-
1
-
-
37449024702
-
The biology of cancer: Metabolic reprogramming fuels cell growth and proliferation
-
DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB (2008) The biology of cancer: Metabolic reprogramming fuels cell growth and proliferation. Cell Metab 7(1):11-20.
-
(2008)
Cell Metab
, vol.7
, Issue.1
, pp. 11-20
-
-
DeBerardinis, R.J.1
Lum, J.J.2
Hatzivassiliou, G.3
Thompson, C.B.4
-
2
-
-
66249108601
-
Understanding the Warburg effect: The metabolic requirements of cell proliferation
-
Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science 324(5930):1029-1033.
-
(2009)
Science
, vol.324
, Issue.5930
, pp. 1029-1033
-
-
Vander Heiden, M.G.1
Cantley, L.C.2
Thompson, C.B.3
-
3
-
-
43749083041
-
Brick by brick: Metabolism and tumor cell growth
-
Deberardinis RJ, Sayed N, Ditsworth D, Thompson CB (2008) Brick by brick: Metabolism and tumor cell growth. Curr Opin Genet Dev 18(1):54-61.
-
(2008)
Curr Opin Genet Dev
, vol.18
, Issue.1
, pp. 54-61
-
-
Deberardinis, R.J.1
Sayed, N.2
Ditsworth, D.3
Thompson, C.B.4
-
4
-
-
61849135453
-
Tumor suppressors and cell metabolism: A recipe for cancer growth
-
Jones RG, Thompson CB (2009) Tumor suppressors and cell metabolism: A recipe for cancer growth. Genes Dev 23(5):537-548.
-
(2009)
Genes Dev
, vol.23
, Issue.5
, pp. 537-548
-
-
Jones, R.G.1
Thompson, C.B.2
-
5
-
-
34648876684
-
Metabolic targeting as an anticancer strategy: Dawn of a new era?
-
Pan JG, Mak TW (2007) Metabolic targeting as an anticancer strategy: Dawn of a new era? Sci STKE 2007(381):pe14.
-
(2007)
Sci STKE
, vol.2007
, Issue.381
-
-
Pan, J.G.1
Mak, T.W.2
-
6
-
-
80051625243
-
Oxygen sensing, homeostasis, and disease
-
Semenza GL (2011) Oxygen sensing, homeostasis, and disease. N Engl JMed 365(6):537-547.
-
(2011)
N Engl JMed
, vol.365
, Issue.6
, pp. 537-547
-
-
Semenza, G.L.1
-
7
-
-
84655161946
-
HIF1a and HIF2a: Sibling rivalry in hypoxic tumour growth and progression
-
Keith B, Johnson RS, Simon MC (2012) HIF1a and HIF2a: Sibling rivalry in hypoxic tumour growth and progression. Nat Rev Cancer 12(1):9-22.
-
(2012)
Nat Rev Cancer
, vol.12
, Issue.1
, pp. 9-22
-
-
Keith, B.1
Johnson, R.S.2
Simon, M.C.3
-
8
-
-
0035860147
-
Relation of hypoxia inducible factor 1 alpha and 2 alpha in operable non-small cell lung cancer to angiogenic/molecular profile of tumours and survival
-
Giatromanolaki A, et al. (2001) Relation of hypoxia inducible factor 1 alpha and 2 alpha in operable non-small cell lung cancer to angiogenic/molecular profile of tumours and survival. Br J Cancer 85(6):881-890.
-
(2001)
Br J Cancer
, vol.85
, Issue.6
, pp. 881-890
-
-
Giatromanolaki, A.1
-
9
-
-
77957021496
-
Involvement of LKB1 in epithelial-mesenchymal transition (EMT) of human lung cancer cells
-
Roy BC, et al. (2010) Involvement of LKB1 in epithelial-mesenchymal transition (EMT) of human lung cancer cells. Lung Cancer 70(2):136-145.
-
(2010)
Lung Cancer
, vol.70
, Issue.2
, pp. 136-145
-
-
Roy, B.C.1
-
10
-
-
0032495530
-
A serine/threonine kinase gene defective in Peutz-Jeghers syndrome
-
Hemminki A, et al. (1998) A serine/threonine kinase gene defective in Peutz-Jeghers syndrome. Nature 391(6663):184-187.
-
(1998)
Nature
, vol.391
, Issue.6663
, pp. 184-187
-
-
Hemminki, A.1
-
11
-
-
0033054479
-
LKB1 somatic mutations in sporadic tumors
-
Avizienyte E, et al. (1999) LKB1 somatic mutations in sporadic tumors. Am J Pathol 154(3):677-681.
