-
1
-
-
66249108601
-
Understanding the Warburg effect: The metabolic requirements of cell proliferation
-
Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 2009;324:1029-33.
-
(2009)
Science
, vol.324
, pp. 1029-1033
-
-
Vander Heiden, M.G.1
Cantley, L.C.2
Thompson, C.B.3
-
2
-
-
79955398591
-
Otto Warburg's contributions to current concepts of cancer metabolism
-
Koppenol WH, Bounds PL, Dang CV. Otto Warburg's contributions to current concepts of cancer metabolism. Nat Rev Cancer 2011;11:325-37.
-
(2011)
Nat Rev Cancer
, vol.11
, pp. 325-337
-
-
Koppenol, W.H.1
Bounds, P.L.2
Dang, C.V.3
-
3
-
-
77955281020
-
Glutamine addiction: A new therapeutic target in cancer
-
Wise DR, Thompson CB. Glutamine addiction: a new therapeutic target in cancer. Trends Biochem Sci 2010;35:427-33.
-
(2010)
Trends Biochem Sci
, vol.35
, pp. 427-433
-
-
Wise, D.R.1
Thompson, C.B.2
-
4
-
-
84883497454
-
Glutamine and cancer: Cell biology, physiology, and clinical opportunities
-
Hensley CT, Wasti AT, Deberardinis RJ. Glutamine and cancer: cell biology, physiology, and clinical opportunities. J Clin Invest 2013;123:3678-84.
-
(2013)
J Clin Invest
, vol.123
, pp. 3678-3684
-
-
Hensley, C.T.1
Wasti, A.T.2
Deberardinis, R.J.3
-
5
-
-
64749116346
-
C-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism
-
Gao P, Tchernyshyov I, Chang TC, Lee YS, Kita K, Ochi T, et al. c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature 2009;458:762-5.
-
(2009)
Nature
, vol.458
, pp. 762-765
-
-
Gao, P.1
Tchernyshyov, I.2
Chang, T.C.3
Lee, Y.S.4
Kita, K.5
Ochi, T.6
-
6
-
-
77957937428
-
Targeting mitochondrial glutaminase activity inhibits oncogenic transformation
-
Wang JB, Erickson JW, Fuji R, Ramachandran S, Gao P, Dinavahi R, et al. Targeting mitochondrial glutaminase activity inhibits oncogenic transformation. Cancer Cell 2010;18:207-19.
-
(2010)
Cancer Cell
, vol.18
, pp. 207-219
-
-
Wang, J.B.1
Erickson, J.W.2
Fuji, R.3
Ramachandran, S.4
Gao, P.5
Dinavahi, R.6
-
7
-
-
78549283855
-
Inhibition of glutaminase preferentially slows growth of glioma cells with mutant IDH1
-
Seltzer MJ, Bennett BD, Joshi AD, Gao P, Thomas AG, Ferraris DV, et al. Inhibition of glutaminase preferentially slows growth of glioma cells with mutant IDH1. Cancer Res 2010;70:8981-7.
-
(2010)
Cancer Res
, vol.70
, pp. 8981-8987
-
-
Seltzer, M.J.1
Bennett, B.D.2
Joshi, A.D.3
Gao, P.4
Thomas, A.G.5
Ferraris, D.V.6
-
8
-
-
79957774646
-
Pyruvate carboxylase is required for glutamine-independent growth of tumor cells
-
Cheng T, Sudderth J, Yang C, Mullen AR, Jin ES, Mates JM, et al. Pyruvate carboxylase is required for glutamine-independent growth of tumor cells. Proc Natl Acad Sci U S A 2011;108:8674-9.
-
(2011)
Proc Natl Acad Sci U S a
, vol.108
, pp. 8674-8679
-
-
Cheng, T.1
Sudderth, J.2
Yang, C.3
Mullen, A.R.4
Jin, E.S.5
Mates, J.M.6
-
9
-
-
84855453655
-
Glucoseindependent glutamine metabolism via TCA cycling for proliferation and survival in B cells
-
Le A, Lane A, Hamaker M, Bose S, Gouw A, Barbi J, et al. Glucoseindependent glutamine metabolism via TCA cycling for proliferation and survival in B cells. Cell Metabolism 2012;15:110-21.
