메뉴 건너뛰기




Volumn 23, Issue 1, 2017, Pages 5-22

Mitochondrial Dysfunction and Biogenesis in Neurodegenerative diseases: Pathogenesis and Treatment

Author keywords

Mitochondrial Biogenesis; Mitochondrial complexes; Mitochondrial Dysfunction; Neurodegenerative Diseases; Pathogenesis; Treatment

Indexed keywords

AMYLOID BETA PROTEIN; AMYLOID PRECURSOR PROTEIN; CYTOCHROME C OXIDASE; MITOCHONDRIAL DNA; MITOCHONDRIAL TRANSCRIPTION FACTOR A; PEROXISOME PROLIFERATOR ACTIVATED RECEPTOR GAMMA; PEROXISOME PROLIFERATOR ACTIVATED RECEPTOR GAMMA COACTIVATOR 1ALPHA; REACTIVE OXYGEN METABOLITE; REDUCED NICOTINAMIDE ADENINE DINUCLEOTIDE DEHYDROGENASE; SUCCINATE DEHYDROGENASE; TRANSCRIPTION FACTOR; UBIQUINOL CYTOCHROME C REDUCTASE; HISTOCOMPATIBILITY ANTIGEN;

EID: 85006021086     PISSN: 17555930     EISSN: 17555949     Source Type: Journal    
DOI: 10.1111/cns.12655     Document Type: Review
Times cited : (411)

References (217)
  • 1
    • 80054746755 scopus 로고    scopus 로고
    • The role of mitochondria in neurodegenerative diseases
    • Filosto M, Scarpelli M, Cotelli MS, et al. The role of mitochondria in neurodegenerative diseases. J Neurol 2011;258:1763–1774.
    • (2011) J Neurol , vol.258 , pp. 1763-1774
    • Filosto, M.1    Scarpelli, M.2    Cotelli, M.S.3
  • 2
    • 78649328799 scopus 로고    scopus 로고
    • Sirtuin regulation of mitochondria: Energy production, apoptosis, and signaling
    • Verdin E, Hirschey MD, Finley LWS, Haigis MC. Sirtuin regulation of mitochondria: Energy production, apoptosis, and signaling. Trends Biochem Sci 2010;35:669–675.
    • (2010) Trends Biochem Sci , vol.35 , pp. 669-675
    • Verdin, E.1    Hirschey, M.D.2    Finley, L.W.S.3    Haigis, M.C.4
  • 3
    • 33750347347 scopus 로고    scopus 로고
    • Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases
    • Lin MT, Beal MF. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 2006;443:787–795.
    • (2006) Nature , vol.443 , pp. 787-795
    • Lin, M.T.1    Beal, M.F.2
  • 4
    • 84928608814 scopus 로고    scopus 로고
    • Glycogen synthase kinase-3 beta (GSK-3β) signaling: Implications for Parkinson's disease
    • Golpich M, Amini E, Hemmati F, et al. Glycogen synthase kinase-3 beta (GSK-3β) signaling: Implications for Parkinson's disease. Pharmacol Res 2015;97:16–26.
    • (2015) Pharmacol Res , vol.97 , pp. 16-26
    • Golpich, M.1    Amini, E.2    Hemmati, F.3
  • 5
    • 79957582559 scopus 로고    scopus 로고
    • Negative regulation of STAT3 protein-mediated cellular respiration by SIRT1 protein
    • Bernier M, Paul RK, Martin-Montalvo A, et al. Negative regulation of STAT3 protein-mediated cellular respiration by SIRT1 protein. J Biol Chem 2011;286:19270–19279.
    • (2011) J Biol Chem , vol.286 , pp. 19270-19279
    • Bernier, M.1    Paul, R.K.2    Martin-Montalvo, A.3
  • 6
    • 84859429500 scopus 로고    scopus 로고
    • Mitochondria and autophagy: Critical interplay between the two homeostats
    • Okamoto K, Kondo-Okamoto N. Mitochondria and autophagy: Critical interplay between the two homeostats. Biochim Biophys Acta 2012;1820:595–600.
    • (2012) Biochim Biophys Acta , vol.1820 , pp. 595-600
    • Okamoto, K.1    Kondo-Okamoto, N.2
  • 7
    • 84868560653 scopus 로고    scopus 로고
    • Redox regulation of mitochondrial biogenesis
    • Piantadosi CA, Suliman HB. Redox regulation of mitochondrial biogenesis. Free Radic Biol Med 2012;53:2043–2053.
    • (2012) Free Radic Biol Med , vol.53 , pp. 2043-2053
    • Piantadosi, C.A.1    Suliman, H.B.2
  • 8
    • 77955380974 scopus 로고    scopus 로고
    • Mitochondrial DNA mutations induce mitochondrial dysfunction, apoptosis and sarcopenia in skeletal muscle of mitochondrial DNA mutator mice
    • Hiona A, Sanz A, Kujoth GC, et al. Mitochondrial DNA mutations induce mitochondrial dysfunction, apoptosis and sarcopenia in skeletal muscle of mitochondrial DNA mutator mice. PLoS One 2010;5:e11468, doi: 10.1371/journal.pone.0011468.
    • (2010) PLoS One , vol.5
    • Hiona, A.1    Sanz, A.2    Kujoth, G.C.3
  • 9
    • 77955330843 scopus 로고    scopus 로고
    • A neurological perspective on mitochondrial disease
    • McFarland R, Taylor RW, Turnbull DM. A neurological perspective on mitochondrial disease. Lancet Neurol 2010;9:829–840.
    • (2010) Lancet Neurol , vol.9 , pp. 829-840
    • McFarland, R.1    Taylor, R.W.2    Turnbull, D.M.3
  • 11
    • 70149093436 scopus 로고    scopus 로고
    • Mitochondrial bioenergetic deficit precedes Alzheimer's pathology in female mouse model of Alzheimer's disease
    • Yao J, Irwin RW, Zhao LQ, Nilsen J, Hamilton RT, Brinton RD. Mitochondrial bioenergetic deficit precedes Alzheimer's pathology in female mouse model of Alzheimer's disease. Proc Natl Acad Sci U S A 2009;106:14670–14675.
    • (2009) Proc Natl Acad Sci U S A , vol.106 , pp. 14670-14675
    • Yao, J.1    Irwin, R.W.2    Zhao, L.Q.3    Nilsen, J.4    Hamilton, R.T.5    Brinton, R.D.6
  • 12
    • 53249131271 scopus 로고    scopus 로고
    • Medication-induced mitochondrial damage and disease
    • Neustadt J, Pieczenik SR. Medication-induced mitochondrial damage and disease. Mol Nutr Food Res 2008;52:780–788.
    • (2008) Mol Nutr Food Res , vol.52 , pp. 780-788
    • Neustadt, J.1    Pieczenik, S.R.2
  • 13
    • 84862884156 scopus 로고    scopus 로고
    • Mitochondrial quality control: An integrated network of pathways
    • Fischer F, Hamann A, Osiewacz HD. Mitochondrial quality control: An integrated network of pathways. Trends Biochem Sci 2012;37:284–292.
    • (2012) Trends Biochem Sci , vol.37 , pp. 284-292
    • Fischer, F.1    Hamann, A.2    Osiewacz, H.D.3
  • 14
    • 46349103594 scopus 로고    scopus 로고
    • A mitochondrial protein compendium elucidates complex I disease biology
    • Pagliarini DJ, Calvo SE, Chang B, et al. A mitochondrial protein compendium elucidates complex I disease biology. Cell 2008;134:112–123.
    • (2008) Cell , vol.134 , pp. 112-123
    • Pagliarini, D.J.1    Calvo, S.E.2    Chang, B.3
  • 15
    • 77952541558 scopus 로고    scopus 로고
    • The sites and topology of mitochondrial superoxide production
    • Brand MD. The sites and topology of mitochondrial superoxide production. Exp Gerontol 2010;45:466–472.
    • (2010) Exp Gerontol , vol.45 , pp. 466-472
    • Brand, M.D.1
  • 16
    • 79960557491 scopus 로고    scopus 로고
    • Assessment of newly synthesized mitochondrial DNA using BrdU labeling in primary neurons from Alzheimer's disease mice: Implications for impaired mitochondrial biogenesis and synaptic damage
    • Calkins MJ, Reddy PH. Assessment of newly synthesized mitochondrial DNA using BrdU labeling in primary neurons from Alzheimer's disease mice: Implications for impaired mitochondrial biogenesis and synaptic damage. Biochim Biophys Acta 2011;1812:1182–1189.
    • (2011) Biochim Biophys Acta , vol.1812 , pp. 1182-1189
    • Calkins, M.J.1    Reddy, P.H.2
  • 18
    • 84892412853 scopus 로고    scopus 로고
    • Sex differences in mitochondrial biogenesis determine neuronal death and survival in response to oxygen glucose deprivation and reoxygenation
    • Sharma J, Johnston MV, Hossain MA. Sex differences in mitochondrial biogenesis determine neuronal death and survival in response to oxygen glucose deprivation and reoxygenation. BMC Neurosci 2014;15:1–14.
    • (2014) BMC Neurosci , vol.15 , pp. 1-14
    • Sharma, J.1    Johnston, M.V.2    Hossain, M.A.3
  • 19
    • 79959344446 scopus 로고    scopus 로고
    • Mitochondria as a therapeutic target for aging and neurodegenerative diseases
    • Reddy PH, Reddy TP. Mitochondria as a therapeutic target for aging and neurodegenerative diseases. Curr Alzheimer Res 2011;8:393–409.
    • (2011) Curr Alzheimer Res , vol.8 , pp. 393-409
    • Reddy, P.H.1    Reddy, T.P.2
  • 20
    • 84855687153 scopus 로고    scopus 로고
    • Impaired mitochondrial biogenesis contributes to mitochondrial dysfunction in Alzheimer's disease
    • Sheng B, Wang X, Su B, et al. Impaired mitochondrial biogenesis contributes to mitochondrial dysfunction in Alzheimer's disease. J Neurochem 2012;120:419–429.
    • (2012) J Neurochem , vol.120 , pp. 419-429
    • Sheng, B.1    Wang, X.2    Su, B.3
  • 21
    • 72649106290 scopus 로고    scopus 로고
    • Phosphorus and proton magnetic resonance spectroscopy demonstrates mitochondrial dysfunction in early and advanced Parkinson's disease
    • Hattingen E, Magerkurth J, Pilatus U, et al. Phosphorus and proton magnetic resonance spectroscopy demonstrates mitochondrial dysfunction in early and advanced Parkinson's disease. Brain 2009;132:3285–3297.
    • (2009) Brain , vol.132 , pp. 3285-3297
    • Hattingen, E.1    Magerkurth, J.2    Pilatus, U.3
  • 22
    • 84855165944 scopus 로고    scopus 로고
    • Mutant huntingtin, abnormal mitochondrial dynamics, defective axonal transport of mitochondria, and selective synaptic degeneration in Huntington's disease
    • Reddy PH, Shirendeb UP. Mutant huntingtin, abnormal mitochondrial dynamics, defective axonal transport of mitochondria, and selective synaptic degeneration in Huntington's disease. Biochim Biophys Acta 2012;1822:101–110.
    • (2012) Biochim Biophys Acta , vol.1822 , pp. 101-110
    • Reddy, P.H.1    Shirendeb, U.P.2
  • 23
    • 84860650335 scopus 로고    scopus 로고
    • Mitochondrial dysfunction in ALS
    • Cozzolino M, Carri MT. Mitochondrial dysfunction in ALS. Prog Neurobiol 2012;97:54–66.
    • (2012) Prog Neurobiol , vol.97 , pp. 54-66
    • Cozzolino, M.1    Carri, M.T.2
  • 24
    • 78650729600 scopus 로고    scopus 로고
    • Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin
    • Tanaka A, Cleland MM, Xu S, et al. Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin. J Cell Biol 2010;191:1367–1380.
    • (2010) J Cell Biol , vol.191 , pp. 1367-1380
    • Tanaka, A.1    Cleland, M.M.2    Xu, S.3
  • 25
    • 78649413837 scopus 로고    scopus 로고
    • Mitochondrial fusion and fission in cell life and death
    • Westermann B. Mitochondrial fusion and fission in cell life and death. Nat Rev Mol Cell Biol 2010;11:872–884.
    • (2010) Nat Rev Mol Cell Biol , vol.11 , pp. 872-884
    • Westermann, B.1
  • 27
    • 84925003382 scopus 로고    scopus 로고
    • Mitofusin 2-deficiency suppresses cell proliferation through disturbance of autophagy
    • Ding Y, Gao H, Zhao L, Wang X, Zheng M. Mitofusin 2-deficiency suppresses cell proliferation through disturbance of autophagy. PLoS One 2015;10:e0121328, doi: 10.1371/journal.pone.0121328.
    • (2015) PLoS One , vol.10
    • Ding, Y.1    Gao, H.2    Zhao, L.3    Wang, X.4    Zheng, M.5
  • 28
    • 79959354999 scopus 로고    scopus 로고
    • Mitochondria and the autophagy-inflammation-cell death axis in organismal aging
    • Green DR, Galluzzi L, Kroemer G. Mitochondria and the autophagy-inflammation-cell death axis in organismal aging. Science 2011;333:1109–1112.
    • (2011) Science , vol.333 , pp. 1109-1112
    • Green, D.R.1    Galluzzi, L.2    Kroemer, G.3
  • 29
    • 0348013126 scopus 로고    scopus 로고
    • Autophagy regulates the processing of amino terminal huntingtin fragments
    • Qin Z-H, Wang Y, Kegel KB, et al. Autophagy regulates the processing of amino terminal huntingtin fragments. Hum Mol Genet 2003;12:3231–3244.
