메뉴 건너뛰기




Volumn 35, Issue 12, 2010, Pages 669-675

Sirtuin regulation of mitochondria: Energy production, apoptosis, and signaling

Author keywords

[No Author keywords available]

Indexed keywords

ADENOSINE DIPHOSPHATE; ADENOSINE TRIPHOSPHATE; CARBAMOYL PHOSPHATE SYNTHASE; ISOCITRATE DEHYDROGENASE; ISOCITRATE DEHYDROGENASE ISOENZYME; MITOGEN ACTIVATED PROTEIN KINASE; NICOTINAMIDE ADENINE DINUCLEOTIDE; REDUCED NICOTINAMIDE ADENINE DINUCLEOTIDE; SIRTUIN; SIRTUIN 1; SIRTUIN 2; SIRTUIN 3; SIRTUIN 4; SIRTUIN 5; UNCLASSIFIED DRUG;

EID: 78649328799     PISSN: 09680004     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.tibs.2010.07.003     Document Type: Review
Times cited : (524)

References (65)
  • 1
    • 23844558266 scopus 로고    scopus 로고
    • A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine
    • Wallace D.C. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu. Rev. Genet. 2005, 39:359-407.
    • (2005) Annu. Rev. Genet. , vol.39 , pp. 359-407
    • Wallace, D.C.1
  • 2
    • 0034626735 scopus 로고    scopus 로고
    • Oxidants, oxidative stress and the biology of ageing
    • Finkel T., Holbrook N.J. Oxidants, oxidative stress and the biology of ageing. Nature 2000, 408:239-247.
    • (2000) Nature , vol.408 , pp. 239-247
    • Finkel, T.1    Holbrook, N.J.2
  • 3
  • 4
    • 0037036115 scopus 로고    scopus 로고
    • Nuclear activators and coactivators in mammalian mitochondrial biogenesis
    • Scarpulla R.C. Nuclear activators and coactivators in mammalian mitochondrial biogenesis. Biochim. Biophys. Acta 2002, 1576:1-14.
    • (2002) Biochim. Biophys. Acta , vol.1576 , pp. 1-14
    • Scarpulla, R.C.1
  • 5
    • 46349103594 scopus 로고    scopus 로고
    • A mitochondrial protein compendium elucidates complex I disease biology
    • Pagliarini D.J., et al. A mitochondrial protein compendium elucidates complex I disease biology. Cell 2008, 134:112-123.
    • (2008) Cell , vol.134 , pp. 112-123
    • Pagliarini, D.J.1
  • 6
    • 33847084336 scopus 로고    scopus 로고
    • Tissue heterogeneity of the mammalian mitochondrial proteome
    • Johnson D.T., et al. Tissue heterogeneity of the mammalian mitochondrial proteome. Am. J. Physiol. Cell Physiol. 2007, 292:C689-C697.
    • (2007) Am. J. Physiol. Cell Physiol. , vol.292
    • Johnson, D.T.1
  • 7
    • 1542373685 scopus 로고    scopus 로고
    • Transcriptional regulatory circuits controlling mitochondrial biogenesis and function
    • Kelly D.P., Scarpulla R.C. Transcriptional regulatory circuits controlling mitochondrial biogenesis and function. Genes Dev. 2004, 18:357-368.
    • (2004) Genes Dev. , vol.18 , pp. 357-368
    • Kelly, D.P.1    Scarpulla, R.C.2
  • 8
    • 67649866121 scopus 로고    scopus 로고
    • Mitochondria and reactive oxygen species
    • Kowaltowski A.J., et al. Mitochondria and reactive oxygen species. Free Rad. Biol. Med. 2009, 47:333-343.
    • (2009) Free Rad. Biol. Med. , vol.47 , pp. 333-343
    • Kowaltowski, A.J.1
  • 9
    • 17844403964 scopus 로고    scopus 로고
    • Role of mitochondria in toxic oxidative stress
    • Fariss M.W., et al. Role of mitochondria in toxic oxidative stress. Mol. Interv. 2005, 5:94-111.
    • (2005) Mol. Interv. , vol.5 , pp. 94-111
    • Fariss, M.W.1
  • 10
    • 77049308856 scopus 로고
    • Aging: a theory based on free radical and radiation chemistry
    • Harman D. Aging: a theory based on free radical and radiation chemistry. J. Gerontol. 1956, 11:298-300.
    • (1956) J. Gerontol. , vol.11 , pp. 298-300
    • Harman, D.1
  • 11
    • 23944515238 scopus 로고    scopus 로고
    • Long-term caloric restriction increases UCP3 content but decreases proton leak and reactive oxygen species production in rat skeletal muscle mitochondria
    • Bevilacqua L., et al. Long-term caloric restriction increases UCP3 content but decreases proton leak and reactive oxygen species production in rat skeletal muscle mitochondria. Am. J. Physiol. Endocrinol. Metab. 2005, 289:E429-E438.
    • (2005) Am. J. Physiol. Endocrinol. Metab. , vol.289
