    Baddour, J.3    Achreja, A.4    Bernard, V.5
  • 137
    • 84858590826 scopus 로고    scopus 로고
    • Accessories to the crime: Functions of cells recruited to the tumor microenvironment
    • Hanahan D, Coussens LM. 2012. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 21: 309-22
    • (2012) Cancer Cell , vol.21 , pp. 309-322
    • Hanahan, D.1    Coussens, L.M.2
  • 138
    • 84897544161 scopus 로고    scopus 로고
    • Catabolic cancer-associated fibroblasts transfer energy and biomass to anabolic cancer cells, fueling tumor growth
    • Martinez-Outschoorn UE, Lisanti MP, Sotgia F. 2014. Catabolic cancer-associated fibroblasts transfer energy and biomass to anabolic cancer cells, fueling tumor growth. Semin. Cancer Biol. 25: 47-60
    • (2014) Semin. Cancer Biol. , vol.25 , pp. 47-60
    • Martinez-Outschoorn, U.E.1    Lisanti, M.P.2    Sotgia, F.3
  • 139
    • 84883575585 scopus 로고    scopus 로고
    • Oncogenes induce the cancer-associated fibroblast phenotype: Metabolic symbiosis and "fibroblast addiction" are new therapeutic targets for drug discovery
    • Lisanti MP, Martinez-Outschoorn UE, Sotgia F. 2013. Oncogenes induce the cancer-associated fibroblast phenotype: Metabolic symbiosis and "fibroblast addiction" are new therapeutic targets for drug discovery. Cell Cycle 12: 2723-32
    • (2013) Cell Cycle , vol.12 , pp. 2723-2732
    • Lisanti, M.P.1    Martinez-Outschoorn, U.E.2    Sotgia, F.3
  • 140
    • 84994680371 scopus 로고    scopus 로고
    • Targeting stromal glutamine synthetase in tumors disrupts tumor microenvironment-regulated cancer cell growth
    • Yang L, Achreja A, Yeung TL, Mangala LS, JiangD, et al. 2016. Targeting stromal glutamine synthetase in tumors disrupts tumor microenvironment-regulated cancer cell growth. Cell Metab. 24: 685-700
    • (2016) Cell Metab. , vol.24 , pp. 685-700
    • Yang, L.1    Achreja, A.2    Yeung, T.L.3    Mangala, L.S.4    Jiang, D.5
  • 141
    • 20244376908 scopus 로고    scopus 로고
    • Progress and promise of FDG-PET imaging for cancer patient management and oncologic drug development
    • Kelloff GJ, Hoffman JM, Johnson B, ScherHI, Siegel BA, et al. 2005. Progress and promise of FDG-PET imaging for cancer patient management and oncologic drug development. Clin. Cancer Res. 11: 2785-808
    • (2005) Clin. Cancer Res. , vol.11 , pp. 2785-2808
    • Kelloff, G.J.1    Hoffman, J.M.2    Johnson, B.3    Scher, H.I.4    Siegel, B.A.5
  • 142
    • 0021798805 scopus 로고
    • Prediction of survival in glioma patients by means of positron emission tomography
    • Patronas NJ, Di Chiro G, Kufta C, Bairamian D, Kornblith PL, et al. 1985. Prediction of survival in glioma patients by means of positron emission tomography. J. Neurosurg. 62: 816-22
    • (1985) J. Neurosurg. , vol.62 , pp. 816-822
    • Patronas, N.J.1    Di Chiro, G.2    Kufta, C.3    Bairamian, D.4    Kornblith, P.L.5
  • 143
    • 84885759123 scopus 로고    scopus 로고
    • Prognostic significance of 2-hydroxyglutarate levels in acute myeloid leukemia in China