    • (2003) Hum Mol Genet , vol.12 , pp. 3231-3244
    • Qin, Z.-H.1    Wang, Y.2    Kegel, K.B.3
  • 30
    • 84879980184 scopus 로고    scopus 로고
    • Mitochondrion-mediated cell death: Dissecting yeast apoptosis for a better understanding of neurodegeneration
    • Braun RJ. Mitochondrion-mediated cell death: Dissecting yeast apoptosis for a better understanding of neurodegeneration. Front Oncol 2012;2:1–14.
    • (2012) Front Oncol , vol.2 , pp. 1-14
    • Braun, R.J.1
  • 31
    • 0036788293 scopus 로고    scopus 로고
    • Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes
    • Kelley DE, He J, Menshikova EV, Ritov VB. Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes 2002;51:2944–2950.
    • (2002) Diabetes , vol.51 , pp. 2944-2950
    • Kelley, D.E.1    He, J.2    Menshikova, E.V.3    Ritov, V.B.4
  • 32
    • 77955284487 scopus 로고    scopus 로고
    • Regulation of skeletal muscle oxidative capacity and insulin signaling by the mitochondrial rhomboid protease PARL
    • Civitarese AE, MacLean PS, Carling S, et al. Regulation of skeletal muscle oxidative capacity and insulin signaling by the mitochondrial rhomboid protease PARL. Cell Metab 2010;11:412–426.
    • (2010) Cell Metab , vol.11 , pp. 412-426
    • Civitarese, A.E.1    MacLean, P.S.2    Carling, S.3
  • 33
    • 36749082168 scopus 로고    scopus 로고
    • Mitochondrial dysfunction due to long-chain Acyl-CoA dehydrogenase deficiency causes hepatic steatosis and hepatic insulin resistance
    • Zhang D, Liu Z-X, Choi CS, et al. Mitochondrial dysfunction due to long-chain Acyl-CoA dehydrogenase deficiency causes hepatic steatosis and hepatic insulin resistance. Proc Natl Acad Sci 2007;104:17075–17080.
    • (2007) Proc Natl Acad Sci , vol.104 , pp. 17075-17080
    • Zhang, D.1    Liu, Z.-X.2    Choi, C.S.3
  • 35
    • 25644448096 scopus 로고    scopus 로고
    • Decreased insulin-stimulated ATP synthesis and phosphate transport in muscle of insulin-resistant offspring of type 2 diabetic parents
    • Petersen KF, Dufour S, Shulman GI. Decreased insulin-stimulated ATP synthesis and phosphate transport in muscle of insulin-resistant offspring of type 2 diabetic parents. PLoS Med 2005;2:e233.
    • (2005) PLoS Med , vol.2
    • Petersen, K.F.1    Dufour, S.2    Shulman, G.I.3
  • 36
    • 34248141686 scopus 로고    scopus 로고
    • Impaired mitochondrial substrate oxidation in muscle of insulin-resistant offspring of type 2 diabetic patients
    • Befroy DE, Petersen KF, Dufour S, et al. Impaired mitochondrial substrate oxidation in muscle of insulin-resistant offspring of type 2 diabetic patients. Diabetes 2007;56:1376–1381.
    • (2007) Diabetes , vol.56 , pp. 1376-1381
    • Befroy, D.E.1    Petersen, K.F.2    Dufour, S.3
  • 37
    • 79959341007 scopus 로고    scopus 로고
    • Mitochondrial dysfunction in cancer cells due to aberrant mitochondrial replication
    • Shapovalov Y, Hoffman D, Zuch D, Bentley KLD, Elisee RA. Mitochondrial dysfunction in cancer cells due to aberrant mitochondrial replication. J Biol Chem 2011;286:22331–22338.
    • (2011) J Biol Chem , vol.286 , pp. 22331-22338
    • Shapovalov, Y.1    Hoffman, D.2    Zuch, D.3    Bentley, K.L.D.4    Elisee, R.A.5
  • 38
    • 79957910365 scopus 로고    scopus 로고
    • Mitochondrial dysfunction in patients with primary congenital insulin resistance
    • Sleigh A, Raymond-Barker P, Thackray K, et al. Mitochondrial dysfunction in patients with primary congenital insulin resistance. J Clin Invest 2011;121:2457–2461.
    • (2011) J Clin Invest , vol.121 , pp. 2457-2461
    • Sleigh, A.1    Raymond-Barker, P.2    Thackray, K.3
  • 39
    • 0037972522 scopus 로고    scopus 로고
    • Mitochondrial respiratory-chain diseases
    • DiMauro S, Schon EA. Mitochondrial respiratory-chain diseases. N Engl J Med 2003;348:2656–2668.
    • (2003) N Engl J Med , vol.348 , pp. 2656-2668
    • DiMauro, S.1    Schon, E.A.2
  • 40
    • 23844558266 scopus 로고    scopus 로고
    • A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: A dawn for evolutionary medicine
    • Wallace DC. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: A dawn for evolutionary medicine. Annu Rev Genet 2005;39:359–407.
    • (2005) Annu Rev Genet , vol.39 , pp. 359-407
    • Wallace, D.C.1
  • 41
    • 1642377274 scopus 로고    scopus 로고
    • Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes
    • Petersen KF, Dufour S, Befroy D, Garcia R, Shulman GI. Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. N Engl J Med 2004;350:664–671.
    • (2004) N Engl J Med , vol.350 , pp. 664-671
    • Petersen, K.F.1    Dufour, S.2    Befroy, D.3    Garcia, R.4    Shulman, G.I.5
  • 42
    • 79955664111 scopus 로고    scopus 로고
    • Mitochondrial protein quality control during biogenesis and aging
    • Baker BM, Haynes CM. Mitochondrial protein quality control during biogenesis and aging. Trends Biochem Sci 2011;36:254–261.
    • (2011) Trends Biochem Sci , vol.36 , pp. 254-261
    • Baker, B.M.1    Haynes, C.M.2
  • 44
    • 84865018923 scopus 로고    scopus 로고
    • Reactive oxygen/nitrogen species and their functional correlations in neurodegenerative diseases
    • Ramalingam M, Kim S-J. Reactive oxygen/nitrogen species and their functional correlations in neurodegenerative diseases. J Neural Transm 2012;119:891–910.
    • (2012) J Neural Transm , vol.119 , pp. 891-910
    • Ramalingam, M.1    Kim, S.-J.2
  • 45
    • 74149085909 scopus 로고    scopus 로고
    • Stabilization of mitochondrial function by tetramethylpyrazine protects against kainate-induced oxidative lesions in the rat hippocampus
    • Li S-Y, Jia Y-H, Sun W-G, et al. Stabilization of mitochondrial function by tetramethylpyrazine protects against kainate-induced oxidative lesions in the rat hippocampus. Free Radic Biol Med 2010;48:597–608.
    • (2010) Free Radic Biol Med , vol.48 , pp. 597-608
    • Li, S.-Y.1    Jia, Y.-H.2    Sun, W.-G.3
  • 46
    • 77955089623 scopus 로고    scopus 로고
    • Mitochondrial dysfunction: Common final pathway in brain aging and alzheimer's disease-therapeutic aspects
    • Muller WE, Eckert A, Kurz C, Eckert GP, Leuner K. Mitochondrial dysfunction: Common final pathway in brain aging and alzheimer's disease-therapeutic aspects. Mol Neurobiol 2010;41:159–171.
    • (2010) Mol Neurobiol , vol.41 , pp. 159-171
    • Muller, W.E.1    Eckert, A.2    Kurz, C.3    Eckert, G.P.4    Leuner, K.5
  • 47
    • 34247158550 scopus 로고    scopus 로고
    • Oxidative stress and mitochondrial dysfunction in neurodegenerative diseases
    • Trushina E, McMurray CT. Oxidative stress and mitochondrial dysfunction in neurodegenerative diseases. Neuroscience 2007;145:1233–1248.
    • (2007) Neuroscience , vol.145 , pp. 1233-1248
    • Trushina, E.1    McMurray, C.T.2
  • 48
    • 84864340428 scopus 로고    scopus 로고
    • Peroxisome proliferator-activated receptors γ/mitochondrial uncoupling protein 2 signaling protects against seizure-induced neuronal cell death in the hippocampus following experimental status epilepticus
    • Chuang Y-C, Lin T-K, Huang H-Y, et al. Peroxisome proliferator-activated receptors γ/mitochondrial uncoupling protein 2 signaling protects against seizure-induced neuronal cell death in the hippocampus following experimental status epilepticus. J Neuroinflammation 2012;9:1–18.
    • (2012) J Neuroinflammation , vol.9 , pp. 1-18
    • Chuang, Y.-C.1    Lin, T.-K.2    Huang, H.-Y.3
  • 49
    • 77953810225 scopus 로고    scopus 로고
    • Complex III-dependent superoxide production of brain mitochondria contributes to seizure-related ROS formation
    • Malinska D, Kulawiak B, Kudin AP, et al. Complex III-dependent superoxide production of brain mitochondria contributes to seizure-related ROS formation. Biochim Biophys Acta 2010;1797:1163–1170.
    • (2010) Biochim Biophys Acta , vol.1797 , pp. 1163-1170
    • Malinska, D.1    Kulawiak, B.2    Kudin, A.P.3
  • 50
    • 0033937733 scopus 로고    scopus 로고
    • The role of mitochondria in the pathogenesis of neurodegenerative diseases
    • Manfredi G, Beal MF. The role of mitochondria in the pathogenesis of neurodegenerative diseases. Brain Pathol 2000;10:462–472.
    • (2000) Brain Pathol , vol.10 , pp. 462-472
    • Manfredi, G.1    Beal, M.F.2
  • 51
    • 84856951448 scopus 로고    scopus 로고
    • Amyloid beta-induced ER stress is enhanced under mitochondrial dysfunction conditions
    • Costa RO, Ferreiro E, Martins I, et al. Amyloid beta-induced ER stress is enhanced under mitochondrial dysfunction conditions. Neurobiol Aging 2012;33:12.
    • (2012) Neurobiol Aging , vol.33 , pp. 12
    • Costa, R.O.1    Ferreiro, E.2    Martins, I.3
  • 52
    • 69249211284 scopus 로고    scopus 로고
    • Mitochondrial dysfunction: An early event in Alzheimer pathology accumulates with age in AD transgenic mice
    • Hauptmann S, Scherping I, Drose S, et al. Mitochondrial dysfunction: An early event in Alzheimer pathology accumulates with age in AD transgenic mice. Neurobiol Aging 2009;30:1574–1586.
    • (2009) Neurobiol Aging , vol.30 , pp. 1574-1586
    • Hauptmann, S.1    Scherping, I.2    Drose, S.3
  • 53
    • 84875245617 scopus 로고    scopus 로고
    • Nicotinamide riboside restores cognition through an upregulation of proliferator-activated receptor-γ coactivator 1α regulated β-secretase 1 degradation and mitochondrial gene expression in Alzheimer's mouse models
    • Gong B, Pan Y, Vempati P, et al. Nicotinamide riboside restores cognition through an upregulation of proliferator-activated receptor-γ coactivator 1α regulated β-secretase 1 degradation and mitochondrial gene expression in Alzheimer's mouse models. Neurobiol Aging 2013;34:1581–1588.
    • (2013) Neurobiol Aging , vol.34 , pp. 1581-1588
    • Gong, B.1    Pan, Y.2    Vempati, P.3
  • 54
    • 10044225937 scopus 로고    scopus 로고
    • Peroxisome proliferator-activated receptor γ induces a clearance mechanism for the amyloid-β peptide
    • Camacho IE, Serneels L, Spittaels K, Merchiers P, Dominguez D, De Strooper B. Peroxisome proliferator-activated receptor γ induces a clearance mechanism for the amyloid-β peptide. J Neurosci 2004;24:10908–10917.
    • (2004) J Neurosci , vol.24 , pp. 10908-10917
    • Camacho, I.E.1    Serneels, L.2    Spittaels, K.3    Merchiers, P.4    Dominguez, D.5    De Strooper, B.6
  • 55
    • 77049108173 scopus 로고    scopus 로고
    • Sustained deficiency of mitochondrial complex I activity during long periods of survival after seizures induced in immature rats by homocysteic acid
    • Folbergrová J, Ješina P, Haugvicová R, Lisý V, Houštěk J. Sustained deficiency of mitochondrial complex I activity during long periods of survival after seizures induced in immature rats by homocysteic acid. Neurochem Int 2010;56:394–403.
    • (2010) Neurochem Int , vol.56 , pp. 394-403
    • Folbergrová, J.1    Ješina, P.2    Haugvicová, R.3    Lisý, V.4    Houštěk, J.5
  • 56
    • 0037025256 scopus 로고    scopus 로고
    • Mitochondria, Ca(2+) and neurodegenerative disease
    • Krieger C, Duchen MR. Mitochondria, Ca(2+) and neurodegenerative disease. Eur J Pharmacol 2002;447:177–188.
    • (2002) Eur J Pharmacol , vol.447 , pp. 177-188
    • Krieger, C.1    Duchen, M.R.2
  • 57
    • 84872790484 scopus 로고    scopus 로고
    • Mitochondrial quality, dynamics and functional capacity in Parkinson's disease cybrid cell lines selected for Lewy body expression
    • Cronin-Furman EN, Borland MK, Bergquist KE, Bennett JP Jr, Trimmer PA. Mitochondrial quality, dynamics and functional capacity in Parkinson's disease cybrid cell lines selected for Lewy body expression. Mol Neurodegener 2013;8:1–17.
    • (2013) Mol Neurodegener , vol.8 , pp. 1-17
    • Cronin-Furman, E.N.1    Borland, M.K.2    Bergquist, K.E.3    Bennett, J.P.4    Trimmer, P.A.5
  • 58
    • 84873701147 scopus 로고    scopus 로고
    • Effects of germinated brown rice and its bioactive compounds on the expression of the peroxisome proliferator-activated receptor gamma gene
    • Imam MU, Ismail M, Ithnin H, Tubesha Z, Omar AR. Effects of germinated brown rice and its bioactive compounds on the expression of the peroxisome proliferator-activated receptor gamma gene. Nutrients 2013;5:468–477.
