메뉴 건너뛰기




Volumn 111, Issue 52, 2014, Pages 18697-18702

A long noncoding RNA connects c-Myc to tumor metabolism

Author keywords

C Myc coactivator; LncRNA; Prostate cancer; Tumor metabolism

Indexed keywords

AMINO ACID; GLUCOSE; GLUTAMINE; LIPID; LONG UNTRANSLATED RNA; NUCLEOTIDE; PROSTATE CANCER GENE EXPRESSION MARKER 1; REDUCED NICOTINAMIDE ADENINE DINUCLEOTIDE PHOSPHATE; UNCLASSIFIED DRUG; ANDROGEN RECEPTOR; MYC PROTEIN; MYC PROTEIN, HUMAN; NICOTINAMIDE ADENINE DINUCLEOTIDE PHOSPHATE; PCGEM1 NON-CODING RNA, HUMAN; RNA;

EID: 84924590390     PISSN: 00278424     EISSN: 10916490     Source Type: Journal    
DOI: 10.1073/pnas.1415669112     Document Type: Article
Times cited : (259)

References (35)
  • 1
    • 78651390167 scopus 로고    scopus 로고
    • Long intergenic noncoding RNAs: New links in cancer progression
    • Tsai MC, Spitale RC, Chang HY (2011) Long intergenic noncoding RNAs: New links in cancer progression. Cancer Res 71(1):3-7.
    • (2011) Cancer Res , vol.71 , Issue.1 , pp. 3-7
    • Tsai, M.C.1    Spitale, R.C.2    Chang, H.Y.3
  • 2
    • 79953888460 scopus 로고    scopus 로고
    • The functional role of long non-coding RNA in human carcinomas
    • Gibb EA, Brown CJ, Lam WL (2011) The functional role of long non-coding RNA in human carcinomas. Mol Cancer 10:38.
    • (2011) Mol Cancer , vol.10 , pp. 38
    • Gibb, E.A.1    Brown, C.J.2    Lam, W.L.3
  • 3
    • 84867900638 scopus 로고    scopus 로고
    • Long non-coding RNAs and cancer: A new frontier of translational research?
    • Spizzo R, Almeida MI, Colombatti A, Calin GA (2012) Long non-coding RNAs and cancer: A new frontier of translational research? Oncogene 31(43):4577-4587.
    • (2012) Oncogene , vol.31 , Issue.43 , pp. 4577-4587
    • Spizzo, R.1    Almeida, M.I.2    Colombatti, A.3    Calin, G.A.4
  • 4
    • 84886252113 scopus 로고    scopus 로고
    • RNA in unexpected places: Long non-coding RNA functions in diverse cellular contexts
    • Geisler S, Coller J (2013) RNA in unexpected places: Long non-coding RNA functions in diverse cellular contexts. Nat Rev Mol Cell Biol 14(11):699-712.
    • (2013) Nat Rev Mol Cell Biol , vol.14 , Issue.11 , pp. 699-712
    • Geisler, S.1    Coller, J.2
  • 5
    • 12944252955 scopus 로고    scopus 로고
    • PCGEM1, a prostate-specific gene, is overexpressed in prostate cancer
    • Srikantan V, et al. (2000) PCGEM1, a prostate-specific gene, is overexpressed in prostate cancer. Proc Natl Acad Sci USA 97(22):12216-12221.
    • (2000) Proc Natl Acad Sci USA , vol.97 , Issue.22 , pp. 12216-12221
    • Srikantan, V.1
  • 6
    • 10744225687 scopus 로고    scopus 로고
    • Elevated expression of PCGEM1, a prostate-specific gene with cell growth-promoting function, is associated with high-risk prostate cancer patients
    • Petrovics G, et al. (2004) Elevated expression of PCGEM1, a prostate-specific gene with cell growth-promoting function, is associated with high-risk prostate cancer patients. Oncogene 23(2):605-611.
    • (2004) Oncogene , vol.23 , Issue.2 , pp. 605-611
    • Petrovics, G.1
  • 7
    • 33645532828 scopus 로고    scopus 로고
    • Regulation of apoptosis by a prostate-specific and prostate cancer-associated noncoding gene, PCGEM1
    • Fu X, Ravindranath L, Tran N, Petrovics G, Srivastava S (2006) Regulation of apoptosis by a prostate-specific and prostate cancer-associated noncoding gene, PCGEM1. DNA Cell Biol 25(3):135-141.
    • (2006) DNA Cell Biol , vol.25 , Issue.3 , pp. 135-141