    • Wang J-H, Chen W-L, Li J-M, Wu S-F, Chen T-L, et al. 2013. Prognostic significance of 2-hydroxyglutarate levels in acute myeloid leukemia in China. PNAS 110: 17017-22
    • (2013) PNAS , vol.110 , pp. 17017-17022
    • Wang, J.-H.1    Chen, W.-L.2    Li, J.-M.3    Wu, S.-F.4    Chen, T.-L.5
  • 144
    • 83755168277 scopus 로고    scopus 로고
    • PET imaging of glutaminolysis in tumors by 18F-(2S, 4R)4-fluoroglutamine
    • Lieberman BP, Ploessl K, Wang L, Qu W, Zha Z, et al. 2011. PET imaging of glutaminolysis in tumors by 18F-(2S, 4R)4-fluoroglutamine. J. Nucl. Med. 52: 1947-55
    • (2011) J. Nucl. Med. , vol.52 , pp. 1947-1955
    • Lieberman, B.P.1    Ploessl, K.2    Wang, L.3    Qu, W.4    Zha, Z.5
  • 145
    • 79851483342 scopus 로고    scopus 로고
    • Synthesis of optically pure 4-fluoroglutamines as potential metabolic imaging agents for tumors
    • Qu W, Zha Z, Ploessl K, Lieberman BP, Zhu L, et al. 2011. Synthesis of optically pure 4-fluoroglutamines as potential metabolic imaging agents for tumors. J. Am. Chem. Soc. 133: 1122-33
    • (2011) J. Am. Chem. Soc. , vol.133 , pp. 1122-1133
    • Qu, W.1    Zha, Z.2    Ploessl, K.3    Lieberman, B.P.4    Zhu, L.5
  • 146
    • 84922634886 scopus 로고    scopus 로고
    • [18F](2S, 4S)-4-(3-Fluoropropyl)glutamine as a tumor imaging agent
    • Wu Z, Zha Z, Li G, Lieberman BP, Choi SR, et al. 2014. [18F](2S, 4S)-4-(3-Fluoropropyl)glutamine as a tumor imaging agent. Mol. Pharm. 11: 3852-66
    • (2014) Mol. Pharm. , vol.11 , pp. 3852-3866
    • Wu, Z.1    Zha, Z.2    Li, G.3    Lieberman, B.P.4    Choi, S.R.5
  • 147
    • 84926661140 scopus 로고    scopus 로고
    • Glutamine-based PET imaging facilitates enhanced metabolic evaluation of gliomas in vivo
    • Venneti S, Dunphy MP, Zhang H, Pitter KL, Zanzonico P, et al. 2015. Glutamine-based PET imaging facilitates enhanced metabolic evaluation of gliomas in vivo. Sci. Transl. Med. 7: 274ra17
    • (2015) Sci. Transl. Med. , vol.7 , pp. 274ra17
    • Venneti, S.1    Dunphy, M.P.2    Zhang, H.3    Pitter, K.L.4    Zanzonico, P.5
  • 148
    • 84867036906 scopus 로고    scopus 로고
    • Comparative evaluation of 18F-labeled glutamic acid and glutamine as tumor metabolic imaging agents
    • Ploessl K, Wang L, Lieberman BP, Qu W, Kung HF. 2012. Comparative evaluation of 18F-labeled glutamic acid and glutamine as tumor metabolic imaging agents. J. Nucl. Med. 53: 1616-24
    • (2012) J. Nucl. Med. , vol.53 , pp. 1616-1624
    • Ploessl, K.1    Wang, L.2    Lieberman, B.P.3    Qu, W.4    Kung, H.F.5
  • 149
    • 79952154676 scopus 로고    scopus 로고
    • Metabolic tumor imaging using magnetic resonance spectroscopy
    • Glunde K, Bhujwalla ZM. 2011. Metabolic tumor imaging using magnetic resonance spectroscopy. Semin. Oncol. 38: 26-41
    • (2011) Semin. Oncol. , vol.38 , pp. 26-41
    • Glunde, K.1    Bhujwalla, Z.M.2
  • 152
    • 74049134924 scopus 로고    scopus 로고
    • Role of proton magnetic resonance spectroscopy in differentiating oligodendrogliomas from astrocytomas
    • Chawla S, Oleaga L, Wang S, Krejza J, Wolf RL, et al. 2010. Role of proton magnetic resonance spectroscopy in differentiating oligodendrogliomas from astrocytomas. J. Neuroimaging 20: 3-8