-
(2012)
Cell Metabolism
, vol.15
, pp. 110-121
-
-
Le, A.1
Lane, A.2
Hamaker, M.3
Bose, S.4
Gouw, A.5
Barbi, J.6
-
10
-
-
84867130104
-
Analysis of glutamine dependency in non-small cell lung cancer: GLS1 splice variant GAC is essential for cancer cell growth
-
van den Heuvel AP, Jing J, Wooster RF, Bachman KE. Analysis of glutamine dependency in non-small cell lung cancer: GLS1 splice variant GAC is essential for cancer cell growth. Cancer Biol Ther 2012;13:1185-94.
-
(2012)
Cancer Biol Ther
, vol.13
, pp. 1185-1194
-
-
Van Den Heuvel, A.P.1
Jing, J.2
Wooster, R.F.3
Bachman, K.E.4
-
11
-
-
84863011452
-
The metabolic profile of tumors depends on both the responsible genetic lesion and tissue type
-
Yuneva MO, Fan TW, Allen TD, Higashi RM, Ferraris DV, Tsukamoto T, et al. The metabolic profile of tumors depends on both the responsible genetic lesion and tissue type. Cell Metab 2012;15:157-70.
-
(2012)
Cell Metab
, vol.15
, pp. 157-170
-
-
Yuneva, M.O.1
Fan, T.W.2
Allen, T.D.3
Higashi, R.M.4
Ferraris, D.V.5
Tsukamoto, T.6
-
12
-
-
84875894714
-
Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway
-
Son J, Lyssiotis CA, Ying H, Wang X, Hua S, Ligorio M, et al. Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature 2013;496:101-5.
-
(2013)
Nature
, vol.496
, pp. 101-105
-
-
Son, J.1
Lyssiotis, C.A.2
Ying, H.3
Wang, X.4
Hua, S.5
Ligorio, M.6
-
13
-
-
84875354450
-
In vivo HIF-mediated reductive carboxylation is regulated by citrate levels and sensitizes VHL-deficient cells to glutamine deprivation
-
Gameiro PA, Yang J, Metelo AM, Perez-Carro R, Baker R, Wang Z, et al. In vivo HIF-mediated reductive carboxylation is regulated by citrate levels and sensitizes VHL-deficient cells to glutamine deprivation. Cell Metab 2013;17:372-85.
-
(2013)
Cell Metab
, vol.17
, pp. 372-385
-
-
Gameiro, P.A.1
Yang, J.2
Metelo, A.M.3
Perez-Carro, R.4
Baker, R.5
Wang, Z.6
-
14
-
-
84885378901
-
Glutamine sensitivity analysis identifies the xCT Antiporter as a common triple-negative breast tumor therapeutic target
-
Timmerman LA, Holton T, Yuneva M, Louie RJ, Padro M, Daemen A, et al. Glutamine sensitivity analysis identifies the xCT Antiporter as a common triple-negative breast tumor therapeutic target. Cancer Cell 2013;24:450-65.
-
(2013)
Cancer Cell
, vol.24
, pp. 450-465
-
-
Timmerman, L.A.1
Holton, T.2
Yuneva, M.3
Louie, R.J.4
Padro, M.5
Daemen, A.6
-
15
-
-
84856374900
-
Mitochondrial localization and structure-based phosphate activation mechanism of glutaminase C with implications for cancer metabolism
-
Cassago A, Ferreira AP, Ferreira IM, Fornezari C, Gomes ER, Greene KS, et al. Mitochondrial localization and structure-based phosphate activation mechanism of glutaminase C with implications for cancer metabolism. Proc Natl Acad Sci U S A 2012;109:1092-7.
-
(2012)
Proc Natl Acad Sci U S a
, vol.109
, pp. 1092-1097
-
-
Cassago, A.1
Ferreira, A.P.2
Ferreira, I.M.3
Fornezari, C.4
Gomes, E.R.5
Greene, K.S.6
-
16
-
-
80052338863
-
Glutamine synthetase is a genetic determinant of cell type-specific glutamine independence in breast epithelia
-
Kung HN, Marks JR, Chi JT. Glutamine synthetase is a genetic determinant of cell type-specific glutamine independence in breast epithelia. PLoS Genet 2011;7:e1002229.