    • Fu, X.1    Ravindranath, L.2    Tran, N.3    Petrovics, G.4    Srivastava, S.5
  • 8
    • 77956896027 scopus 로고    scopus 로고
    • LNCaP Atlas: Gene expression associated with in vivo progression to castration-recurrent prostate cancer
    • Romanuik TL, et al. (2010) LNCaP Atlas: Gene expression associated with in vivo progression to castration-recurrent prostate cancer. BMC Med Genomics 3:43.
    • (2010) BMC Med Genomics , vol.3 , pp. 43
    • Romanuik, T.L.1
  • 9
    • 84883132550 scopus 로고    scopus 로고
    • lncRNA-dependent mechanisms of androgen-receptor-regulated gene activation programs
    • Yang L, et al. (2013) lncRNA-dependent mechanisms of androgen-receptor-regulated gene activation programs. Nature 500(7464):598-602.
    • (2013) Nature , vol.500 , Issue.7464 , pp. 598-602
    • Yang, L.1
  • 10
    • 84904268650 scopus 로고    scopus 로고
    • The IncRNAs PCGEM1 and PRNCR1 are not implicated in castration resistant prostate cancer
    • Prensner JR, et al. (2014) The IncRNAs PCGEM1 and PRNCR1 are not implicated in castration resistant prostate cancer. Oncotarget 5(6):1434-1438.
    • (2014) Oncotarget , vol.5 , Issue.6 , pp. 1434-1438
    • Prensner, J.R.1
  • 11
    • 79960071366 scopus 로고    scopus 로고
    • The androgen receptor fuels prostate cancer by regulating central metabolism and biosynthesis
    • Massie CE, et al. (2011) The androgen receptor fuels prostate cancer by regulating central metabolism and biosynthesis. EMBO J 30(13):2719-2733.
    • (2011) EMBO J , vol.30 , Issue.13 , pp. 2719-2733
    • Massie, C.E.1
  • 12
    • 79251517382 scopus 로고    scopus 로고
    • Regulation of cancer cell metabolism
    • Cairns RA, Harris IS, Mak TW (2011) Regulation of cancer cell metabolism. Nat Rev Cancer 11(2):85-95.
    • (2011) Nat Rev Cancer , vol.11 , Issue.2 , pp. 85-95
    • Cairns, R.A.1    Harris, I.S.2    Mak, T.W.3
  • 13
    • 84858604270 scopus 로고    scopus 로고
    • Metabolic reprogramming: A cancer hallmark even Warburg did not anticipate
    • Ward PS, Thompson CB (2012) Metabolic reprogramming: A cancer hallmark even Warburg did not anticipate. Cancer Cell 21(3):297-308.
    • (2012) Cancer Cell , vol.21 , Issue.3 , pp. 297-308
    • Ward, P.S.1    Thompson, C.B.2
  • 14
    • 84881056831 scopus 로고    scopus 로고
    • MYC, metabolism, cell growth, and tumorigenesis
    • Dang CV (2013) MYC, metabolism, cell growth, and tumorigenesis. Cold Spring Harb Perspect Med 3(8):a014217.
    • (2013) Cold Spring Harb Perspect Med , vol.3 , Issue.8 , pp. a014217
    • Dang, C.V.1
  • 15
    • 67650417891 scopus 로고    scopus 로고
    • c-Myc activates multiple metabolic networks to generate substrates for cell-cycle entry
    • Morrish F, Isern N, Sadilek M, Jeffrey M, Hockenbery DM (2009) c-Myc activates multiple metabolic networks to generate substrates for cell-cycle entry. Oncogene 28(27):2485-2491.
    • (2009) Oncogene , vol.28 , Issue.27 , pp. 2485-2491
    • Morrish, F.1    Isern, N.2    Sadilek, M.3    Jeffrey, M.4    Hockenbery, D.M.5
  • 16
    • 56649107917 scopus 로고    scopus 로고
    • Analysis of Myc-induced histone modifications on target chromatin
    • Martinato F, Cesaroni M, Amati B, Guccione E (2008) Analysis of Myc-induced histone modifications on target chromatin. PLoS ONE 3(11):e3650.
    • (2008) PLoS ONE , vol.3 , Issue.11 , pp. e3650
    • Martinato, F.1    Cesaroni, M.2    Amati, B.3    Guccione, E.4