    • (2010) J. Neuroimaging , vol.20 , pp. 3-8
    • Chawla, S.1    Oleaga, L.2    Wang, S.3    Krejza, J.4    Wolf, R.L.5
  • 153
    • 35349022542 scopus 로고    scopus 로고
    • Arterial spin-labeling and MR spectroscopy in the differentiation of gliomas
    • Chawla S, Wang S, Wolf RL, Woo JH, Wang J, et al. 2007. Arterial spin-labeling and MR spectroscopy in the differentiation of gliomas. Am. J. Neuroradiol. 28: 1683-89
    • (2007) Am. J. Neuroradiol. , vol.28 , pp. 1683-1689
    • Chawla, S.1    Wang, S.2    Wolf, R.L.3    Woo, J.H.4    Wang, J.5
  • 154
    • 16644397087 scopus 로고    scopus 로고
    • Brain tumor classification by proton MR spectroscopy: Comparison of diagnostic accuracy at short and long TE
    • Majós C, Julià-Sapé M, Alonso J, Serrallonga M, Aguilera C, et al. 2004. Brain tumor classification by proton MR spectroscopy: comparison of diagnostic accuracy at short and long TE. Am. J. Neuroradiol. 25: 1696-704
    • (2004) Am. J. Neuroradiol. , vol.25 , pp. 1696-1704
    • Majós, C.1    Julià-Sapé, M.2    Alonso, J.3    Serrallonga, M.4    Aguilera, C.5
  • 157
    • 84863011452 scopus 로고    scopus 로고
    • The metabolic profile of tumors depends on both the responsible genetic lesion and tissue type
    • Yuneva MO, Fan TWM, Allen TD, Higashi RM, Ferraris DV, et al. 2012. The metabolic profile of tumors depends on both the responsible genetic lesion and tissue type. Cell Metab. 15: 157-70
    • (2012) Cell Metab. , vol.15 , pp. 157-170
    • Yuneva, M.O.1    Fan, T.W.M.2    Allen, T.D.3    Higashi, R.M.4    Ferraris, D.V.5
  • 158
    • 84862016091 scopus 로고    scopus 로고
    • Analysis of tumor metabolism reveals mitochondrial glucose oxidation in genetically diverse human glioblastomas in the mouse brain in vivo
    • Marin-Valencia I, Yang C, MashimoT, Cho S, Baek H, et al. 2012. Analysis of tumor metabolism reveals mitochondrial glucose oxidation in genetically diverse human glioblastomas in the mouse brain in vivo. Cell Metab. 15: 827-37
    • (2012) Cell Metab. , vol.15 , pp. 827-837
    • Marin-Valencia, I.1    Yang, C.2    Mashimo, T.3    Cho, S.4    Baek, H.5
  • 159
    • 84919903877 scopus 로고    scopus 로고
    • Acetate is a bioenergetic substrate for human glioblastoma and brain metastases
    • Mashimo T, Pichumani K, Vemireddy V, Hatanpaa KJ, Singh DK, et al. 2014. Acetate is a bioenergetic substrate for human glioblastoma and brain metastases. Cell 159: 1603-14
    • (2014) Cell , vol.159 , pp. 1603-1614
    • Mashimo, T.1    Pichumani, K.2    Vemireddy, V.3    Hatanpaa, K.J.4    Singh, D.K.5
  • 161
    • 84948701108 scopus 로고    scopus 로고
    • Glutamine synthetase activity fuels nucleotide biosynthesis and supports growth of glutamine-restricted glioblastoma
    • Tardito S, Oudin A, Ahmed SU, Fack F, Keunen O, et al. 2015. Glutamine synthetase activity fuels nucleotide biosynthesis and supports growth of glutamine-restricted glioblastoma. Nat. Cell Biol. 17: 1556-68
    • (2015) Nat. Cell Biol. , vol.17 , pp. 1556-1568