    • (2013) Nutrients , vol.5 , pp. 468-477
    • Imam, M.U.1    Ismail, M.2    Ithnin, H.3    Tubesha, Z.4    Omar, A.R.5
  • 59
    • 24744444740 scopus 로고    scopus 로고
    • Mitochondrial respiration and ATP production are significantly impaired in striatal cells expressing mutant Huntingtin
    • Milakovic T, Johnson GVW. Mitochondrial respiration and ATP production are significantly impaired in striatal cells expressing mutant Huntingtin. J Biol Chem 2005;280:30773–30782.
    • (2005) J Biol Chem , vol.280 , pp. 30773-30782
    • Milakovic, T.1    Johnson, G.V.W.2
  • 60
    • 26444441008 scopus 로고    scopus 로고
    • HD CAG repeat implicates a dominant property of huntingtin in mitochondrial energy metabolism
    • Seong IS, Ivanova E, Lee JM, et al. HD CAG repeat implicates a dominant property of huntingtin in mitochondrial energy metabolism. Hum Mol Genet 2005;14:2871–2880.
    • (2005) Hum Mol Genet , vol.14 , pp. 2871-2880
    • Seong, I.S.1    Ivanova, E.2    Lee, J.M.3
  • 61
    • 77957727491 scopus 로고    scopus 로고
    • Modulation of energy deficiency in Huntington's disease via activation of the peroxisome proliferator-activated receptor gamma
    • Chiang MC, Chen CM, Lee MR, et al. Modulation of energy deficiency in Huntington's disease via activation of the peroxisome proliferator-activated receptor gamma. Hum Mol Genet 2010;19:4043–4058.
    • (2010) Hum Mol Genet , vol.19 , pp. 4043-4058
    • Chiang, M.C.1    Chen, C.M.2    Lee, M.R.3
  • 62
    • 33749042331 scopus 로고    scopus 로고
    • Transcriptional repression of PGC-alpha by mutant huntingtin leads to mitochondrial dysfunction and neurodegeneration
    • Cui LB, Jeong H, Borovecki F, Parkhurst CN, Tanese N, Krainc D. Transcriptional repression of PGC-alpha by mutant huntingtin leads to mitochondrial dysfunction and neurodegeneration. Cell 2006;127:59–69.
    • (2006) Cell , vol.127 , pp. 59-69
    • Cui, L.B.1    Jeong, H.2    Borovecki, F.3    Parkhurst, C.N.4    Tanese, N.5    Krainc, D.6
  • 63
    • 37549060702 scopus 로고    scopus 로고
    • Peroxisome proliferator-activated receptor gamma up-regulates the Bcl-2 anti-apoptotic protein in neurons and induces mitochondrial stabilization and protection against oxidative stress and apoptosis
    • Fuenzalida K, Quintanilla R, Ramos P, et al. Peroxisome proliferator-activated receptor gamma up-regulates the Bcl-2 anti-apoptotic protein in neurons and induces mitochondrial stabilization and protection against oxidative stress and apoptosis. J Biol Chem 2007;282:37006–37015.
    • (2007) J Biol Chem , vol.282 , pp. 37006-37015
    • Fuenzalida, K.1    Quintanilla, R.2    Ramos, P.3
  • 64
    • 84860458565 scopus 로고    scopus 로고
    • Elevated PGC-1 alpha activity sustains mitochondrial biogenesis and muscle function without extending survival in a mouse model of inherited ALS
    • Da Cruz S, Parone PA, Lopes VS, et al. Elevated PGC-1 alpha activity sustains mitochondrial biogenesis and muscle function without extending survival in a mouse model of inherited ALS. Cell Metab 2012;15:778–786.
    • (2012) Cell Metab , vol.15 , pp. 778-786
    • Da Cruz, S.1    Parone, P.A.2    Lopes, V.S.3
  • 65
    • 84879885490 scopus 로고    scopus 로고
    • Expression of zinc-deficient human superoxide dismutase in Drosophila neurons produces a locomotor defect linked to mitochondrial dysfunction
    • Bahadorani S, Mukai ST, Rabie J, Beckman JS, Phillips JP, Hilliker AJ. Expression of zinc-deficient human superoxide dismutase in Drosophila neurons produces a locomotor defect linked to mitochondrial dysfunction. Neurobiol Aging 2013;34:2322–2330.
    • (2013) Neurobiol Aging , vol.34 , pp. 2322-2330
    • Bahadorani, S.1    Mukai, S.T.2    Rabie, J.3    Beckman, J.S.4    Phillips, J.P.5    Hilliker, A.J.6
  • 66
    • 78650503526 scopus 로고    scopus 로고
    • ALS-linked mutant superoxide dismutase 1 (SOD1) alters mitochondrial protein composition and decreases protein import
    • Li QA, Vande Velde C, Israelson A, et al. ALS-linked mutant superoxide dismutase 1 (SOD1) alters mitochondrial protein composition and decreases protein import. Proc Natl Acad Sci U S A 2010;107:21146–21151.
    • (2010) Proc Natl Acad Sci U S A , vol.107 , pp. 21146-21151
    • Li, Q.A.1    Vande Velde, C.2    Israelson, A.3
  • 67
    • 84866491615 scopus 로고    scopus 로고
    • Disruption of skeletal muscle mitochondrial network genes and miRNAs in amyotrophic lateral sclerosis
    • Russell AP, Wada S, Vergani L, et al. Disruption of skeletal muscle mitochondrial network genes and miRNAs in amyotrophic lateral sclerosis. Neurobiol Dis 2013;49:107–117.
    • (2013) Neurobiol Dis , vol.49 , pp. 107-117
    • Russell, A.P.1    Wada, S.2    Vergani, L.3
  • 68
    • 44049091481 scopus 로고    scopus 로고
    • Peroxisome proliferator-activated receptor-gamma in amyotrophic lateral sclerosis and Huntington's disease
    • Kiaei M. Peroxisome proliferator-activated receptor-gamma in amyotrophic lateral sclerosis and Huntington's disease. PPAR Res 2008;8:1–8.
    • (2008) PPAR Res , vol.8 , pp. 1-8
    • Kiaei, M.1
  • 69
    • 79955114400 scopus 로고    scopus 로고
    • G37R SOD1 mutant alters mitochondrial complex I activity, Ca2 + uptake and ATP production
    • Coussee E, De Smet P, Bogaert E, et al. G37R SOD1 mutant alters mitochondrial complex I activity, Ca2 + uptake and ATP production. Cell Calcium 2011;49:217–225.
    • (2011) Cell Calcium , vol.49 , pp. 217-225
    • Coussee, E.1    De Smet, P.2    Bogaert, E.3
  • 70
    • 77951096150 scopus 로고    scopus 로고
    • Mitochondrial dynamics-fusion, fission, movement, and mitophagy-in neurodegenerative diseases
    • Chen HC, Chan DC. Mitochondrial dynamics-fusion, fission, movement, and mitophagy-in neurodegenerative diseases. Hum Mol Genet 2009;18:R169–R176.
    • (2009) Hum Mol Genet , vol.18 , pp. R169-R176
    • Chen, H.C.1    Chan, D.C.2
  • 71
    • 34447309764 scopus 로고    scopus 로고
    • Extended polyglutamine repeats trigger a feedback loop involving the mitochondrial complex III, the proteasome and huntingtin aggregates
    • Fukui H, Moraes CT. Extended polyglutamine repeats trigger a feedback loop involving the mitochondrial complex III, the proteasome and huntingtin aggregates. Hum Mol Genet 2007;16:783–797.
    • (2007) Hum Mol Genet , vol.16 , pp. 783-797
    • Fukui, H.1    Moraes, C.T.2
  • 72
    • 79960669669 scopus 로고    scopus 로고
    • High-level inhibition of mitochondrial complexes III and IV is required to increase glutamate release from the nerve terminal
    • Kilbride SM, Gluchowska SA, Telford JE, O'Sullivan C, Davey GP. High-level inhibition of mitochondrial complexes III and IV is required to increase glutamate release from the nerve terminal. Mol Neurodegener 2011;6:53.
    • (2011) Mol Neurodegener , vol.6 , pp. 53
    • Kilbride, S.M.1    Gluchowska, S.A.2    Telford, J.E.3    O'Sullivan, C.4    Davey, G.P.5
  • 73
    • 25444474703 scopus 로고    scopus 로고
    • Mitochondria take center stage in aging and neurodegeneration
    • Beal MF. Mitochondria take center stage in aging and neurodegeneration. Ann Neurol 2005;58:495–505.
    • (2005) Ann Neurol , vol.58 , pp. 495-505
    • Beal, M.F.1
  • 74
    • 84892467123 scopus 로고    scopus 로고
    • Annonacin, a natural lipophilic mitochondrial complex I inhibitor, increases phosphorylation of tau in the brain of EDP-17 transgenic mice
    • Yamada ES, Respondek G, Mussner S, et al. Annonacin, a natural lipophilic mitochondrial complex I inhibitor, increases phosphorylation of tau in the brain of EDP-17 transgenic mice. Exp Neurol 2014;253:113–125.
    • (2014) Exp Neurol , vol.253 , pp. 113-125
    • Yamada, E.S.1    Respondek, G.2    Mussner, S.3
  • 75
    • 0041430614 scopus 로고    scopus 로고
    • Dysfunction of mitochondrial complex I and the proteasome: Interactions between two biochemical deficits in a cellular model of Parkinson's disease
    • Hoglinger GU, Carrard G, Michel PP, et al. Dysfunction of mitochondrial complex I and the proteasome: Interactions between two biochemical deficits in a cellular model of Parkinson's disease. J Neurochem 2003;86:1297–1307.
    • (2003) J Neurochem , vol.86 , pp. 1297-1307
    • Hoglinger, G.U.1    Carrard, G.2    Michel, P.P.3
  • 76
    • 0036310142 scopus 로고    scopus 로고
    • Mitochondrial dysfunction in a cell culture model of familial amyotrophic lateral sclerosis
    • Menzies FM, Cookson MR, Taylor RW, et al. Mitochondrial dysfunction in a cell culture model of familial amyotrophic lateral sclerosis. Brain 2002;125:1522–1533.
    • (2002) Brain , vol.125 , pp. 1522-1533
    • Menzies, F.M.1    Cookson, M.R.2    Taylor, R.W.3
  • 77
    • 9144221957 scopus 로고    scopus 로고
    • Mutant NDUFS3 subunit of mitochondrial complex I causes Leigh syndrome
    • Benit P, Slama A, Cartault F, et al. Mutant NDUFS3 subunit of mitochondrial complex I causes Leigh syndrome. J Med Genet 2004;41:14–17.
    • (2004) J Med Genet , vol.41 , pp. 14-17
    • Benit, P.1    Slama, A.2    Cartault, F.3
  • 78
    • 77950575478 scopus 로고    scopus 로고
    • Mitochondrial complex I activity and oxidative damage to mitochondrial proteins in the prefrontal cortex of patients with bipolar disorder
    • Andreazza AC, Shao L, Wang JF, Young LT. Mitochondrial complex I activity and oxidative damage to mitochondrial proteins in the prefrontal cortex of patients with bipolar disorder. Arch Gen Psychiatry 2010;67:360–368.
    • (2010) Arch Gen Psychiatry , vol.67 , pp. 360-368
    • Andreazza, A.C.1    Shao, L.2    Wang, J.F.3    Young, L.T.4
  • 79
    • 0037474471 scopus 로고    scopus 로고
    • Assay of mitochondrial respiratory chain complex I in human lymphocytes and cultured skin fibroblasts
    • Chretien D, Bénit P, Chol M, et al. Assay of mitochondrial respiratory chain complex I in human lymphocytes and cultured skin fibroblasts. Biochem Biophys Res Commun 2003;301:222–224.
    • (2003) Biochem Biophys Res Commun , vol.301 , pp. 222-224
    • Chretien, D.1    Bénit, P.2    Chol, M.3
  • 80
    • 84864540083 scopus 로고    scopus 로고
    • Mitochondrial complex II can generate reactive oxygen species at high rates in both the forward and reverse reactions
    • Quinlan CL, Orr AL, Perevoshchikova IV, Treberg JR, Ackrell BA, Brand MD. Mitochondrial complex II can generate reactive oxygen species at high rates in both the forward and reverse reactions. J Biol Chem 2012;287:27255–27264.
    • (2012) J Biol Chem , vol.287 , pp. 27255-27264
    • Quinlan, C.L.1    Orr, A.L.2    Perevoshchikova, I.V.3    Treberg, J.R.4    Ackrell, B.A.5    Brand, M.D.6
  • 82
    • 84875710000 scopus 로고    scopus 로고
    • Differential effects of complex II on mitochondrial ROS production and their relation to cardioprotective pre- and postconditioning
    • Dröse S. Differential effects of complex II on mitochondrial ROS production and their relation to cardioprotective pre- and postconditioning. Biochim Biophys Acta 2013;1827:578–587.
    • (2013) Biochim Biophys Acta , vol.1827 , pp. 578-587
    • Dröse, S.1
  • 83
    • 0037897337 scopus 로고    scopus 로고
    • A deletion in the human QP-C gene causes a complex III deficiency resulting in hypoglycaemia and lactic acidosis
    • Haut S, Brivet M, Touati G, et al. A deletion in the human QP-C gene causes a complex III deficiency resulting in hypoglycaemia and lactic acidosis. Hum Genet 2003;113:118–122.
    • (2003) Hum Genet , vol.113 , pp. 118-122
    • Haut, S.1    Brivet, M.2    Touati, G.3
  • 84
    • 0036803070 scopus 로고    scopus 로고
    • Defects in mitochondrial respiratory complexes III and IV, and human pathologies
    • Borisov VB. Defects in mitochondrial respiratory complexes III and IV, and human pathologies. Mol Aspects Med 2002;23:385–412.