    • Bevilacqua, L.1
  • 12
    • 0030915483 scopus 로고    scopus 로고
    • Mitochondrial decay in hepatocytes from old rats: membrane potential declines, heterogeneity and oxidants increase
    • Hagen T.M., et al. Mitochondrial decay in hepatocytes from old rats: membrane potential declines, heterogeneity and oxidants increase. Proc. Natl. Acad. Sci. U. S. A. 1997, 94:3064-3069.
    • (1997) Proc. Natl. Acad. Sci. U. S. A. , vol.94 , pp. 3064-3069
    • Hagen, T.M.1
  • 13
    • 0029998087 scopus 로고    scopus 로고
    • Aging of the liver: age-associated mitochondrial damage in intact hepatocytes
    • Sastre J., et al. Aging of the liver: age-associated mitochondrial damage in intact hepatocytes. Hepatology 1996, 24:1199-1205.
    • (1996) Hepatology , vol.24 , pp. 1199-1205
    • Sastre, J.1
  • 14
    • 17244363631 scopus 로고    scopus 로고
    • Decline in skeletal muscle mitochondrial function with aging in humans
    • Short K.R., et al. Decline in skeletal muscle mitochondrial function with aging in humans. Proc. Natl. Acad. Sci. U. S. A. 2005, 102:5618-5623.
    • (2005) Proc. Natl. Acad. Sci. U. S. A. , vol.102 , pp. 5618-5623
    • Short, K.R.1
  • 15
    • 3342891368 scopus 로고    scopus 로고
    • Oxidative stress and mitochondrial function with aging--the effects of calorie restriction
    • Merry B.J. Oxidative stress and mitochondrial function with aging--the effects of calorie restriction. Aging Cell 2004, 3:7-12.
    • (2004) Aging Cell , vol.3 , pp. 7-12
    • Merry, B.J.1
  • 16
    • 33646820690 scopus 로고    scopus 로고
    • Bioenergetics of aging and calorie restriction
    • Hunt N.D., et al. Bioenergetics of aging and calorie restriction. Ageing Res. Rev. 2006, 5:125-143.
    • (2006) Ageing Res. Rev. , vol.5 , pp. 125-143
    • Hunt, N.D.1
  • 17
    • 33847059997 scopus 로고    scopus 로고
    • The mitochondrial energy transduction system and the aging process
    • Navarro A., Boveris A. The mitochondrial energy transduction system and the aging process. Am. J. Physiol. Cell Physiol. 2007, 292:C670-c686.
    • (2007) Am. J. Physiol. Cell Physiol. , vol.292
    • Navarro, A.1    Boveris, A.2
  • 18
    • 0033600176 scopus 로고    scopus 로고
    • Characterization of five human cDNAs with homology to the yeast SIR2 gene: Sir2-like proteins (sirtuins) metabolize NAD and may have protein ADP-ribosyltransferase activity
    • Frye R.A. Characterization of five human cDNAs with homology to the yeast SIR2 gene: Sir2-like proteins (sirtuins) metabolize NAD and may have protein ADP-ribosyltransferase activity. Biochem. Biophys. Res. Commun. 1999, 260:273-279.
    • (1999) Biochem. Biophys. Res. Commun. , vol.260 , pp. 273-279
    • Frye, R.A.1
  • 19
    • 0033887456 scopus 로고    scopus 로고
    • Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins
    • Frye R.A. Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins. Biochem. Biophys. Res. Commun. 2000, 273:793-798.
    • (2000) Biochem. Biophys. Res. Commun. , vol.273 , pp. 793-798
    • Frye, R.A.1
  • 20
    • 36349030394 scopus 로고    scopus 로고
    • Regulation of insulin secretion by SIRT4, a mitochondrial ADP-ribosyltransferase
    • Ahuja N., et al. Regulation of insulin secretion by SIRT4, a mitochondrial ADP-ribosyltransferase. J. Biol. Chem. 2007, 282:33583-33592.
    • (2007) J. Biol. Chem. , vol.282 , pp. 33583-33592
    • Ahuja, N.1
  • 21
    • 33748316536 scopus 로고    scopus 로고
    • SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells
    • Haigis M.C., et al. SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells. Cell 2006, 126:941-954.
    • (2006) Cell , vol.126 , pp. 941-954
    • Haigis, M.C.1
  • 22
    • 42449128019 scopus 로고    scopus 로고
    • +-dependent protein deacetylase
    • +-dependent protein deacetylase. Biochem. J. 2008, 411:e11-e13.
    • (2008) Biochem. J. , vol.411
    • Hallows, W.C.1
  • 23
    • 77951705893 scopus 로고    scopus 로고
    • Characterization of the murine SIRT3 mitochondrial localization sequence and comparison of mitochondrial enrichment and deacetylase activity of long and short SIRT3 isoforms