    • Tardito, S.1    Oudin, A.2    Ahmed, S.U.3    Fack, F.4    Keunen, O.5
  • 163
    • 84907487069 scopus 로고    scopus 로고
    • Hyperpolarized 13C MR for molecular imaging of prostate cancer
    • Wilson DM, Kurhanewicz J. 2014. Hyperpolarized 13C MR for molecular imaging of prostate cancer. J. Nucl. Med. 55: 1567-72
    • (2014) J. Nucl. Med. , vol.55 , pp. 1567-1572
    • Wilson, D.M.1    Kurhanewicz, J.2
  • 164
    • 0042763165 scopus 로고    scopus 로고
    • Increase in signal-tonoise ratio of >10, 000 times in liquid-state NMR
    • Ardenkjaer-Larsen JH, Fridlund B, Gram A, Hansson G, Hansson L, et al. 2003. Increase in signal-tonoise ratio of >10, 000 times in liquid-state NMR. PNAS 100: 10158-63
    • (2003) PNAS , vol.100 , pp. 10158-10163
    • Ardenkjaer-Larsen, J.H.1    Fridlund, B.2    Gram, A.3    Hansson, G.4    Hansson, L.5
  • 165
    • 49049096675 scopus 로고    scopus 로고
    • 13C MR spectroscopy measurements of glutaminase activity in human hepatocellular carcinoma cells using hyperpolarized 13C-labeled glutamine
    • Gallagher FA, Kettunen MI, Day SE, Lerche M, Brindle KM. 2008. 13C MR spectroscopy measurements of glutaminase activity in human hepatocellular carcinoma cells using hyperpolarized 13C-labeled glutamine. Magn. Reson. Med. 60: 253-57
    • (2008) Magn. Reson. Med. , vol.60 , pp. 253-257
    • Gallagher, F.A.1    Kettunen, M.I.2    Day, S.E.3    Lerche, M.4    Brindle, K.M.5
  • 166
    • 84885597727 scopus 로고    scopus 로고
    • In vivo and in vitro liver cancer metabolism observed with hyperpolarized [5-13C]glutamine
    • Cabella C, KarlssonM, Canapè C, Catanzaro G, Colombo Serra S, et al. 2013. In vivo and in vitro liver cancer metabolism observed with hyperpolarized [5-13C]glutamine. J. Magn. Reson. 232: 45-52
    • (2013) J. Magn. Reson. , vol.232 , pp. 45-52
    • Cabella, C.1    Karlsson, M.2    Canapè, C.3    Catanzaro, G.4    Colombo Serra, S.5
  • 167
    • 80053237267 scopus 로고    scopus 로고
    • Exchange facilitated indirect detection of hyperpolarized 15ND2-amido-glutamine
    • Barb AW, Hekmatyar SK, Glushka JN, Prestegard JH. 2011. Exchange facilitated indirect detection of hyperpolarized 15ND2-amido-glutamine. J. Magn. Reson. 212: 304-10
    • (2011) J. Magn. Reson. , vol.212 , pp. 304-310
    • Barb, A.W.1    Hekmatyar, S.K.2    Glushka, J.N.3    Prestegard, J.H.4
  • 168
    • 84873363313 scopus 로고    scopus 로고
    • SLC1A5 mediates glutamine transport required for lung cancer cell growth and survival
    • Hassanein M, Hoeksema MD, Shiota M, Qian J, Harris BK, et al. 2013. SLC1A5 mediates glutamine transport required for lung cancer cell growth and survival. Clin. Cancer Res. 19: 560-70
    • (2013) Clin. Cancer Res. , vol.19 , pp. 560-570
    • Hassanein, M.1    Hoeksema, M.D.2    Shiota, M.3    Qian, J.4    Harris, B.K.5
  • 169
    • 84943399154 scopus 로고    scopus 로고
    • Targeting SLC1A5-mediated glutamine dependence in non-small-cell lung cancer
    • Hassanein M, Qian J, Hoeksema MD, Wang J, JacobovitzM, et al. 2015. Targeting SLC1A5-mediated glutamine dependence in non-small-cell lung cancer. Int. J. Cancer 137: 1587-97