-
(2011)
PLoS Genet
, vol.7
-
-
Kung, H.N.1
Marks, J.R.2
Chi, J.T.3
-
17
-
-
0018698892
-
Azaserine, DON, and azotomycin: Three diazo analogs of L-glutamine with clinical antitumor activity
-
Catane R, Von Hoff DD, Glaubiger DL, Muggia FM. Azaserine, DON, and azotomycin: three diazo analogs of L-glutamine with clinical antitumor activity. Cancer Treat Rep 1979;63:1033-8.
-
(1979)
Cancer Treat Rep
, vol.63
, pp. 1033-1038
-
-
Catane, R.1
Von Hoff, D.D.2
Glaubiger, D.L.3
Muggia, F.M.4
-
18
-
-
34548789512
-
Novel mechanism of inhibition of rat kidney-type glutaminase by bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl sulfide (BPTES)
-
Robinson MM, McBryant SJ, Tsukamoto T, Rojas C, Ferraris DV, Hamilton SK, et al. Novel mechanism of inhibition of rat kidney-type glutaminase by bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl sulfide (BPTES). Biochem J 2007;406:407-14.
-
(2007)
Biochem J
, vol.406
, pp. 407-414
-
-
Robinson, M.M.1
McBryant, S.J.2
Tsukamoto, T.3
Rojas, C.4
Ferraris, D.V.5
Hamilton, S.K.6
-
19
-
-
84870982915
-
Design, synthesis, and pharmacological evaluation of bis-2-(5- phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl sulfide 3 (BPTES) analogs as glutaminase inhibitors
-
Shukla K, Ferraris DV, Thomas AG, Stathis M, Duvall B, Delahanty G, et al. Design, synthesis, and pharmacological evaluation of bis-2-(5- phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl sulfide 3 (BPTES) analogs as glutaminase inhibitors. J Med Chem 2012;55:10551-63.
-
(2012)
J Med Chem
, vol.55
, pp. 10551-10563
-
-
Shukla, K.1
Ferraris, D.V.2
Thomas, A.G.3
Stathis, M.4
Duvall, B.5
Delahanty, G.6
-
21
-
-
84870504767
-
BPTES inhibition of hGA(124-551), a truncated form of human kidney-type glutaminase
-
Hartwick EW, Curthoys NP. BPTES inhibition of hGA(124-551), a truncated form of human kidney-type glutaminase. J Enzyme Inhib Med Chem 2012;27:861-7.
-
(2012)
J Enzyme Inhib Med Chem
, vol.27
, pp. 861-867
-
-
Hartwick, E.W.1
Curthoys, N.P.2
-
22
-
-
83455170880
-
Full-length human glutaminase in complex with an allosteric inhibitor
-
DeLaBarre B, Gross S, Fang C, Gao Y, Jha A, Jiang F, et al. Full-length human glutaminase in complex with an allosteric inhibitor. Biochemistry 2011;50:10764-70.
-
(2011)
Biochemistry
, vol.50
, pp. 10764-10770
-
-
Delabarre, B.1
Gross, S.2
Fang, C.3
Gao, Y.4
Jha, A.5
Jiang, F.6
-
23
-
-
84861209572
-
Structural basis for the allosteric inhibitory mechanism of human kidney-type glutaminase (KGA) and its regulation by Raf-Mek-Erk signaling in cancer cell metabolism
-
Thangavelu K, Pan C, Karlberg T, Balaji G, Uttamchandani M, Suresh V, et al. Structural basis for the allosteric inhibitory mechanism of human kidney-type glutaminase (KGA) and its regulation by Raf-Mek-Erk signaling in cancer cell metabolism. PNAS 2012;109:7705-10.