    • (2002) Mol Aspects Med , vol.23 , pp. 385-412
    • Borisov, V.B.1
  • 85
    • 33745478725 scopus 로고    scopus 로고
    • Cytochrome c oxidase is required for the assembly/stability of respiratory complex I in mouse fibroblasts
    • Diaz F, Fukui H, Garcia S, Moraes CT. Cytochrome c oxidase is required for the assembly/stability of respiratory complex I in mouse fibroblasts. Mol Cell Biol 2006;26:4872–4881.
    • (2006) Mol Cell Biol , vol.26 , pp. 4872-4881
    • Diaz, F.1    Fukui, H.2    Garcia, S.3    Moraes, C.T.4
  • 86
    • 84885447161 scopus 로고    scopus 로고
    • Mitochondrial disorders associated with mitochondrial respiratory chain complex V deficiency
    • Li X, Yang Y. Mitochondrial disorders associated with mitochondrial respiratory chain complex V deficiency. Zhongguo Dang Dai Er Ke Za Zhi 2013;15:596–600.
    • (2013) Zhongguo Dang Dai Er Ke Za Zhi , vol.15 , pp. 596-600
    • Li, X.1    Yang, Y.2
  • 87
  • 88
    • 79952369773 scopus 로고    scopus 로고
    • Glycogen synthase kinase-3 inhibition reduces ischemic cerebral damage, restores impaired mitochondrial biogenesis and prevents ROS production
    • Valerio A, Bertolotti P, Delbarba A, et al. Glycogen synthase kinase-3 inhibition reduces ischemic cerebral damage, restores impaired mitochondrial biogenesis and prevents ROS production. J Neurochem 2011;116:1148–1159.
    • (2011) J Neurochem , vol.116 , pp. 1148-1159
    • Valerio, A.1    Bertolotti, P.2    Delbarba, A.3
  • 89
    • 84897230971 scopus 로고    scopus 로고
    • Preconditioning as a potential strategy for the prevention of Parkinson's disease
    • Golpich M, Rahmani B, Ibrahim NM, et al. Preconditioning as a potential strategy for the prevention of Parkinson's disease. Mol Neurobiol 2015;51:313–330.
    • (2015) Mol Neurobiol , vol.51 , pp. 313-330
    • Golpich, M.1    Rahmani, B.2    Ibrahim, N.M.3
  • 90
    • 84896719326 scopus 로고    scopus 로고
    • Modified mitochondrial dynamics, turnover and function in neurodegeneration: A focus on Huntington's Disease
    • In, Lou P-H, Petersen N, editors., Kerala, Research Signpost
    • Rosenstock TR, Rego AC. Modified mitochondrial dynamics, turnover and function in neurodegeneration: A focus on Huntington's Disease. In: Lou P-H, Petersen N, editors. Cell Bioener Health Dis: New Perspectives in Mitochondrial Biology. Kerala: Research Signpost; 2012;149–194.
    • (2012) Cell Bioener Health Dis: New Perspectives in Mitochondrial Biology , pp. 149-194
    • Rosenstock, T.R.1    Rego, A.C.2
  • 91
    • 84862782562 scopus 로고    scopus 로고
    • Exercise induces mitochondrial biogenesis after brain ischemia in rats
    • Zhang Q, Wu Y, Zhang P, et al. Exercise induces mitochondrial biogenesis after brain ischemia in rats. Neuroscience 2012;205:10–17.
    • (2012) Neuroscience , vol.205 , pp. 10-17
    • Zhang, Q.1    Wu, Y.2    Zhang, P.3
  • 92
    • 84925858717 scopus 로고    scopus 로고
    • Mitochondrial biogenesis: A therapeutic target for neurodevelopmental disorders and neurodegenerative diseases
    • Uittenbogaard M, Chiaramello A. Mitochondrial biogenesis: A therapeutic target for neurodevelopmental disorders and neurodegenerative diseases. Curr Pharm Des 2014;20:5574–5593.
    • (2014) Curr Pharm Des , vol.20 , pp. 5574-5593
    • Uittenbogaard, M.1    Chiaramello, A.2
  • 93
    • 84879777259 scopus 로고    scopus 로고
    • Mitochondrial biogenesis through activation of nuclear signaling proteins
    • Dominy JE, Puigserver P. Mitochondrial biogenesis through activation of nuclear signaling proteins. Cold Spring Harbor Perspect Biol 2013;5:1–18.
    • (2013) Cold Spring Harbor Perspect Biol , vol.5 , pp. 1-18
    • Dominy, J.E.1    Puigserver, P.2
  • 94
    • 42049114034 scopus 로고    scopus 로고
    • Transcriptional paradigms in mammalian mitochondrial biogenesis and function
    • Scarpulla RC. Transcriptional paradigms in mammalian mitochondrial biogenesis and function. Physiol Rev 2008;88:611–638.
    • (2008) Physiol Rev , vol.88 , pp. 611-638
    • Scarpulla, R.C.1
  • 95
    • 77953811756 scopus 로고    scopus 로고
    • Sex differences in the phosphorylation of mitochondrial proteins result in reduced production of reactive oxygen species and cardioprotection in females
    • –U46
    • Lagranha CJ, Deschamps A, Aponte A, Steenbergen C, Murphy E. Sex differences in the phosphorylation of mitochondrial proteins result in reduced production of reactive oxygen species and cardioprotection in females. Circ Res 2010;106:1681–U46.
    • (2010) Circ Res , vol.106 , pp. 1681
    • Lagranha, C.J.1    Deschamps, A.2    Aponte, A.3    Steenbergen, C.4    Murphy, E.5
  • 96
    • 33749630419 scopus 로고    scopus 로고
    • PGC-1-related coactivator: Immediate early expression and characterization of a CREB/NRF-1 binding domain associated with cytochrome c promoter occupancy and respiratory growth
    • Vercauteren K, Pasko RA, Gleyzer N, Marino VM, Scarpulla RC. PGC-1-related coactivator: Immediate early expression and characterization of a CREB/NRF-1 binding domain associated with cytochrome c promoter occupancy and respiratory growth. Mol Cell Biol 2006;26:7409–7419.
    • (2006) Mol Cell Biol , vol.26 , pp. 7409-7419
    • Vercauteren, K.1    Pasko, R.A.2    Gleyzer, N.3    Marino, V.M.4    Scarpulla, R.C.5
  • 97
    • 33749247065 scopus 로고    scopus 로고
    • Transducer of regulated CREB-binding proteins (TORCs) induce PGC-1 alpha transcription and mitochondrial biogenesis in muscle cells
    • Wu ZD, Huang XM, Feng YJ, et al. Transducer of regulated CREB-binding proteins (TORCs) induce PGC-1 alpha transcription and mitochondrial biogenesis in muscle cells. Proc Natl Acad Sci U S A 2006;103:14379–14384.
    • (2006) Proc Natl Acad Sci U S A , vol.103 , pp. 14379-14384
    • Wu, Z.D.1    Huang, X.M.2    Feng, Y.J.3
  • 98
    • 79957960940 scopus 로고    scopus 로고
    • Metabolic control of mitochondrial biogenesis through the PGC-1 family regulatory network
    • Scarpulla RC. Metabolic control of mitochondrial biogenesis through the PGC-1 family regulatory network. Biochim Biophys Acta 2011;1813:1269–1278.
    • (2011) Biochim Biophys Acta , vol.1813 , pp. 1269-1278
    • Scarpulla, R.C.1
  • 99
    • 55749114205 scopus 로고    scopus 로고
    • Rapidly increased neuronal mitochondrial biogenesis after hypoxic-ischemic brain injury
    • Yin W, Signore AP, Iwai M, Cao GD, Gao YQ, Chen J. Rapidly increased neuronal mitochondrial biogenesis after hypoxic-ischemic brain injury. Stroke 2008;39:3057–3063.
    • (2008) Stroke , vol.39 , pp. 3057-3063
    • Yin, W.1    Signore, A.P.2    Iwai, M.3    Cao, G.D.4    Gao, Y.Q.5    Chen, J.6
  • 100
    • 84868121739 scopus 로고    scopus 로고
    • Peroxisome proliferator-activated receptor gamma (PPAR-gamma) and neurodegenerative disorders
    • Chen YC, Wu JS, Tsai HD, et al. Peroxisome proliferator-activated receptor gamma (PPAR-gamma) and neurodegenerative disorders. Mol Neurobiol 2012;46:114–124.
    • (2012) Mol Neurobiol , vol.46 , pp. 114-124
    • Chen, Y.C.1    Wu, J.S.2    Tsai, H.D.3
  • 101
    • 67349276169 scopus 로고    scopus 로고
    • AMPK regulates energy expenditure by modulating NAD(+) metabolism and SIRT1 activity
    • –U140
    • Canto C, Gerhart-Hines Z, Feige JN, et al. AMPK regulates energy expenditure by modulating NAD(+) metabolism and SIRT1 activity. Nature 2009;458:1056–U140.
    • (2009) Nature , vol.458 , pp. 1056
    • Canto, C.1    Gerhart-Hines, Z.2    Feige, J.N.3
  • 102
    • 67650914230 scopus 로고    scopus 로고
    • AMPK in Health and Disease
    • Steinberg GR, Kemp BE. AMPK in Health and Disease. Physiol Rev 2009;89:1025–1078.
    • (2009) Physiol Rev , vol.89 , pp. 1025-1078
    • Steinberg, G.R.1    Kemp, B.E.2
  • 103
    • 10944247187 scopus 로고    scopus 로고
    • The AMP-activated protein kinase pathway – new players upstream and downstream
    • Hardie DG. The AMP-activated protein kinase pathway – new players upstream and downstream. J Cell Sci 2004;117:5479–5487.
    • (2004) J Cell Sci , vol.117 , pp. 5479-5487
    • Hardie, D.G.1
  • 104
    • 84865187620 scopus 로고    scopus 로고
    • Mitochondrial dysfunction in neurodegenerative diseases
    • Johri A, Beal MF. Mitochondrial dysfunction in neurodegenerative diseases. J Pharmacol Exp Ther 2012;342:619–630.
    • (2012) J Pharmacol Exp Ther , vol.342 , pp. 619-630
    • Johri, A.1    Beal, M.F.2
  • 105
    • 33745215883 scopus 로고    scopus 로고
    • The role of AMP-activated protein kinase in mitochondrial biogenesis
    • Reznick RM, Shulman GI. The role of AMP-activated protein kinase in mitochondrial biogenesis. J Physiol 2006;574:33–39.
    • (2006) J Physiol , vol.574 , pp. 33-39
    • Reznick, R.M.1    Shulman, G.I.2
  • 106
    • 84859475136 scopus 로고    scopus 로고
    • Biphasic modulation of the mitochondrial electron transport chain in myocardial ischemia and reperfusion
    • Lee H-L, Chen C-L, Yeh ST, Zweier JL, Chen Y-R. Biphasic modulation of the mitochondrial electron transport chain in myocardial ischemia and reperfusion. Am J Physiol Heart Circ Physiol 2012;302:H1410–H1422.
    • (2012) Am J Physiol Heart Circ Physiol , vol.302 , pp. H1410-H1422
    • Lee, H.-L.1    Chen, C.-L.2    Yeh, S.T.3    Zweier, J.L.4    Chen, Y.-R.5
  • 107
    • 2342545519 scopus 로고    scopus 로고
    • Target of rapamycin (TOR): An integrator of nutrient and growth factor signals and coordinator of cell growth and cell cycle progression
    • Fingar DC, Blenis J. Target of rapamycin (TOR): An integrator of nutrient and growth factor signals and coordinator of cell growth and cell cycle progression. Oncogene 2004;23:3151–3171.
    • (2004) Oncogene , vol.23 , pp. 3151-3171
    • Fingar, D.C.1    Blenis, J.2
  • 109
    • 33644852502 scopus 로고    scopus 로고
    • Mitochondrial transcription factor A induction by redox activation of nuclear respiratory factor 1
    • Piantadosi CA, Suliman HB. Mitochondrial transcription factor A induction by redox activation of nuclear respiratory factor 1. J Biol Chem 2006;281:324–333.
    • (2006) J Biol Chem , vol.281 , pp. 324-333
    • Piantadosi, C.A.1    Suliman, H.B.2
  • 111
    • 84878717391 scopus 로고    scopus 로고
    • Sirtuin deacetylases in neurodegenerative diseases of aging
    • Herskovits AZ, Guarente L. Sirtuin deacetylases in neurodegenerative diseases of aging. Cell Res 2013;23:746–758.
    • (2013) Cell Res , vol.23 , pp. 746-758
    • Herskovits, A.Z.1    Guarente, L.2
  • 112
    • 84858000209 scopus 로고    scopus 로고
    • The sirtuin SIRT6 regulates lifespan in male mice
    • Kanfi Y, Naiman S, Amir G, et al. The sirtuin SIRT6 regulates lifespan in male mice. Nature 2012;483:218–221.
    • (2012) Nature , vol.483 , pp. 218-221
    • Kanfi, Y.1    Naiman, S.2    Amir, G.3
  • 113
    • 77955347446 scopus 로고    scopus 로고
    • Sirtuin 3, a new target of PGC-1α, plays an important role in the suppression of ROS and mitochondrial biogenesis
    • Kong X, Wang R, Xue Y, et al. Sirtuin 3, a new target of PGC-1α, plays an important role in the suppression of ROS and mitochondrial biogenesis. PLoS One 2010;5:e11707.