-
(1999)
Am J Pathol
, vol.154
, Issue.3
, pp. 677-681
-
-
Avizienyte, E.1
-
12
-
-
38849193504
-
Loss of Lkb1 provokes highly invasive endometrial adenocarcinomas
-
Contreras CM, et al. (2008) Loss of Lkb1 provokes highly invasive endometrial adenocarcinomas. Cancer Res 68(3):759-766.
-
(2008)
Cancer Res
, vol.68
, Issue.3
, pp. 759-766
-
-
Contreras, C.M.1
-
13
-
-
64549113040
-
Somatic LKB1 mutations promote cervical cancer progression
-
Wingo SN, et al. (2009) Somatic LKB1 mutations promote cervical cancer progression. PLoS ONE 4(4):e5137.
-
(2009)
PLoS ONE
, vol.4
, Issue.4
-
-
Wingo, S.N.1
-
14
-
-
0036645286
-
Inactivation of LKB1/STK11 is a common event in adenocarcinomas of the lung
-
Sanchez-Cespedes M, et al. (2002) Inactivation of LKB1/STK11 is a common event in adenocarcinomas of the lung. Cancer Res 62(13):3659-3662.
-
(2002)
Cancer Res
, vol.62
, Issue.13
, pp. 3659-3662
-
-
Sanchez-Cespedes, M.1
-
15
-
-
33744782567
-
Frequency and spectrum of cancers in the Peutz-Jeghers syndrome
-
Hearle N, et al. (2006) Frequency and spectrum of cancers in the Peutz-Jeghers syndrome. Clin Cancer Res 12(10):3209-3215.
-
(2006)
Clin Cancer Res
, vol.12
, Issue.10
, pp. 3209-3215
-
-
Hearle, N.1
-
16
-
-
67749111502
-
The LKB1-AMPK pathway: Metabolism and growth control in tumour suppression
-
Shackelford DB, Shaw RJ (2009) The LKB1-AMPK pathway: Metabolism and growth control in tumour suppression. Nat Rev Cancer 9(8):563-575.
-
(2009)
Nat Rev Cancer
, vol.9
, Issue.8
, pp. 563-575
-
-
Shackelford, D.B.1
Shaw, R.J.2
-
17
-
-
56049124326
-
LKB1: Cancer, polarity, metabolism, and now fertility
-
Shaw RJ (2008) LKB1: Cancer, polarity, metabolism, and now fertility. Biochem J 416(1): E1-e3.
-
(2008)
Biochem J
, vol.416
, Issue.1
-
-
Shaw, R.J.1
-
18
-
-
0037524354
-
LKB1, a protein kinase regulating cell proliferation and polarity
-
Boudeau J, Sapkota G, Alessi DR (2003) LKB1, a protein kinase regulating cell proliferation and polarity. FEBS Lett 546(1):159-165.
-
(2003)
FEBS Lett
, vol.546
, Issue.1
, pp. 159-165
-
-
Boudeau, J.1
Sapkota, G.2
Alessi, D.R.3
-
19
-
-
67650480092
-
MTOR and HIF-1alpha-mediated tumor metabolism in an LKB1 mouse model of Peutz-Jeghers syndrome
-
Shackelford DB, et al. (2009) mTOR and HIF-1alpha-mediated tumor metabolism in an LKB1 mouse model of Peutz-Jeghers syndrome. Proc Natl Acad Sci USA 106(27):11137-11142.
-
(2009)
Proc Natl Acad Sci USA
, vol.106
, Issue.27
, pp. 11137-11142
-
-
Shackelford, D.B.1
-
20
-
-
3042818799
-
Regulation of the TSC pathway by LKB1: Evidence of a molecular link between tuberous sclerosis complex and Peutz-Jeghers syndrome
-
Corradetti MN, Inoki K, Bardeesy N, DePinho RA, Guan KL (2004) Regulation of the TSC pathway by LKB1: Evidence of a molecular link between tuberous sclerosis complex and Peutz-Jeghers syndrome. Genes Dev 18(13):1533-1538.
-
(2004)
Genes Dev
, vol.18
, Issue.13
, pp. 1533-1538
-
-
Corradetti, M.N.1
Inoki, K.2
Bardeesy, N.3
DePinho, R.A.4
Guan, K.L.5
-
21
-
-
3142594193
-
The LKB1 tumor suppressor negatively regulates mTOR signaling
-
Shaw RJ, et al. (2004) The LKB1 tumor suppressor negatively regulates mTOR signaling. Cancer Cell 6(1):91-99.