-
(2012)
PNAS
, vol.109
, pp. 7705-7710
-
-
Thangavelu, K.1
Pan, C.2
Karlberg, T.3
Balaji, G.4
Uttamchandani, M.5
Suresh, V.6
-
24
-
-
84892717735
-
ErbB2 activation upregulates glutaminase 1 expression which promotes breast cancer cell proliferation
-
Qie S, Chu C, Li W, Wang C, Sang N. ErbB2 activation upregulates glutaminase 1 expression which promotes breast cancer cell proliferation. J Cell Biochem 2014;115:498-509.
-
(2014)
J Cell Biochem
, vol.115
, pp. 498-509
-
-
Qie, S.1
Chu, C.2
Li, W.3
Wang, C.4
Sang, N.5
-
26
-
-
84940277145
-
Inventors; Calithera Biosciences I, assignee
-
United States patent US 8604016, Dec 10
-
Li J, Chen L, Goyal B, Laidig G, Stanton TF, Sjogren EB, inventors; Calithera Biosciences I, assignee. Heterocyclic inhibitors of glutaminase. United States patent US 8604016. 2013 Dec 10.
-
(2013)
Heterocyclic Inhibitors of Glutaminase
-
-
Li, J.1
Chen, L.2
Goyal, B.3
Laidig, G.4
Stanton, T.F.5
Sjogren, E.B.6
-
27
-
-
33845209913
-
A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes
-
Neve RM, Chin K, Fridlyand J, Yeh J, Baehner FL, Fevr T, et al. A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell 2006;10:515-27.
-
(2006)
Cancer Cell
, vol.10
, pp. 515-527
-
-
Neve, R.M.1
Chin, K.2
Fridlyand, J.3
Yeh, J.4
Baehner, F.L.5
Fevr, T.6
-
28
-
-
0001062019
-
Metabolism of amino-acids: The synthesis of glutamine from glutamic acid and ammonia, and the enzymic hydrolysis of glutamine in animal tissues
-
Krebs HA. Metabolism of amino-acids: the synthesis of glutamine from glutamic acid and ammonia, and the enzymic hydrolysis of glutamine in animal tissues. Biochem J 1935;29:1951-69.
-
(1935)
Biochem J
, vol.29
, pp. 1951-1969
-
-
Krebs, H.A.1
-
29
-
-
0029099953
-
Regulation of glutaminase activity and glutamine metabolism
-
Curthoys NP, Watford M. Regulation of glutaminase activity and glutamine metabolism. Annu Rev Nutr 1995;15:133-59.
-
(1995)
Annu Rev Nutr
, vol.15
, pp. 133-159
-
-
Curthoys, N.P.1
Watford, M.2
-
30
-
-
0022638764
-
Role of membrane transport in metabolism and function of glutathione in mammals
-
Bannai S, Tateishi N. Role of membrane transport in metabolism and function of glutathione in mammals. J Membr Biol 1986;89:1-8.
-
(1986)
J Membr Biol
, vol.89
, pp. 1-8
-
-
Bannai, S.1
Tateishi, N.2
-
31
-
-
84877028141
-
Comprehensive molecular portraits of human breast tumours
-
Cancer Genome Atlas Network
-
Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature 2012;490:61-70.
-
(2012)
Nature
, vol.490
, pp. 61-70
-
-
-
32
-
-
84859169877
-
The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity
-
Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S, et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 2012;483:603-7.
-
(2012)
Nature
, vol.483
, pp. 603-607
-
-
Barretina, J.1
Caponigro, G.2
Stransky, N.3
Venkatesan, K.4
Margolin, A.A.5
Kim, S.6
-
33
-
-
12344302247
-
Characterization of a novel cell line established from a patient with Herceptin-resistant breast cancer
-
Tanner M, Kapanen AI, Junttila T, Raheem O, Grenman S, Elo J, et al. Characterization of a novel cell line established from a patient with Herceptin-resistant breast cancer. Mol Cancer Ther 2004;3:1585-92.
-
(2004)
Mol Cancer Ther
, vol.3
, pp. 1585-1592
-
-
Tanner, M.1
Kapanen, A.I.2
Junttila, T.3
Raheem, O.4
Grenman, S.5
Elo, J.6
|