    • (2010) PLoS One , vol.5
    • Kong, X.1    Wang, R.2    Xue, Y.3
  • 114
    • 2342592545 scopus 로고    scopus 로고
    • The estrogen-related receptor alpha (ERR alpha) functions in PPAR gamma coactivator 1 alpha (PGC-1 alpha)-induced mitochondrial biogenesis
    • Schreiber SN, Emter R, Hock MB, et al. The estrogen-related receptor alpha (ERR alpha) functions in PPAR gamma coactivator 1 alpha (PGC-1 alpha)-induced mitochondrial biogenesis. Proc Natl Acad Sci U S A 2004;101:6472–6477.
    • (2004) Proc Natl Acad Sci U S A , vol.101 , pp. 6472-6477
    • Schreiber, S.N.1    Emter, R.2    Hock, M.B.3
  • 115
    • 33845596500 scopus 로고    scopus 로고
    • Peroxisome proliferator-activated receptor γ coactivator 1 coactivators, energy homeostasis, and metabolism
    • Handschin C, Spiegelman BM. Peroxisome proliferator-activated receptor γ coactivator 1 coactivators, energy homeostasis, and metabolism. Endocr Rev 2006;27:728–735.
    • (2006) Endocr Rev , vol.27 , pp. 728-735
    • Handschin, C.1    Spiegelman, B.M.2
  • 116
    • 44649151707 scopus 로고    scopus 로고
    • The PPAR trio: Regulators of myocardial energy metabolism in health and disease
    • Madrazo JA, Kelly DP. The PPAR trio: Regulators of myocardial energy metabolism in health and disease. J Mol Cell Cardiol 2008;44:968–975.
    • (2008) J Mol Cell Cardiol , vol.44 , pp. 968-975
    • Madrazo, J.A.1    Kelly, D.P.2
  • 117
    • 21044442671 scopus 로고    scopus 로고
    • Evidence of an association between genetic variation of the coactivator PGC-1 beta and obesity
    • Andersen G, Wegner L, Yanagisawa K, et al. Evidence of an association between genetic variation of the coactivator PGC-1 beta and obesity. J Med Genet 2005;42:402–407.
    • (2005) J Med Genet , vol.42 , pp. 402-407
    • Andersen, G.1    Wegner, L.2    Yanagisawa, K.3
  • 118
    • 39049194778 scopus 로고    scopus 로고
    • Could MYC induction of mitochondrial biogenesis be linked to ROS production and genomic instability?
    • Dang CV, Li F, Lee LA. Could MYC induction of mitochondrial biogenesis be linked to ROS production and genomic instability? Cell Cycle 2005;4:1465–1466.
    • (2005) Cell Cycle , vol.4 , pp. 1465-1466
    • Dang, C.V.1    Li, F.2    Lee, L.A.3
  • 119
    • 45549087482 scopus 로고    scopus 로고
    • Nuclear respiratory factor 1 controls myocyte enhancer factor 2A transcription to provide a mechanism for coordinate expression of respiratory chain subunits
    • Ramachandran B, Yu GS, Gulick T. Nuclear respiratory factor 1 controls myocyte enhancer factor 2A transcription to provide a mechanism for coordinate expression of respiratory chain subunits. J Biol Chem 2008;283:11935–11946.
    • (2008) J Biol Chem , vol.283 , pp. 11935-11946
    • Ramachandran, B.1    Yu, G.S.2    Gulick, T.3
  • 121
    • 84897457350 scopus 로고    scopus 로고
    • First-in-class cardiolipin-protective compound as a therapeutic agent to restore mitochondrial bioenergetics
    • Szeto HH. First-in-class cardiolipin-protective compound as a therapeutic agent to restore mitochondrial bioenergetics. Br J Pharmacol 2014;171:2029–2050.
    • (2014) Br J Pharmacol , vol.171 , pp. 2029-2050
    • Szeto, H.H.1
  • 122
    • 33746397617 scopus 로고    scopus 로고
    • Cell-permeable peptide antioxidants as a novel therapeutic approach in a mouse model of amyotrophic lateral sclerosis
    • Petri S, Kiaei M, Damiano M, et al. Cell-permeable peptide antioxidants as a novel therapeutic approach in a mouse model of amyotrophic lateral sclerosis. J Neurochem 2006;98:1141–1148.
    • (2006) J Neurochem , vol.98 , pp. 1141-1148
    • Petri, S.1    Kiaei, M.2    Damiano, M.3
  • 123
    • 33847071146 scopus 로고    scopus 로고
    • Targeting antioxidants to mitochondria by conjugation to lipophilic cations
    • Murphy MP, Smith RA. Targeting antioxidants to mitochondria by conjugation to lipophilic cations. Annu Rev Pharmacol Toxicol 2007;47:629–656.
    • (2007) Annu Rev Pharmacol Toxicol , vol.47 , pp. 629-656
    • Murphy, M.P.1    Smith, R.A.2
  • 124
    • 34248159898 scopus 로고    scopus 로고
    • Mitochondrial targeting of quinones: Therapeutic implications
    • Cochemé HM, Kelso GF, James AM, et al. Mitochondrial targeting of quinones: Therapeutic implications. Mitochondrion 2007;7:S94–S102.
    • (2007) Mitochondrion , vol.7 , pp. S94-S102
    • Cochemé, H.M.1    Kelso, G.F.2    James, A.M.3
  • 125
    • 80155191237 scopus 로고    scopus 로고
    • Coenzyme Q10 decreases amyloid pathology and improves behavior in a transgenic mouse model of Alzheimer's disease
    • Dumont M, Kipiani K, Yu F, et al. Coenzyme Q10 decreases amyloid pathology and improves behavior in a transgenic mouse model of Alzheimer's disease. J Alzheimers Dis 2011;27:211–223.
    • (2011) J Alzheimers Dis , vol.27 , pp. 211-223
    • Dumont, M.1    Kipiani, K.2    Yu, F.3
  • 126
    • 84903301367 scopus 로고    scopus 로고
    • Mitochondria-targeted antioxidants for treatment of Parkinson's disease: Preclinical and clinical outcomes
    • Jin H, Kanthasamy A, Ghosh A, Anantharam V, Kalyanaraman B, Kanthasamy AG. Mitochondria-targeted antioxidants for treatment of Parkinson's disease: Preclinical and clinical outcomes. Biochim Biophys Acta 2014;1842:1282–1294.
    • (2014) Biochim Biophys Acta , vol.1842 , pp. 1282-1294
    • Jin, H.1    Kanthasamy, A.2    Ghosh, A.3    Anantharam, V.4    Kalyanaraman, B.5    Kanthasamy, A.G.6
  • 127
    • 65549091910 scopus 로고    scopus 로고
    • Combination therapy with coenzyme Q10 and creatine produces additive neuroprotective effects in models of Parkinson's and Huntington's diseases
    • Yang L, Calingasan NY, Wille EJ, et al. Combination therapy with coenzyme Q10 and creatine produces additive neuroprotective effects in models of Parkinson's and Huntington's diseases. J Neurochem 2009;109:1427–1439.
    • (2009) J Neurochem , vol.109 , pp. 1427-1439
    • Yang, L.1    Calingasan, N.Y.2    Wille, E.J.3
  • 128
    • 84897006654 scopus 로고    scopus 로고
    • Neuroprotective effects of the mitochondria-targeted antioxidant MitoQ in a model of inherited amyotrophic lateral sclerosis
    • Miquel E, Cassina A, Martínez-Palma L, et al. Neuroprotective effects of the mitochondria-targeted antioxidant MitoQ in a model of inherited amyotrophic lateral sclerosis. Free Radic Biol Med 2014;70:204–213.
    • (2014) Free Radic Biol Med , vol.70 , pp. 204-213
    • Miquel, E.1    Cassina, A.2    Martínez-Palma, L.3
  • 129
    • 84980370984 scopus 로고    scopus 로고
    • Mitochondria-targeted peptide SS-31 attenuates renal injury via an antioxidant effect in diabetic nephropathy
    • Hou Y, Li S, Wu M, et al. Mitochondria-targeted peptide SS-31 attenuates renal injury via an antioxidant effect in diabetic nephropathy. Am J Physiol Renal Physiol 2016;310:F547–F559.
    • (2016) Am J Physiol Renal Physiol , vol.310 , pp. F547-F559
    • Hou, Y.1    Li, S.2    Wu, M.3
  • 130
    • 33947495568 scopus 로고    scopus 로고
    • A novel cell-permeable antioxidant peptide, SS31, attenuates ischemic brain injury by down-regulating CD36
    • Cho S, Szeto HH, Kim E, Kim H, Tolhurst AT, Pinto JT. A novel cell-permeable antioxidant peptide, SS31, attenuates ischemic brain injury by down-regulating CD36. J Biol Chem 2007;282:4634–4642.
    • (2007) J Biol Chem , vol.282 , pp. 4634-4642
    • Cho, S.1    Szeto, H.H.2    Kim, E.3    Kim, H.4    Tolhurst, A.T.5    Pinto, J.T.6
  • 132
    • 77956207531 scopus 로고    scopus 로고
    • Mitochondria-targeted antioxidants protect against amyloid-β toxicity in Alzheimer's disease neurons
    • Manczak M, Mao P, Calkins MJ, et al. Mitochondria-targeted antioxidants protect against amyloid-β toxicity in Alzheimer's disease neurons. J Alzheimers Dis 2010;20(S2):609–631.
    • (2010) J Alzheimers Dis , vol.20 , Issue.S2 , pp. 609-631
    • Manczak, M.1    Mao, P.2    Calkins, M.J.3
  • 133
    • 68949213947 scopus 로고    scopus 로고
    • Mitochondria targeted peptides protect against 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine neurotoxicity
    • Yang L, Zhao K, Calingasan NY, Luo G, Szeto HH, Beal MF. Mitochondria targeted peptides protect against 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine neurotoxicity. Antioxid Redox Signal 2009;11:2095–2104.
    • (2009) Antioxid Redox Signal , vol.11 , pp. 2095-2104
    • Yang, L.1    Zhao, K.2    Calingasan, N.Y.3    Luo, G.4    Szeto, H.H.5    Beal, M.F.6
  • 134
    • 84896141559 scopus 로고    scopus 로고
    • Prospects for neuroprotective therapies in prodromal Huntington's disease
    • Chandra A, Johri A, Beal MF. Prospects for neuroprotective therapies in prodromal Huntington's disease. Mov Disord 2014;29:285–293.
    • (2014) Mov Disord , vol.29 , pp. 285-293
    • Chandra, A.1    Johri, A.2    Beal, M.F.3
  • 135
    • 84863762839 scopus 로고    scopus 로고
    • Prion-like behaviour and tau-dependent cytotoxicity of pyroglutamylated amyloid-beta
    • Nussbaum JM, Schilling S, Cynis H, et al. Prion-like behaviour and tau-dependent cytotoxicity of pyroglutamylated amyloid-beta. Nature 2012;485:651–655.
    • (2012) Nature , vol.485 , pp. 651-655
    • Nussbaum, J.M.1    Schilling, S.2    Cynis, H.3
  • 136
    • 84873087532 scopus 로고    scopus 로고
    • NLRP3 is activated in Alzheimer's disease and contributes to pathology in APP/PS1 mice
    • Heneka MT, Kummer MP, Stutz A, et al. NLRP3 is activated in Alzheimer's disease and contributes to pathology in APP/PS1 mice. Nature 2013;493:674–678.
    • (2013) Nature , vol.493 , pp. 674-678
    • Heneka, M.T.1    Kummer, M.P.2    Stutz, A.3
  • 137
    • 84856956771 scopus 로고    scopus 로고
    • Probing sporadic and familial Alzheimer's disease using induced pluripotent stem cells
    • –U107
    • Israel MA, Yuan SH, Bardy C, et al. Probing sporadic and familial Alzheimer's disease using induced pluripotent stem cells. Nature 2012;482:216–U107.
    • (2012) Nature , vol.482 , pp. 216
    • Israel, M.A.1    Yuan, S.H.2    Bardy, C.3
  • 138
    • 77956197971 scopus 로고    scopus 로고
    • Mitochondrial amyloid-beta levels are associated with the extent of mitochondrial dysfunction in different brain regions and the degree of cognitive impairment in alzheimer's transgenic mice
    • Dragicevic N, Mamcarz M, Zhu YY, et al. Mitochondrial amyloid-beta levels are associated with the extent of mitochondrial dysfunction in different brain regions and the degree of cognitive impairment in alzheimer's transgenic mice. J Alzheimers Dis 2010;20:S535–S550.
    • (2010) J Alzheimers Dis , vol.20 , pp. S535-S550
    • Dragicevic, N.1    Mamcarz, M.2    Zhu, Y.Y.3
  • 139
    • 77951950272 scopus 로고    scopus 로고
    • Combined R-α–lipoic acid and acetyl-L-carnitine exerts efficient preventative effects in a cellular model of Parkinson's disease
    • Zhang H, Jia H, Liu J, et al. Combined R-α–lipoic acid and acetyl-L-carnitine exerts efficient preventative effects in a cellular model of Parkinson's disease. J Cell Mol Med 2010;14:215–225.
    • (2010) J Cell Mol Med , vol.14 , pp. 215-225
    • Zhang, H.1    Jia, H.2    Liu, J.3
  • 140
    • 61349156769 scopus 로고    scopus 로고
    • Mutant Pink1 induces mitochondrial dysfunction in a neuronal cell model of Parkinson's disease by disturbing calcium flux
    • Marongiu R, Spencer B, Crews L, et al. Mutant Pink1 induces mitochondrial dysfunction in a neuronal cell model of Parkinson's disease by disturbing calcium flux. J Neurochem 2009;108:1561–1574.
    • (2009) J Neurochem , vol.108 , pp. 1561-1574
    • Marongiu, R.1    Spencer, B.2    Crews, L.3
  • 141
    • 84903215603 scopus 로고    scopus 로고
    • March separate, strike together—Role of phosphorylated TAU in mitochondrial dysfunction in Alzheimer's disease
    • Eckert A, Nisbet R, Grimm A, Götz J. March separate, strike together—Role of phosphorylated TAU in mitochondrial dysfunction in Alzheimer's disease. Biochim Biophys Acta 2014;1842:1258–1266.