  • 17
    • 0035881472 scopus 로고    scopus 로고
    • Binding of c-Myc to chromatin mediates mitogen-induced acetylation of histone H4 and gene activation
    • Frank SR, Schroeder M, Fernandez P, Taubert S, Amati B (2001) Binding of c-Myc to chromatin mediates mitogen-induced acetylation of histone H4 and gene activation. Genes Dev 15(16):2069-2082.
    • (2001) Genes Dev , vol.15 , Issue.16 , pp. 2069-2082
    • Frank, S.R.1    Schroeder, M.2    Fernandez, P.3    Taubert, S.4    Amati, B.5
  • 18
    • 84860512005 scopus 로고    scopus 로고
    • Links between metabolism and cancer
    • Dang CV (2012) Links between metabolism and cancer. Genes Dev 26(9):877-890.
    • (2012) Genes Dev , vol.26 , Issue.9 , pp. 877-890
    • Dang, C.V.1
  • 19
    • 84869009687 scopus 로고    scopus 로고
    • How cancer metabolism is tuned for proliferation and vulnerable to disruption
    • Schulze A, Harris AL (2012) How cancer metabolism is tuned for proliferation and vulnerable to disruption. Nature 491(7424):364-373.
    • (2012) Nature , vol.491 , Issue.7424 , pp. 364-373
    • Schulze, A.1    Harris, A.L.2
  • 20
    • 12444279265 scopus 로고
    • On the origin of cancer cells
    • Warburg O (1956) On the origin of cancer cells. Science 123(3191):309-314.
    • (1956) Science , vol.123 , Issue.3191 , pp. 309-314
    • Warburg, O.1
  • 21
    • 0021792065 scopus 로고
    • The role of high rates of glycolysis and glutamine utilization in rapidly dividing cells
    • Newsholme EA, Crabtree B, Ardawi MS (1985) The role of high rates of glycolysis and glutamine utilization in rapidly dividing cells. Biosci Rep 5(5):393-400.
    • (1985) Biosci Rep , vol.5 , Issue.5 , pp. 393-400
    • Newsholme, E.A.1    Crabtree, B.2    Ardawi, M.S.3
  • 22
    • 66249108601 scopus 로고    scopus 로고
    • Understanding the Warburg effect: The metabolic requirements of cell proliferation
    • Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science 324(5930):1029-1033.
    • (2009) Science , vol.324 , Issue.5930 , pp. 1029-1033
    • Vander Heiden, M.G.1    Cantley, L.C.2    Thompson, C.B.3
  • 23
    • 77249119762 scopus 로고    scopus 로고
    • The landscape of somatic copy-number alteration across human cancers
    • Beroukhim R, et al. (2010) The landscape of somatic copy-number alteration across human cancers. Nature 463(7283):899-905.
    • (2010) Nature , vol.463 , Issue.7283 , pp. 899-905
    • Beroukhim, R.1
  • 24
    • 84876217788 scopus 로고    scopus 로고
    • Amplitude modulation of androgen signaling by c-MYC
    • Ni M, et al. (2013) Amplitude modulation of androgen signaling by c-MYC. Genes Dev 27(7):734-748.
    • (2013) Genes Dev , vol.27 , Issue.7 , pp. 734-748
    • Ni, M.1
  • 25
    • 0346690367 scopus 로고    scopus 로고
    • Myc confers androgen-independent prostate cancer cell growth
    • Bernard D, Pourtier-Manzanedo A, Gil J, Beach DH (2003) Myc confers androgen-independent prostate cancer cell growth. J Clin Invest 112(11):1724-1731.
    • (2003) J Clin Invest , vol.112 , Issue.11 , pp. 1724-1731
    • Bernard, D.1    Pourtier-Manzanedo, A.2    Gil, J.3    Beach, D.H.4
  • 26
    • 84877934286 scopus 로고    scopus 로고
    • Androgen receptor promotes ligand-independent prostate cancer progression through c-Myc upregulation
    • Gao L, et al. (2013) Androgen receptor promotes ligand-independent prostate cancer progression through c-Myc upregulation. PLoS ONE 8(5):e63563.