    • Bao J., et al. Characterization of the murine SIRT3 mitochondrial localization sequence and comparison of mitochondrial enrichment and deacetylase activity of long and short SIRT3 isoforms. J. Cell Biochem. 2010, 110:238-247.
    • (2010) J. Cell Biochem. , vol.110 , pp. 238-247
    • Bao, J.1
  • 24
    • 77949887506 scopus 로고    scopus 로고
    • Mammalian sirtuins: biological insights and disease relevance
    • Haigis M.C., Sinclair D.A. Mammalian sirtuins: biological insights and disease relevance. Annu. Rev. Pathol. 2010, 5:253-295.
    • (2010) Annu. Rev. Pathol. , vol.5 , pp. 253-295
    • Haigis, M.C.1    Sinclair, D.A.2
  • 25
    • 3943054839 scopus 로고    scopus 로고
    • The Sir2 family of protein deacetylases
    • Blander G., Guarente L. The Sir2 family of protein deacetylases. Annu. Rev. Biochem. 2004, 73:417-435.
    • (2004) Annu. Rev. Biochem. , vol.73 , pp. 417-435
    • Blander, G.1    Guarente, L.2
  • 26
    • 38649123072 scopus 로고    scopus 로고
    • Conserved metabolic regulatory functions of sirtuins
    • Schwer B., Verdin E. Conserved metabolic regulatory functions of sirtuins. Cell Metab. 2008, 7:104-112.
    • (2008) Cell Metab. , vol.7 , pp. 104-112
    • Schwer, B.1    Verdin, E.2
  • 27
    • 26244436281 scopus 로고    scopus 로고
    • Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins
    • Michishita E., et al. Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Mol. Biol. Cell 2005, 16:4623-4635.
    • (2005) Mol. Biol. Cell , vol.16 , pp. 4623-4635
    • Michishita, E.1
  • 28
    • 0037108799 scopus 로고    scopus 로고
    • SIRT3, a human SIR2 homologue, is an NAD-dependent deacetylase localized to mitochondria
    • Onyango P., et al. SIRT3, a human SIR2 homologue, is an NAD-dependent deacetylase localized to mitochondria. Proc. Natl. Acad. Sci. U. S. A. 2002, 99:13653-13658.
    • (2002) Proc. Natl. Acad. Sci. U. S. A. , vol.99 , pp. 13653-13658
    • Onyango, P.1
  • 29
    • 0037135972 scopus 로고    scopus 로고
    • The human silent information regulator (Sir)2 homologue hSIRT3 is a mitochondrial nicotinamide adenine dinucleotide-dependent deacetylase
    • Schwer B., et al. The human silent information regulator (Sir)2 homologue hSIRT3 is a mitochondrial nicotinamide adenine dinucleotide-dependent deacetylase. J. Cell Biol. 2002, 158:647-657.
    • (2002) J. Cell Biol. , vol.158 , pp. 647-657
    • Schwer, B.1
  • 30
    • 41349090663 scopus 로고    scopus 로고
    • SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin
    • Michishita E., et al. SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin. Nature 2008, 452:492-496.
    • (2008) Nature , vol.452 , pp. 492-496
    • Michishita, E.1
  • 31
    • 69249229772 scopus 로고    scopus 로고
    • The sirtuin SIRT6 deacetylates H3 K56Ac in vivo to promote genomic stability
    • Yang B., et al. The sirtuin SIRT6 deacetylates H3 K56Ac in vivo to promote genomic stability. Cell Cycle 2009, 8:2662-2663.
    • (2009) Cell Cycle , vol.8 , pp. 2662-2663
    • Yang, B.1
  • 32
    • 69949151709 scopus 로고    scopus 로고
    • Crystal structures of human SIRT3 displaying substrate-induced conformational changes
    • Jin L., et al. Crystal structures of human SIRT3 displaying substrate-induced conformational changes. J. Biol. Chem. 2009, 284:24394-24405.
    • (2009) J. Biol. Chem. , vol.284 , pp. 24394-24405
    • Jin, L.1
  • 33
    • 50149103440 scopus 로고    scopus 로고
    • Substrates and regulation mechanisms for the human mitochondrial sirtuins Sirt3 and Sirt5
    • Schlicker C., et al. Substrates and regulation mechanisms for the human mitochondrial sirtuins Sirt3 and Sirt5. J. Mol. Biol. 2008, 382:790-801.
    • (2008) J. Mol. Biol. , vol.382 , pp. 790-801
    • Schlicker, C.1
  • 34
    • 33847635635 scopus 로고    scopus 로고
    • +-dependent deacetylase SIRT5 by suramin
    • +-dependent deacetylase SIRT5 by suramin. Structure 2007, 15:377-389.
    • (2007) Structure , vol.15 , pp. 377-389