    • (2014) Biochim Biophys Acta , vol.1842 , pp. 1258-1266
    • Eckert, A.1    Nisbet, R.2    Grimm, A.3    Götz, J.4
  • 142
    • 84901752701 scopus 로고    scopus 로고
    • Mitochondrial dysfunctions in neurodegenerative diseases: Relevance to Alzheimer's disease
    • Hroudová J, Singh N, Fišar Z. Mitochondrial dysfunctions in neurodegenerative diseases: Relevance to Alzheimer's disease. BioMed Res Int 2014;2014:1–9.
    • (2014) BioMed Res Int , vol.2014 , pp. 1-9
    • Hroudová, J.1    Singh, N.2    Fišar, Z.3
  • 143
    • 84942033298 scopus 로고    scopus 로고
    • Modulation of mitochondrial complex I activity averts cognitive decline in multiple animal models of familial Alzheimer's disease
    • Zhang L, Zhang S, Maezawa I, et al. Modulation of mitochondrial complex I activity averts cognitive decline in multiple animal models of familial Alzheimer's disease. EBioMedicine 2015;2:294–305.
    • (2015) EBioMedicine , vol.2 , pp. 294-305
    • Zhang, L.1    Zhang, S.2    Maezawa, I.3
  • 144
    • 77749329938 scopus 로고    scopus 로고
    • Mitochondrial DNA haplogroups in early-onset Alzheimer's disease and frontotemporal lobar degeneration
    • Kruger J, Hinttala R, Majamaa K, Remes AM. Mitochondrial DNA haplogroups in early-onset Alzheimer's disease and frontotemporal lobar degeneration. Mol Neurodegener 2010;5:6.
    • (2010) Mol Neurodegener , vol.5 , pp. 6
    • Kruger, J.1    Hinttala, R.2    Majamaa, K.3    Remes, A.M.4
  • 145
    • 13244292394 scopus 로고    scopus 로고
    • Time-course of mitochondrial gene expressions in mice brains: Implications for mitochondrial dysfunction, oxidative damage, and cytochrome c in aging
    • Manczak M, Jung YS, Park BS, Partovi D, Reddy PH. Time-course of mitochondrial gene expressions in mice brains: Implications for mitochondrial dysfunction, oxidative damage, and cytochrome c in aging. J Neurochem 2005;92:494–504.
    • (2005) J Neurochem , vol.92 , pp. 494-504
    • Manczak, M.1    Jung, Y.S.2    Park, B.S.3    Partovi, D.4    Reddy, P.H.5
  • 146
    • 41949086089 scopus 로고    scopus 로고
    • Alzheimer's disease is associated with reduced expression of energy in posterior cingulate metabolism genes neurons
    • Liang WS, Reiman EM, Valla J, et al. Alzheimer's disease is associated with reduced expression of energy in posterior cingulate metabolism genes neurons. Proc Natl Acad Sci U S A 2008;105:4441–4446.
    • (2008) Proc Natl Acad Sci U S A , vol.105 , pp. 4441-4446
    • Liang, W.S.1    Reiman, E.M.2    Valla, J.3
  • 147
    • 39449124353 scopus 로고    scopus 로고
    • Mitochondria morphology and DNA content upon sublethal exposure to beta-amyloid(1-42) peptide
    • Diana A, Simic G, Sinforiani E, Orru N, Pichiri G, Bono G. Mitochondria morphology and DNA content upon sublethal exposure to beta-amyloid(1-42) peptide. Coll Anthropol 2008;32:51–58.
    • (2008) Coll Anthropol , vol.32 , pp. 51-58
    • Diana, A.1    Simic, G.2    Sinforiani, E.3    Orru, N.4    Pichiri, G.5    Bono, G.6
  • 148
    • 31444432457 scopus 로고    scopus 로고
    • Polyglutamine expansion inhibits respiration by increasing reactive oxygen species in isolated mitochondria
    • Puranam KL, Wu GH, Strittmatter WJ, Burke JR. Polyglutamine expansion inhibits respiration by increasing reactive oxygen species in isolated mitochondria. Biochem Biophys Res Commun 2006;341:607–613.
    • (2006) Biochem Biophys Res Commun , vol.341 , pp. 607-613
    • Puranam, K.L.1    Wu, G.H.2    Strittmatter, W.J.3    Burke, J.R.4
  • 149
    • 84996724538 scopus 로고    scopus 로고
    • The cascade of oxidative stress and tau protein autophagic dysfunction in Alzheimer's disease
    • In, Zerr I, editor., Rijeka, Intech
    • Liu Z, Li P, Wu J, et al. The cascade of oxidative stress and tau protein autophagic dysfunction in Alzheimer's disease. In: Zerr I, editor. Alzheimer's Disease - Challenges for the Future. Rijeka: Intech, 2015.
    • (2015) Alzheimer's Disease - Challenges for the Future
    • Liu, Z.1    Li, P.2    Wu, J.3
  • 150
    • 78651079796 scopus 로고    scopus 로고
    • Mitochondrial transcription factor A (TFAM) polymorphisms and risk of late-onset Alzheimer's disease in Han Chinese
    • Zhang Q, Yu JT, Wang P, et al. Mitochondrial transcription factor A (TFAM) polymorphisms and risk of late-onset Alzheimer's disease in Han Chinese. Brain Res 2011;1368:355–360.
    • (2011) Brain Res , vol.1368 , pp. 355-360
    • Zhang, Q.1    Yu, J.T.2    Wang, P.3
  • 151
    • 12244296117 scopus 로고    scopus 로고
    • Results of a high-resolution genome screen of 437 Alzheimer's Disease families
    • Blacker D, Bertram L, Saunders AJ, et al. Results of a high-resolution genome screen of 437 Alzheimer's Disease families. Hum Mol Genet 2003;12:23–32.
    • (2003) Hum Mol Genet , vol.12 , pp. 23-32
    • Blacker, D.1    Bertram, L.2    Saunders, A.J.3
  • 152
    • 4644269268 scopus 로고    scopus 로고
    • Possible association of mitochondrial transcription factor A (TFAM) genotype with sporadic Alzheimer disease
    • Gunther C, von Hadeln K, Muller-Thomsen T, et al. Possible association of mitochondrial transcription factor A (TFAM) genotype with sporadic Alzheimer disease. Neurosci Lett 2004;369:219–223.
    • (2004) Neurosci Lett , vol.369 , pp. 219-223
    • Gunther, C.1    von Hadeln, K.2    Muller-Thomsen, T.3
  • 153
    • 33746396694 scopus 로고    scopus 로고
    • Troglitazone, a peroxisome proliferator-activated receptor-γ agonist, decreases tau phosphorylation in CHOtau4R cells
    • d'Abramo C, Ricciarelli R, Pronzato MA, Davies P. Troglitazone, a peroxisome proliferator-activated receptor-γ agonist, decreases tau phosphorylation in CHOtau4R cells. J Neurochem 2006;98:1068–1077.
    • (2006) J Neurochem , vol.98 , pp. 1068-1077
    • d'Abramo, C.1    Ricciarelli, R.2    Pronzato, M.A.3    Davies, P.4
  • 154
    • 84914703322 scopus 로고    scopus 로고
    • AMPK activation ameliorates Alzheimer's disease-like pathology and spatial memory impairment in a streptozotocin-induced Alzheimer's disease model in rats
    • Du L-L, Chai D-M, Zhao L-N, et al. AMPK activation ameliorates Alzheimer's disease-like pathology and spatial memory impairment in a streptozotocin-induced Alzheimer's disease model in rats. J Alzheimers Dis 2015;43:775–784.
    • (2015) J Alzheimers Dis , vol.43 , pp. 775-784
    • Du, L.-L.1    Chai, D.-M.2    Zhao, L.-N.3
  • 155
    • 34447308268 scopus 로고    scopus 로고
    • SIRT1 deacetylase protects against neurodegeneration in models for Alzheimer's disease and amyotrophic lateral sclerosis
    • Kim D, Nguyen MD, Dobbin MM, et al. SIRT1 deacetylase protects against neurodegeneration in models for Alzheimer's disease and amyotrophic lateral sclerosis. EMBO J 2007;26:3169–3179.
    • (2007) EMBO J , vol.26 , pp. 3169-3179
    • Kim, D.1    Nguyen, M.D.2    Dobbin, M.M.3
  • 156
    • 57349169297 scopus 로고    scopus 로고
    • LRRK2 P755L variant in sporadic Parkinson's disease
    • Tomiyama H, Mizuta I, Li Y, et al. LRRK2 P755L variant in sporadic Parkinson's disease. J Hum Genet 2008;53:1012–1015.
    • (2008) J Hum Genet , vol.53 , pp. 1012-1015
    • Tomiyama, H.1    Mizuta, I.2    Li, Y.3
  • 157
    • 2342538502 scopus 로고    scopus 로고
    • Minocycline reduces the lipopolysaccharide-induced inflammatory reaction, peroxynitrite-mediated nitration of proteins, disruption of the blood-brain barrier, and damage in the nigral dopaminergic system
    • Tomas-Camardiel M, Rite I, Herrera AJ, et al. Minocycline reduces the lipopolysaccharide-induced inflammatory reaction, peroxynitrite-mediated nitration of proteins, disruption of the blood-brain barrier, and damage in the nigral dopaminergic system. Neurobiol Dis 2004;16:190–201.
    • (2004) Neurobiol Dis , vol.16 , pp. 190-201
    • Tomas-Camardiel, M.1    Rite, I.2    Herrera, A.J.3
  • 159
    • 2442636348 scopus 로고    scopus 로고
    • Parkinson's: Divergent causes, convergent mechanisms
    • Greenamyre JT, Hastings TG. Parkinson's: Divergent causes, convergent mechanisms. Science 2004;304:1120–1122.
    • (2004) Science , vol.304 , pp. 1120-1122
    • Greenamyre, J.T.1    Hastings, T.G.2
  • 160
    • 79955695012 scopus 로고    scopus 로고
    • Life span and locomotor activity modification by glucose and polyphenols in Drosophila melanogaster chronically exposed to oxidative stress-stimuli: Implications in Parkinson's disease
    • Ortega-Arellano HF, Jimenez-Del-Rio M, Velez-Pardo C. Life span and locomotor activity modification by glucose and polyphenols in Drosophila melanogaster chronically exposed to oxidative stress-stimuli: Implications in Parkinson's disease. Neurochem Res 2011;36:1073–1086.
    • (2011) Neurochem Res , vol.36 , pp. 1073-1086
    • Ortega-Arellano, H.F.1    Jimenez-Del-Rio, M.2    Velez-Pardo, C.3
  • 161
    • 14744289621 scopus 로고    scopus 로고
    • Expression time course and spatial distribution of activated caspase-3 after experimental status epilepticus: Contribution of delayed neuronal cell death to seizure-induced neuronal injury
    • Weise J, Engelhorn T, Dörfler A, Aker S, Bähr M, Hufnagel A. Expression time course and spatial distribution of activated caspase-3 after experimental status epilepticus: Contribution of delayed neuronal cell death to seizure-induced neuronal injury. Neurobiol Dis 2005;18:582–590.
    • (2005) Neurobiol Dis , vol.18 , pp. 582-590
    • Weise, J.1    Engelhorn, T.2    Dörfler, A.3    Aker, S.4    Bähr, M.5    Hufnagel, A.6
  • 162
    • 84867269951 scopus 로고    scopus 로고
    • AMP kinase activation mitigates dopaminergic dysfunction and mitochondrial abnormalities in Drosophila models of Parkinson's disease
    • Ng C-H, Guan MS, Koh C, et al. AMP kinase activation mitigates dopaminergic dysfunction and mitochondrial abnormalities in Drosophila models of Parkinson's disease. J Neurosci 2012;32:14311–14317.
    • (2012) J Neurosci , vol.32 , pp. 14311-14317
    • Ng, C.-H.1    Guan, M.S.2    Koh, C.3
  • 163
    • 31744432453 scopus 로고    scopus 로고
    • Tetrahydrobiopterin causes mitochondrial dysfunction in dopaminergic cells: Implications for Parkinson's disease
    • Choi HJ, Lee SY, Cho Y, No H, Kim SW, Hwang O. Tetrahydrobiopterin causes mitochondrial dysfunction in dopaminergic cells: Implications for Parkinson's disease. Neurochem Int 2006;48:255–262.
    • (2006) Neurochem Int , vol.48 , pp. 255-262
    • Choi, H.J.1    Lee, S.Y.2    Cho, Y.3    No, H.4    Kim, S.W.5    Hwang, O.6
  • 164
    • 33646948530 scopus 로고    scopus 로고
    • Parkinson's disease brain mitochondrial complex I has oxidatively damaged subunits and is functionally impaired and misassembled
    • Keeney PM, Xie J, Capaldi RA, Bennett JP. Parkinson's disease brain mitochondrial complex I has oxidatively damaged subunits and is functionally impaired and misassembled. J Neurosci 2006;26:5256–5264.
    • (2006) J Neurosci , vol.26 , pp. 5256-5264
    • Keeney, P.M.1    Xie, J.2    Capaldi, R.A.3    Bennett, J.P.4
  • 165
    • 84872591393 scopus 로고    scopus 로고
    • 6-OHDA-induced apoptosis and mitochondrial dysfunction are mediated by early modulation of intracellular signals and interaction of Nrf2 and NF-kappa B factors
    • Tobon-Velasco JC, Limon-Pacheco JH, Orozco-Ibarra M, et al. 6-OHDA-induced apoptosis and mitochondrial dysfunction are mediated by early modulation of intracellular signals and interaction of Nrf2 and NF-kappa B factors. Toxicology 2013;304:109–119.