-
(2004)
Cancer Cell
, vol.6
, Issue.1
, pp. 91-99
-
-
Shaw, R.J.1
-
22
-
-
79958768677
-
Metabolic profiles show specific mitochondrial toxicities in vitro in myotube cells
-
Xu Q, Vu H, Liu L, Wang TC, Schaefer WH (2011) Metabolic profiles show specific mitochondrial toxicities in vitro in myotube cells. J Biomol NMR 49(3-4):207-219.
-
(2011)
J Biomol NMR
, vol.49
, Issue.3-4
, pp. 207-219
-
-
Xu, Q.1
Vu, H.2
Liu, L.3
Wang, T.C.4
Schaefer, W.H.5
-
23
-
-
84873584845
-
LKB1 inactivation dictates therapeutic response of nonsmall cell lung cancer to the metabolism drug phenformin
-
Shackelford DB, et al. (2013) LKB1 inactivation dictates therapeutic response of nonsmall cell lung cancer to the metabolism drug phenformin. Cancer Cell 23(2):143-158.
-
(2013)
Cancer Cell
, vol.23
, Issue.2
, pp. 143-158
-
-
Shackelford, D.B.1
-
24
-
-
0041920901
-
TSC2 regulates VEGF through mTOR-dependent and-independent pathways
-
Brugarolas JB, Vazquez F, Reddy A, Sellers WR, Kaelin WG, Jr. (2003) TSC2 regulates VEGF through mTOR-dependent and-independent pathways. Cancer Cell 4(2):147-158.
-
(2003)
Cancer Cell
, vol.4
, Issue.2
, pp. 147-158
-
-
Brugarolas, J.B.1
Vazquez, F.2
Reddy, A.3
Sellers, W.R.4
Kaelin Jr., W.G.5
-
25
-
-
24144493814
-
Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing
-
Guzy RD, et al. (2005) Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing. Cell Metab 1(6):401-408.
-
(2005)
Cell Metab
, vol.1
, Issue.6
, pp. 401-408
-
-
Guzy, R.D.1
-
26
-
-
24144447915
-
Mitochondrial dysfunction resulting from loss of cytochrome c impairs cellular oxygen sensing and hypoxic HIF-alpha activation
-
Mansfield KD, et al. (2005) Mitochondrial dysfunction resulting from loss of cytochrome c impairs cellular oxygen sensing and hypoxic HIF-alpha activation. Cell Metab 1(6):393-399.
-
(2005)
Cell Metab
, vol.1
, Issue.6
, pp. 393-399
-
-
Mansfield, K.D.1
-
27
-
-
24144444133
-
Oxygen sensing requires mitochondrial ROS but not oxidative phosphorylation
-
Brunelle JK, et al. (2005) Oxygen sensing requires mitochondrial ROS but not oxidative phosphorylation. Cell Metab 1(6):409-414.
-
(2005)
Cell Metab
, vol.1
, Issue.6
, pp. 409-414
-
-
Brunelle, J.K.1
-
28
-
-
77949535410
-
Negative feedback control of HIF-1 through REDD1-regulated ROS suppresses tumorigenesis
-
Horak P, et al. (2010) Negative feedback control of HIF-1 through REDD1-regulated ROS suppresses tumorigenesis. Proc Natl Acad Sci USA 107(10):4675-4680.
-
(2010)
Proc Natl Acad Sci USA
, vol.107
, Issue.10
, pp. 4675-4680
-
-
Horak, P.1
-
29
-
-
84866601479
-
Regulation of metabolism by hypoxia-inducible factor 1
-
Semenza GL (2011) Regulation of metabolism by hypoxia-inducible factor 1. Cold Spring Harb Symp Quant Biol 76:347-353.
-
(2011)
Cold Spring Harb Symp Quant Biol
, vol.76
, pp. 347-353
-
-
Semenza, G.L.1
-
30
-
-
70450207200
-
Spare respiratory capacity, oxidative stress and excitotoxicity
-
Nicholls DG (2009) Spare respiratory capacity, oxidative stress and excitotoxicity. Biochem Soc Trans 37(Pt 6):1385-1388.
-
(2009)
Biochem Soc Trans
, vol.37
, Issue.PART 6
, pp. 1385-1388
-
-
Nicholls, D.G.1
-
31
-
-
26644441651
-
ATP citrate lyase inhibition can suppress tumor cell growth
-
Hatzivassiliou G, et al. (2005) ATP citrate lyase inhibition can suppress tumor cell growth. Cancer Cell 8(4):311-321.