    • (2013) PLoS ONE , vol.8 , Issue.5 , pp. e63563
    • Gao, L.1
  • 27
    • 0026737229 scopus 로고
    • DNA binding activities of c-Myc purified from eukaryotic cells
    • Papoulas O, Williams NG, Kingston RE (1992) DNA binding activities of c-Myc purified from eukaryotic cells. J Biol Chem 267(15):10470-10480.
    • (1992) J Biol Chem , vol.267 , Issue.15 , pp. 10470-10480
    • Papoulas, O.1    Williams, N.G.2    Kingston, R.E.3
  • 28
    • 0026705929 scopus 로고
    • Max and c-Myc/Max DNA-binding activities in cell extracts
    • Littlewood TD, Amati B, Land H, Evan GI (1992) Max and c-Myc/Max DNA-binding activities in cell extracts. Oncogene 7(9):1783-1792.
    • (1992) Oncogene , vol.7 , Issue.9 , pp. 1783-1792
    • Littlewood, T.D.1    Amati, B.2    Land, H.3    Evan, G.I.4
  • 29
    • 33745737494 scopus 로고    scopus 로고
    • Myc-binding-site recognition in the human genome is determined by chromatin context
    • Guccione E, et al. (2006) Myc-binding-site recognition in the human genome is determined by chromatin context. Nat Cell Biol 8(7):764-770.
    • (2006) Nat Cell Biol , vol.8 , Issue.7 , pp. 764-770
    • Guccione, E.1
  • 30
    • 84892364858 scopus 로고    scopus 로고
    • Reciprocal regulation of HIF-1α and lincRNA-p21 modulates the Warburg effect
    • Yang F, Zhang H, Mei Y, Wu M (2014) Reciprocal regulation of HIF-1α and lincRNA-p21 modulates the Warburg effect. Mol Cell 53(1):88-100.
    • (2014) Mol Cell , vol.53 , Issue.1 , pp. 88-100
    • Yang, F.1    Zhang, H.2    Mei, Y.3    Wu, M.4
  • 31
    • 84899939074 scopus 로고    scopus 로고
    • Human colorectal cancer-specific CCAT1-L lncRNA regulates long-range chromatin interactions at the MYC locus
    • Xiang JF, et al. (2014) Human colorectal cancer-specific CCAT1-L lncRNA regulates long-range chromatin interactions at the MYC locus. Cell Res 24(5):513-531.
    • (2014) Cell Res , vol.24 , Issue.5 , pp. 513-531
    • Xiang, J.F.1
  • 32
    • 84897030519 scopus 로고    scopus 로고
    • Long non-coding RNA GHET1 promotes gastric carcinoma cell proliferation by increasing c-Myc mRNA stability
    • Yang F, et al. (2014) Long non-coding RNA GHET1 promotes gastric carcinoma cell proliferation by increasing c-Myc mRNA stability. FEBS J 281(3):802-813.
    • (2014) FEBS J , vol.281 , Issue.3 , pp. 802-813
    • Yang, F.1
  • 33
    • 77949967131 scopus 로고    scopus 로고
    • Targeting metabolic transformation for cancer therapy
    • Tennant DA, Durán RV, Gottlieb E (2010) Targeting metabolic transformation for cancer therapy. Nat Rev Cancer 10(4):267-277.
    • (2010) Nat Rev Cancer , vol.10 , Issue.4 , pp. 267-277
    • Tennant, D.A.1    Durán, R.V.2    Gottlieb, E.3
  • 34
    • 80052242132 scopus 로고    scopus 로고
    • Targeting cancer metabolism: A therapeutic window opens
    • Vander Heiden MG (2011) Targeting cancer metabolism: A therapeutic window opens. Nat Rev Drug Discov 10(9):671-684.
    • (2011) Nat Rev Drug Discov , vol.10 , Issue.9 , pp. 671-684
    • Vander Heiden, M.G.1
  • 35
    • 66349091716 scopus 로고    scopus 로고
    • ADI, autophagy and apoptosis: Metabolic stress as a therapeutic option for prostate cancer
    • Kim RH, Bold RJ, Kung HJ (2009) ADI, autophagy and apoptosis: Metabolic stress as a therapeutic option for prostate cancer. Autophagy 5(4):567-568.
    • (2009) Autophagy , vol.5 , Issue.4 , pp. 567-568
    • Kim, R.H.1    Bold, R.J.2    Kung, H.J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.