    • (2013) Toxicology , vol.304 , pp. 109-119
    • Tobon-Velasco, J.C.1    Limon-Pacheco, J.H.2    Orozco-Ibarra, M.3
  • 166
    • 77957358299 scopus 로고    scopus 로고
    • Mitochondrial dynamics in cell death and neurodegeneration
    • Cho D-H, Nakamura T, Lipton SA. Mitochondrial dynamics in cell death and neurodegeneration. Cell Mol Life Sci 2010;67:3435–3447.
    • (2010) Cell Mol Life Sci , vol.67 , pp. 3435-3447
    • Cho, D.-H.1    Nakamura, T.2    Lipton, S.A.3
  • 167
    • 33644543761 scopus 로고    scopus 로고
    • Expanding insights of mitochondrial dysfunction in Parkinson's disease
    • Abou-Sleiman PM, Muqit MMK, Wood NW. Expanding insights of mitochondrial dysfunction in Parkinson's disease. Nat Rev Neurosci 2006;7:207–219.
    • (2006) Nat Rev Neurosci , vol.7 , pp. 207-219
    • Abou-Sleiman, P.M.1    Muqit, M.M.K.2    Wood, N.W.3
  • 168
    • 0037104723 scopus 로고    scopus 로고
    • An in vitro model of Parkinson's disease: Linking mitochondrial impairment to altered alpha-synuclein metabolism and oxidative damage
    • Sherer TB, Betarbet R, Stout AK, et al. An in vitro model of Parkinson's disease: Linking mitochondrial impairment to altered alpha-synuclein metabolism and oxidative damage. J Neurosci 2002;22:7006–7015.
    • (2002) J Neurosci , vol.22 , pp. 7006-7015
    • Sherer, T.B.1    Betarbet, R.2    Stout, A.K.3
  • 169
    • 0242362280 scopus 로고    scopus 로고
    • An inhibitor of mitochondrial complex I, rotenone, inactivates proteasome by oxidative modification and induces aggregation of oxidized proteins in SH-SY5Y cells
    • Shamoto-Nagai M, Maruyama W, Kato Y, et al. An inhibitor of mitochondrial complex I, rotenone, inactivates proteasome by oxidative modification and induces aggregation of oxidized proteins in SH-SY5Y cells. J Neurosci Res 2003;74:589–597.
    • (2003) J Neurosci Res , vol.74 , pp. 589-597
    • Shamoto-Nagai, M.1    Maruyama, W.2    Kato, Y.3
  • 170
    • 84866540615 scopus 로고    scopus 로고
    • Redox regulation of protein misfolding, mitochondrial dysfunction, synaptic damage, and cell death in neurodegenerative diseases
    • Nakamura T, Cho DH, Lipton SA. Redox regulation of protein misfolding, mitochondrial dysfunction, synaptic damage, and cell death in neurodegenerative diseases. Exp Neurol 2012;238:12–21.
    • (2012) Exp Neurol , vol.238 , pp. 12-21
    • Nakamura, T.1    Cho, D.H.2    Lipton, S.A.3
  • 171
    • 84859345475 scopus 로고    scopus 로고
    • Impaired complex-I mitochondrial biogenesis in Parkinson disease frontal cortex
    • Thomas RR, Keeney PM, Bennett JP. Impaired complex-I mitochondrial biogenesis in Parkinson disease frontal cortex. J Parkinsons Dis 2012;2:67–76.
    • (2012) J Parkinsons Dis , vol.2 , pp. 67-76
    • Thomas, R.R.1    Keeney, P.M.2    Bennett, J.P.3
  • 172
    • 79959305691 scopus 로고    scopus 로고
    • Mitochondria: The next (Neurode)generation
    • Schon EA, Przedborski S. Mitochondria: The next (Neurode)generation. Neuron 2011;70:1033–1053.
    • (2011) Neuron , vol.70 , pp. 1033-1053
    • Schon, E.A.1    Przedborski, S.2
  • 173
    • 84861544095 scopus 로고    scopus 로고
    • Impaired mitochondrial biogenesis contributes to depletion of functional mitochondria in chronic MPP+ toxicity: Dual roles for ERK1/2
    • Zhu JH, Gusdon AM, Cimen H, Van Houten B, Koc E, Chu CT. Impaired mitochondrial biogenesis contributes to depletion of functional mitochondria in chronic MPP+ toxicity: Dual roles for ERK1/2. Cell Death Dis 2012;3:10.
    • (2012) Cell Death Dis , vol.3 , pp. 10
    • Zhu, J.H.1    Gusdon, A.M.2    Cimen, H.3    Van Houten, B.4    Koc, E.5    Chu, C.T.6
  • 174
    • 77958072667 scopus 로고    scopus 로고
    • PGC-1 alpha, a potential therapeutic target for early intervention in Parkinson's disease
    • Zheng B, Liao ZX, Locascio JJ, et al. PGC-1 alpha, a potential therapeutic target for early intervention in Parkinson's disease. Sci Transl Med 2010;2:14.
    • (2010) Sci Transl Med , vol.2 , pp. 14
    • Zheng, B.1    Liao, Z.X.2    Locascio, J.J.3
  • 175
    • 77953877676 scopus 로고    scopus 로고
    • A pivotal role for PINK1 and autophagy in mitochondrial quality control: Implications for Parkinson disease
    • Chu CT. A pivotal role for PINK1 and autophagy in mitochondrial quality control: Implications for Parkinson disease. Hum Mol Genet 2010;19:R28–R37.
    • (2010) Hum Mol Genet , vol.19 , pp. R28-R37
    • Chu, C.T.1
  • 176
    • 79952020818 scopus 로고    scopus 로고
    • Genetic mouse models for Parkinson's disease display severe pathology in glial cell mitochondria
    • Schmidt S, Linnartz B, Mendritzki S, et al. Genetic mouse models for Parkinson's disease display severe pathology in glial cell mitochondria. Hum Mol Genet 2011;20:1197–1211.
    • (2011) Hum Mol Genet , vol.20 , pp. 1197-1211
    • Schmidt, S.1    Linnartz, B.2    Mendritzki, S.3
  • 177
    • 33644778845 scopus 로고    scopus 로고
    • Parkin enhances mitochondrial biogenesis in proliferating cells
    • Kuroda Y, Mitsui T, Kunishige M, et al. Parkin enhances mitochondrial biogenesis in proliferating cells. Hum Mol Genet 2006;15:883–895.
    • (2006) Hum Mol Genet , vol.15 , pp. 883-895
    • Kuroda, Y.1    Mitsui, T.2    Kunishige, M.3
  • 178
    • 84857031377 scopus 로고    scopus 로고
    • Parkin, PINK1 and mitochondrial integrity: Emerging concepts of mitochondrial dysfunction in Parkinson's disease
    • Pilsl A, Winklhofer KF. Parkin, PINK1 and mitochondrial integrity: Emerging concepts of mitochondrial dysfunction in Parkinson's disease. Acta Neuropathol 2012;123:173–188.
    • (2012) Acta Neuropathol , vol.123 , pp. 173-188
    • Pilsl, A.1    Winklhofer, K.F.2
  • 179
    • 84864150600 scopus 로고    scopus 로고
    • Mitochondrial dysfunction in Parkinson's disease: Molecular mechanisms and pathophysiological consequences
    • Exner N, Lutz AK, Haass C, Winklhofer KF. Mitochondrial dysfunction in Parkinson's disease: Molecular mechanisms and pathophysiological consequences. EMBO J 2012;31:3038–3062.
    • (2012) EMBO J , vol.31 , pp. 3038-3062
    • Exner, N.1    Lutz, A.K.2    Haass, C.3    Winklhofer, K.F.4
  • 180
    • 84895928813 scopus 로고    scopus 로고
    • Beyond the mitochondrion: Cytosolic PINK1 remodels dendrites through Protein Kinase A
    • Dagda RK, Pien I, Wang R, et al. Beyond the mitochondrion: Cytosolic PINK1 remodels dendrites through Protein Kinase A. J Neurochem 2014;128:864–877.
    • (2014) J Neurochem , vol.128 , pp. 864-877
    • Dagda, R.K.1    Pien, I.2    Wang, R.3
  • 181
    • 75749156257 scopus 로고    scopus 로고
    • PINK1 is selectively stabilized on impaired mitochondria to activate Parkin
    • Narendra DP, Jin SM, Tanaka A, et al. PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol 2010;8:e1000298.
    • (2010) PLoS Biol , vol.8
    • Narendra, D.P.1    Jin, S.M.2    Tanaka, A.3
  • 182
    • 84873045973 scopus 로고    scopus 로고
    • PINK1 drives Parkin self-association and HECT-like E3 activity upstream of mitochondrial binding
    • Lazarou M, Narendra DP, Jin SM, Tekle E, Banerjee S, Youle RJ. PINK1 drives Parkin self-association and HECT-like E3 activity upstream of mitochondrial binding. J Cell Biol 2013;200:163–172.
    • (2013) J Cell Biol , vol.200 , pp. 163-172
    • Lazarou, M.1    Narendra, D.P.2    Jin, S.M.3    Tekle, E.4    Banerjee, S.5    Youle, R.J.6
  • 183
    • 62749113469 scopus 로고    scopus 로고
    • Silencing of PINK1 expression affects mitochondrial DNA and oxidative phosphorylation in dopaminergic cells
    • Gegg ME, Cooper JM, Schapira AH, Taanman J-W. Silencing of PINK1 expression affects mitochondrial DNA and oxidative phosphorylation in dopaminergic cells. PLoS One 2009;4:e4756.
    • (2009) PLoS One , vol.4
    • Gegg, M.E.1    Cooper, J.M.2    Schapira, A.H.3    Taanman, J.-W.4
  • 184
    • 84969983910 scopus 로고    scopus 로고
    • The emerging role of Nrf2 in mitochondrial function
    • Dinkova-Kostova AT, Abramov AY. The emerging role of Nrf2 in mitochondrial function. Free Radic Biol Med 2015;88:179–188.
    • (2015) Free Radic Biol Med , vol.88 , pp. 179-188
    • Dinkova-Kostova, A.T.1    Abramov, A.Y.2
  • 185
    • 74949089639 scopus 로고    scopus 로고
    • Mitochondrial dysfunction and biogenesis in the pathogenesis of Parkinson's disease
    • Lin T-K, Liou C-W, Chen S-D, et al. Mitochondrial dysfunction and biogenesis in the pathogenesis of Parkinson's disease. Chang Gung Med J 2009;32:589–599.
    • (2009) Chang Gung Med J , vol.32 , pp. 589-599
    • Lin, T.-K.1    Liou, C.-W.2    Chen, S.-D.3
  • 186
    • 72649095199 scopus 로고    scopus 로고
    • Mitochondrial transcription factor A variants and the risk of Parkinson's disease
    • Gaweda-Walerych K, Safranow K, Maruszak A, et al. Mitochondrial transcription factor A variants and the risk of Parkinson's disease. Neurosci Lett 2010;469:24–29.
    • (2010) Neurosci Lett , vol.469 , pp. 24-29
    • Gaweda-Walerych, K.1    Safranow, K.2    Maruszak, A.3
  • 187
    • 68949206326 scopus 로고    scopus 로고
    • Mitochondrial gene therapy augments mitochondrial physiology in a Parkinson's disease cell model
    • Keeney PM, Quigley CK, Dunham LD, et al. Mitochondrial gene therapy augments mitochondrial physiology in a Parkinson's disease cell model. Hum Gene Ther 2009;20:897–907.
    • (2009) Hum Gene Ther , vol.20 , pp. 897-907
    • Keeney, P.M.1    Quigley, C.K.2    Dunham, L.D.3
  • 188
    • 0036326074 scopus 로고    scopus 로고
    • Protective action of the peroxisome proliferator-activated receptor-gamma agonist pioglitazone in a mouse model of Parkinson's disease
    • Breidert T, Callebert J, Heneka MT, Landreth G, Launay JM, Hirsch EC. Protective action of the peroxisome proliferator-activated receptor-gamma agonist pioglitazone in a mouse model of Parkinson's disease. J Neurochem 2002;82:615–624.
    • (2002) J Neurochem , vol.82 , pp. 615-624
    • Breidert, T.1    Callebert, J.2    Heneka, M.T.3    Landreth, G.4    Launay, J.M.5    Hirsch, E.C.6
  • 189
    • 34548494847 scopus 로고    scopus 로고
    • Drug Insight: Effects mediated by peroxisome proliferator-activated receptor-gamma in CNS disorders
    • Heneka MT, Landreth GE, Hull M. Drug Insight: Effects mediated by peroxisome proliferator-activated receptor-gamma in CNS disorders. Nat Clin Pract Neurol 2007;3:496–504.
    • (2007) Nat Clin Pract Neurol , vol.3 , pp. 496-504
    • Heneka, M.T.1    Landreth, G.E.2    Hull, M.3
  • 190
    • 84860365643 scopus 로고    scopus 로고
    • Pharmacological manipulation of peroxisome proliferator-activated receptor gamma (PPAR gamma) reveals a role for anti-oxidant protection in a model of Parkinson's disease
    • Martin HL, Mounsey RB, Mustafa S, Sathe K, Teismann P. Pharmacological manipulation of peroxisome proliferator-activated receptor gamma (PPAR gamma) reveals a role for anti-oxidant protection in a model of Parkinson's disease. Exp Neurol 2012;235:528–538.
    • (2012) Exp Neurol , vol.235 , pp. 528-538
    • Martin, H.L.1    Mounsey, R.B.2    Mustafa, S.3    Sathe, K.4    Teismann, P.5
  • 191
    • 84965010994 scopus 로고    scopus 로고
    • Nutraceuticals in Parkinson's Disease
    • Hang L, Basil AH, Lim K-L. Nutraceuticals in Parkinson's Disease. NeuroMol Med 2016;18:306–321.