-
(2005)
Cancer Cell
, vol.8
, Issue.4
, pp. 311-321
-
-
Hatzivassiliou, G.1
-
32
-
-
33644614520
-
HIF-1-mediated expression of pyruvate dehydrogenase kinase: A metabolic switch required for cellular adaptation to hypoxia
-
Kim JW, Tchernyshyov I, Semenza GL, Dang CV (2006) HIF-1-mediated expression of pyruvate dehydrogenase kinase: A metabolic switch required for cellular adaptation to hypoxia. Cell Metab 3(3):177-185.
-
(2006)
Cell Metab
, vol.3
, Issue.3
, pp. 177-185
-
-
Kim, J.W.1
Tchernyshyov, I.2
Semenza, G.L.3
Dang, C.V.4
-
33
-
-
33644622570
-
HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption
-
Papandreou I, Cairns RA, Fontana L, Lim AL, Denko NC (2006) HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab 3(3): 187-197.
-
(2006)
Cell Metab
, vol.3
, Issue.3
, pp. 187-197
-
-
Papandreou, I.1
Cairns, R.A.2
Fontana, L.3
Lim, A.L.4
Denko, N.C.5
-
34
-
-
84856014884
-
Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia
-
Metallo CM, et al. (2012) Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature 481(7381):380-384.
-
(2012)
Nature
, vol.481
, Issue.7381
, pp. 380-384
-
-
Metallo, C.M.1
-
35
-
-
84855987831
-
Reductive carboxylation supports growth in tumour cells with defective mitochondria
-
Mullen AR, et al. (2012) Reductive carboxylation supports growth in tumour cells with defective mitochondria. Nature 481(7381):385-388.
-
(2012)
Nature
, vol.481
, Issue.7381
, pp. 385-388
-
-
Mullen, A.R.1
-
36
-
-
83755178091
-
Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of a-ketoglutarate to citrate to support cell growth and viability
-
Wise DR, et al. (2011) Hypoxia promotes isocitrate dehydrogenase- dependent carboxylation of a-ketoglutarate to citrate to support cell growth and viability. Proc Natl Acad Sci USA 108(49):19611-19616.
-
(2011)
Proc Natl Acad Sci USA
, vol.108
, Issue.49
, pp. 19611-19616
-
-
Wise, D.R.1
-
37
-
-
84872159532
-
AMPK is a negative regulator of the Warburg effect and suppresses tumor growth in vivo
-
Faubert B, et al. (2013) AMPK is a negative regulator of the Warburg effect and suppresses tumor growth in vivo. Cell Metab 17(1):113-124.
-
(2013)
Cell Metab
, vol.17
, Issue.1
, pp. 113-124
-
-
Faubert, B.1
-
38
-
-
84876320551
-
LKB1 and AMPK and the cancer-metabolism link: Ten years after
-
Hardie DG, Alessi DR (2013) LKB1 and AMPK and the cancer-metabolism link: Ten years after. BMC Biol 11:36.
-
(2013)
BMC Biol
, vol.11
, pp. 36
-
-
Hardie, D.G.1
Alessi, D.R.2
-
39
-
-
84860321700
-
Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism
-
Ying H, et al. (2012) Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell 149(3):656-670.
-
(2012)
Cell
, vol.149
, Issue.3
, pp. 656-670
-
-
Ying, H.1
-
40
-
-
50249143902
-
Role of LKB1 in lung cancer development
-
Makowski L, Hayes DN (2008) Role of LKB1 in lung cancer development. Br J Cancer 99(5):683-688.
-
(2008)
Br J Cancer
, vol.99
, Issue.5
, pp. 683-688
-
-
Makowski, L.1
Hayes, D.N.2
-
41
-
-
34547926839
-
LKB1 modulates lung cancer differentiation and metastasis
-
Ji H, et al. (2007) LKB1 modulates lung cancer differentiation and metastasis. Nature 448(7155):807-810.
-
(2007)
Nature
, vol.448
, Issue.7155
, pp. 807-810
-
-
Ji, H.1
-
42
-
-
20844449238
-
AMP-activated protein kinase induces a p53-dependent metabolic checkpoint
-
Jones RG, et al. (2005) AMP-activated protein kinase induces a p53-dependent metabolic checkpoint. Mol Cell 18(3):283-293.
-
(2005)
Mol Cell
, vol.18
, Issue.3
, pp. 283-293
-
-
Jones, R.G.1
|