    • (2015) Int. J. Cancer , vol.137 , pp. 1587-1597
    • Hassanein, M.1    Qian, J.2    Hoeksema, M.D.3    Wang, J.4    Jacobovitz, M.5
  • 170
    • 34548789512 scopus 로고    scopus 로고
    • Novel mechanism of inhibition of rat kidney-type glutaminase by bis-2-(5-phenylacetamido-1, 2, 4-thiadiazol-2-yl)ethyl sulfide (BPTES)
    • Robinson MM, McBryant SJ, Tsukamoto T, Rojas C, Ferraris DV, et al. 2007. Novel mechanism of inhibition of rat kidney-type glutaminase by bis-2-(5-phenylacetamido-1, 2, 4-thiadiazol-2-yl)ethyl sulfide (BPTES). Biochem. J. 406: 407-14
    • (2007) Biochem. J. , vol.406 , pp. 407-414
    • Robinson, M.M.1    McBryant, S.J.2    Tsukamoto, T.3    Rojas, C.4    Ferraris, D.V.5
  • 171
    • 84904645105 scopus 로고    scopus 로고
    • Antitumor activity of the glutaminase inhibitor CB-839 in triple-negative breast cancer
    • Gross MI, Demo SD, Dennison JB, Chen L, Chernov-Rogan T, et al. 2014. Antitumor activity of the glutaminase inhibitor CB-839 in triple-negative breast cancer. Mol. Cancer Ther. 13: 890-901
    • (2014) Mol. Cancer Ther. , vol.13 , pp. 890-901
    • Gross, M.I.1    Demo, S.D.2    Dennison, J.B.3    Chen, L.4    Chernov-Rogan, T.5
  • 172
    • 77956497712 scopus 로고    scopus 로고
    • Targeting mitochondrial glutaminase activity inhibits oncogenic transformation
    • Wang J-B, Erickson JW, Fuji R, Ramachandran S, Gao P, et al. 2010. Targeting mitochondrial glutaminase activity inhibits oncogenic transformation. Cancer Cell 18: 207-19
    • (2010) Cancer Cell , vol.18 , pp. 207-219
    • Wang, J.-B.1    Erickson, J.W.2    Fuji, R.3    Ramachandran, S.4    Gao, P.5
  • 174
    • 33744527647 scopus 로고    scopus 로고
    • Green tea polyphenols modulate insulin secretion by inhibiting glutamate dehydrogenase
    • Li C, Allen A, Kwagh J, Doliba NM, Qin W, et al. 2006. Green tea polyphenols modulate insulin secretion by inhibiting glutamate dehydrogenase. J. Biol. Chem. 281: 10214-21
    • (2006) J. Biol. Chem. , vol.281 , pp. 10214-10221
    • Li, C.1    Allen, A.2    Kwagh, J.3    Doliba, N.M.4    Qin, W.5
  • 175
    • 84942849765 scopus 로고    scopus 로고
    • Targeting glutamine metabolism in breast cancer with aminooxyacetate
    • Korangath P, TeoWW, SadikH, Han L, Mori N, et al. 2015. Targeting glutamine metabolism in breast cancer with aminooxyacetate. Clin. Cancer Res. 3263-73
    • (2015) Clin. Cancer Res. , pp. 3263-3273
    • Korangath, P.1    Teo, W.W.2    Sadik, H.3    Han, L.4    Mori, N.5
  • 176
    • 78651010566 scopus 로고
    • Temporary remissions in acute leukemia in children produced by folic acid antagonist, 4-aminopteroyl-glutamic acid (aminopterin)
    • Farber S, Diamond LK, Mercer RD, Sylvester RFJ, Wolff JA. 1948. Temporary remissions in acute leukemia in children produced by folic acid antagonist, 4-aminopteroyl-glutamic acid (aminopterin). N. Engl. J. Med. 238: 787-93
    • (1948) N. Engl. J. Med. , vol.238 , pp. 787-793
    • Farber, S.1    Diamond, L.K.2    Mercer, R.D.3    Sylvester, R.F.J.4    Wolff, J.A.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.