    • (2016) NeuroMol Med , vol.18 , pp. 306-321
    • Hang, L.1    Basil, A.H.2    Lim, K.-L.3
  • 192
    • 84855929223 scopus 로고    scopus 로고
    • SIRT1 protects against α-synuclein aggregation by activating molecular chaperones
    • Donmez G, Arun A, Chung C-Y, McLean PJ, Lindquist S, Guarente L. SIRT1 protects against α-synuclein aggregation by activating molecular chaperones. J Neurosci 2012;32:124–132.
    • (2012) J Neurosci , vol.32 , pp. 124-132
    • Donmez, G.1    Arun, A.2    Chung, C.-Y.3    McLean, P.J.4    Lindquist, S.5    Guarente, L.6
  • 193
    • 34547807613 scopus 로고    scopus 로고
    • Global changes to the ubiquitin system in Huntington's disease
    • Bennett EJ, Shaler TA, Woodman B, et al. Global changes to the ubiquitin system in Huntington's disease. Nature 2007;448:704–708.
    • (2007) Nature , vol.448 , pp. 704-708
    • Bennett, E.J.1    Shaler, T.A.2    Woodman, B.3
  • 194
    • 45149105779 scopus 로고    scopus 로고
    • Towards a transgenic model of Huntington's disease in a non-human primate
    • –U56
    • Yang SH, Cheng PH, Banta H, et al. Towards a transgenic model of Huntington's disease in a non-human primate. Nature 2008;453:921–U56.
    • (2008) Nature , vol.453 , pp. 921
    • Yang, S.H.1    Cheng, P.H.2    Banta, H.3
  • 195
    • 54449092109 scopus 로고    scopus 로고
    • Rosiglitazone treatment prevents mitochondrial dysfunction in mutant Huntingtin-expressing cells possible role of peroxisome proliferator-activated receptor-γ (PPARγ) in the pathogenesis of Huntington disease
    • Quintanilla RA, Jin YN, Fuenzalida K, Bronfman M, Johnson GV. Rosiglitazone treatment prevents mitochondrial dysfunction in mutant Huntingtin-expressing cells possible role of peroxisome proliferator-activated receptor-γ (PPARγ) in the pathogenesis of Huntington disease. J Biol Chem 2008;283:25628–25637.
    • (2008) J Biol Chem , vol.283 , pp. 25628-25637
    • Quintanilla, R.A.1    Jin, Y.N.2    Fuenzalida, K.3    Bronfman, M.4    Johnson, G.V.5
  • 196
    • 79960564783 scopus 로고    scopus 로고
    • The dysfunction of hepatic transcriptional factors in mice with Huntington's Disease
    • Chiang M-C, Chern Y, Juo C-G. The dysfunction of hepatic transcriptional factors in mice with Huntington's Disease. Biochim Biophys Acta 2011;1812:1111–1120.
    • (2011) Biochim Biophys Acta , vol.1812 , pp. 1111-1120
    • Chiang, M.-C.1    Chern, Y.2    Juo, C.-G.3
  • 197
    • 77955017449 scopus 로고    scopus 로고
    • Impairment of PGC-1alpha expression, neuropathology and hepatic steatosis in a transgenic mouse model of Huntington's disease following chronic energy deprivation
    • Chaturvedi RK, Calingasan NY, Yang L, Hennessey T, Johri A, Beal MF. Impairment of PGC-1alpha expression, neuropathology and hepatic steatosis in a transgenic mouse model of Huntington's disease following chronic energy deprivation. Hum Mol Genet 2010;19:3190–3205.
    • (2010) Hum Mol Genet , vol.19 , pp. 3190-3205
    • Chaturvedi, R.K.1    Calingasan, N.Y.2    Yang, L.3    Hennessey, T.4    Johri, A.5    Beal, M.F.6
  • 198
    • 67650061723 scopus 로고    scopus 로고
    • Impaired PGC-1α function in muscle in Huntington's disease
    • Chaturvedi RK, Adhihetty P, Shukla S, et al. Impaired PGC-1α function in muscle in Huntington's disease. Hum Mol Genet 2009;18:3048–3065.
    • (2009) Hum Mol Genet , vol.18 , pp. 3048-3065
    • Chaturvedi, R.K.1    Adhihetty, P.2    Shukla, S.3
  • 199
    • 61849093278 scopus 로고    scopus 로고
    • Adipose tissue dysfunction tracks disease progression in two Huntington's disease mouse models
    • Phan J, Hickey MA, Zhang PX, Chesselet MF, Reue K. Adipose tissue dysfunction tracks disease progression in two Huntington's disease mouse models. Hum Mol Genet 2009;18:1006–1016.
    • (2009) Hum Mol Genet , vol.18 , pp. 1006-1016
    • Phan, J.1    Hickey, M.A.2    Zhang, P.X.3    Chesselet, M.F.4    Reue, K.5
  • 200
    • 33750437278 scopus 로고    scopus 로고
    • Thermoregulatory and metabolic defects in Huntington's disease transgenic mice implicate PGC-1α in Huntington's disease neurodegeneration
    • Weydt P, Pineda VV, Torrence AE, et al. Thermoregulatory and metabolic defects in Huntington's disease transgenic mice implicate PGC-1α in Huntington's disease neurodegeneration. Cell Metab 2006;4:349–362.
    • (2006) Cell Metab , vol.4 , pp. 349-362
    • Weydt, P.1    Pineda, V.V.2    Torrence, A.E.3
  • 201
    • 81955162873 scopus 로고    scopus 로고
    • PPARgamma rescue of the mitochondrial dysfunction in Huntington's disease
    • Chiang M-C, Chern Y, Huang R-N. PPARgamma rescue of the mitochondrial dysfunction in Huntington's disease. Neurobiol Dis 2012;45:322–328.
    • (2012) Neurobiol Dis , vol.45 , pp. 322-328
    • Chiang, M.-C.1    Chern, Y.2    Huang, R.-N.3
  • 202
    • 67349247037 scopus 로고    scopus 로고
    • Mitochondrial structural and functional dynamics in Huntington's disease
    • Reddy PH, Mao P, Manczak M. Mitochondrial structural and functional dynamics in Huntington's disease. Brain Res Rev 2009;61:33–48.
    • (2009) Brain Res Rev , vol.61 , pp. 33-48
    • Reddy, P.H.1    Mao, P.2    Manczak, M.3
  • 203
    • 37349084923 scopus 로고    scopus 로고
    • Mitochondrial NAD+-linked State 3 respiration and complex-I activity are compromised in the cerebral cortex of 3-nitropropionic acid-induced rat model of Huntington's disease
    • Pandey M, Varghese M, Sindhu KM, et al. Mitochondrial NAD+-linked State 3 respiration and complex-I activity are compromised in the cerebral cortex of 3-nitropropionic acid-induced rat model of Huntington's disease. J Neurochem 2008;104:420–434.
    • (2008) J Neurochem , vol.104 , pp. 420-434
    • Pandey, M.1    Varghese, M.2    Sindhu, K.M.3
  • 204
    • 77957742105 scopus 로고    scopus 로고
    • Mitochondrial loss, dysfunction and altered dynamics in Huntington's disease
    • Kim J, Moody JP, Edgerly CK, et al. Mitochondrial loss, dysfunction and altered dynamics in Huntington's disease. Hum Mol Genet 2010;19:3919–3935.
    • (2010) Hum Mol Genet , vol.19 , pp. 3919-3935
    • Kim, J.1    Moody, J.P.2    Edgerly, C.K.3
  • 205
    • 56649095917 scopus 로고    scopus 로고
    • Respiratory-chain diseases related to complex III deficiency
    • Benit P, Lebon S, Rustin P. Respiratory-chain diseases related to complex III deficiency. Biochim Biophys Acta 2009;1793:181–185.
    • (2009) Biochim Biophys Acta , vol.1793 , pp. 181-185
    • Benit, P.1    Lebon, S.2    Rustin, P.3
  • 207
    • 84884904263 scopus 로고    scopus 로고
    • PGC-1 alpha, mitochondrial dysfunction, and Huntington's disease
    • Johri A, Chandra A, Beal MF. PGC-1 alpha, mitochondrial dysfunction, and Huntington's disease. Free Radic Biol Med 2013;62:37–46.
    • (2013) Free Radic Biol Med , vol.62 , pp. 37-46
    • Johri, A.1    Chandra, A.2    Beal, M.F.3
  • 208
    • 84863011541 scopus 로고    scopus 로고
    • Pharmacologic activation of mitochondrial biogenesis exerts widespread beneficial effects in a transgenic mouse model of Huntington's disease
    • Johri A, Calingasan NY, Hennessey TM, et al. Pharmacologic activation of mitochondrial biogenesis exerts widespread beneficial effects in a transgenic mouse model of Huntington's disease. Hum Mol Genet 2012;21:1124–1137.
    • (2012) Hum Mol Genet , vol.21 , pp. 1124-1137
    • Johri, A.1    Calingasan, N.Y.2    Hennessey, T.M.3
  • 209
    • 84863923855 scopus 로고    scopus 로고
    • PGC-1 alpha rescues huntington's disease proteotoxicity by preventing oxidative stress and promoting TFEB function
    • Tsunemi T, Ashe TD, Morrison BE, et al. PGC-1 alpha rescues huntington's disease proteotoxicity by preventing oxidative stress and promoting TFEB function. Sci Transl Med 2012;4:142–197.
    • (2012) Sci Transl Med , vol.4 , pp. 142-197
    • Tsunemi, T.1    Ashe, T.D.2    Morrison, B.E.3
  • 210
    • 42049114658 scopus 로고    scopus 로고
    • Activation of peroxisome proliferator-activated receptor pathway stimulates the mitochondrial respiratory chain and can correct deficiencies in patients’ cells lacking its components
    • Bastin J, Aubey F, Rotig A, Munnich A, Djouadi F. Activation of peroxisome proliferator-activated receptor pathway stimulates the mitochondrial respiratory chain and can correct deficiencies in patients’ cells lacking its components. J Clin Endocrinol Metab 2008;93:1433–1441.
    • (2008) J Clin Endocrinol Metab , vol.93 , pp. 1433-1441
    • Bastin, J.1    Aubey, F.2    Rotig, A.3    Munnich, A.4    Djouadi, F.5
  • 211
    • 80054931381 scopus 로고    scopus 로고
    • A metabolic shift induced by a PPAR panagonist markedly reduces the effects of pathogenic mitochondrial tRNA mutations
    • Wenz TN, Wang X, Marini M, Moraes CT. A metabolic shift induced by a PPAR panagonist markedly reduces the effects of pathogenic mitochondrial tRNA mutations. J Cell Mol Med 2011;15:2317–2325.
    • (2011) J Cell Mol Med , vol.15 , pp. 2317-2325
    • Wenz, T.N.1    Wang, X.2    Marini, M.3    Moraes, C.T.4
  • 212
    • 84855544817 scopus 로고    scopus 로고
    • Neuroprotective role of Sirt1 in mammalian models of Huntington's disease through activation of multiple Sirt1 targets
    • Jiang M, Wang J, Fu J, et al. Neuroprotective role of Sirt1 in mammalian models of Huntington's disease through activation of multiple Sirt1 targets. Nat Med 2012;18:153–158.
    • (2012) Nat Med , vol.18 , pp. 153-158
    • Jiang, M.1    Wang, J.2    Fu, J.3
  • 213
    • 0036830072 scopus 로고    scopus 로고
    • Mitochondrial electron transport chain complex dysfunction in a transgenic mouse model for amyotrophic lateral sclerosis
    • Jung C, Higgins CM, Xu Z. Mitochondrial electron transport chain complex dysfunction in a transgenic mouse model for amyotrophic lateral sclerosis. J Neurochem 2002;83:535–545.
    • (2002) J Neurochem , vol.83 , pp. 535-545
    • Jung, C.1    Higgins, C.M.2    Xu, Z.3
  • 214
    • 79959462293 scopus 로고    scopus 로고
    • Review: The role of mitochondria in the pathogenesis of amyotrophic lateral sclerosis
    • Duffy LM, Chapman AL, Shaw PJ, Grierson AJ. Review: The role of mitochondria in the pathogenesis of amyotrophic lateral sclerosis. Neuropathol Appl Neurobiol 2011;37:336–352.
    • (2011) Neuropathol Appl Neurobiol , vol.37 , pp. 336-352
    • Duffy, L.M.1    Chapman, A.L.2    Shaw, P.J.3    Grierson, A.J.4
  • 215
    • 67649311947 scopus 로고    scopus 로고
    • Activation of Ets-2 by oxidative stress induces Bcl-xL expression and accounts for glial survival in amyotrophic lateral sclerosis
    • Lee J, Kannagi M, Ferrante RJ, Kowall NW, Ryu H. Activation of Ets-2 by oxidative stress induces Bcl-xL expression and accounts for glial survival in amyotrophic lateral sclerosis. FASEB J 2009;23:1739–1749.
    • (2009) FASEB J , vol.23 , pp. 1739-1749
    • Lee, J.1    Kannagi, M.2    Ferrante, R.J.3    Kowall, N.W.4    Ryu, H.5
  • 216
    • 84867749744 scopus 로고    scopus 로고
    • The Peroxisome Proliferator-Activated Receptor γ (PPARγ) controls natural protective mechanisms against lipid peroxidation in Amyotrophic Lateral Sclerosis
    • Benedusi V, Martorana F, Brambilla L, Maggi A, Rossi D. The Peroxisome Proliferator-Activated Receptor γ (PPARγ) controls natural protective mechanisms against lipid peroxidation in Amyotrophic Lateral Sclerosis. J Biol Chem 2012;287:35899–35911.
    • (2012) J Biol Chem , vol.287 , pp. 35899-35911
    • Benedusi, V.1    Martorana, F.2    Brambilla, L.3    Maggi, A.4    Rossi, D.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.