    • Schuetz, A.1
  • 35
    • 77149148756 scopus 로고    scopus 로고
    • Regulation of cellular metabolism by protein lysine acetylation
    • Zhao S., et al. Regulation of cellular metabolism by protein lysine acetylation. Science 2010, 327:1000-1004.
    • (2010) Science , vol.327 , pp. 1000-1004
    • Zhao, S.1
  • 36
    • 73949123433 scopus 로고    scopus 로고
    • Calorie restriction alters mitochondrial protein acetylation
    • Schwer B., et al. Calorie restriction alters mitochondrial protein acetylation. Aging Cell 2009, 8:604-606.
    • (2009) Aging Cell , vol.8 , pp. 604-606
    • Schwer, B.1
  • 37
    • 33746992118 scopus 로고    scopus 로고
    • Substrate and functional diversity of lysine acetylation revealed by a proteomics survey
    • Kim S.C., et al. Substrate and functional diversity of lysine acetylation revealed by a proteomics survey. Mol. Cell 2006, 23:607-618.
    • (2006) Mol. Cell , vol.23 , pp. 607-618
    • Kim, S.C.1
  • 38
    • 77950806433 scopus 로고    scopus 로고
    • SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation
    • Hirschey M.D., et al. SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation. Nature 2010, 464:121-125.
    • (2010) Nature , vol.464 , pp. 121-125
    • Hirschey, M.D.1
  • 39
    • 33745889628 scopus 로고    scopus 로고
    • Reversible lysine acetylation controls the activity of the mitochondrial enzyme acetyl-CoA synthetase 2
    • Schwer B., et al. Reversible lysine acetylation controls the activity of the mitochondrial enzyme acetyl-CoA synthetase 2. Proc. Natl. Acad. Sci. U. S. A. 2006, 103:10224-10229.
    • (2006) Proc. Natl. Acad. Sci. U. S. A. , vol.103 , pp. 10224-10229
    • Schwer, B.1
  • 40
    • 33745931074 scopus 로고    scopus 로고
    • Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases
    • Hallows W.C., et al. Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases. Proc. Natl. Acad. Sci. U. S. A. 2006, 103:10230-10235.
    • (2006) Proc. Natl. Acad. Sci. U. S. A. , vol.103 , pp. 10230-10235
    • Hallows, W.C.1
  • 41
    • 13044277575 scopus 로고    scopus 로고
    • Targeted disruption of mouse long-chain acyl-CoA dehydrogenase gene reveals crucial roles for fatty acid oxidation
    • Kurtz D.M., et al. Targeted disruption of mouse long-chain acyl-CoA dehydrogenase gene reveals crucial roles for fatty acid oxidation. Proc. Natl. Acad. Sci. U. S. A. 1998, 95:15592-15597.
    • (1998) Proc. Natl. Acad. Sci. U. S. A. , vol.95 , pp. 15592-15597
    • Kurtz, D.M.1
  • 42
    • 55749084738 scopus 로고    scopus 로고
    • A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis
    • Ahn B.H., et al. A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis. Proc. Natl. Acad. Sci. U. S. A. 2008, 105:14447-14452.
    • (2008) Proc. Natl. Acad. Sci. U. S. A. , vol.105 , pp. 14447-14452
    • Ahn, B.H.1
  • 43
    • 75349111140 scopus 로고    scopus 로고
    • Regulation of succinate dehydrogenase activity by SIRT3 in mammalian mitochondria
    • Cimen H., et al. Regulation of succinate dehydrogenase activity by SIRT3 in mammalian mitochondria. Biochemistry 2010, 49:304-311.
    • (2010) Biochemistry , vol.49 , pp. 304-311
    • Cimen, H.1
  • 44
    • 66249144685 scopus 로고    scopus 로고
    • Identification and characterization of proteins interacting with SIRT1 and SIRT3: implications in the anti-aging and metabolic effects of sirtuins
    • Law I.K., et al. Identification and characterization of proteins interacting with SIRT1 and SIRT3: implications in the anti-aging and metabolic effects of sirtuins. Proteomics 2009, 9:2444-2456.
    • (2009) Proteomics , vol.9 , pp. 2444-2456
    • Law, I.K.1
  • 45
    • 77951235122 scopus 로고    scopus 로고
    • +-dependent deacetylase SIRT3 regulates mitochondrial protein synthesis by deacetylation of the ribosomal protein MRPL10
    • +-dependent deacetylase SIRT3 regulates mitochondrial protein synthesis by deacetylation of the ribosomal protein MRPL10. J. Biol. Chem. 2010, 285:7417-7429.
    • (2010) J. Biol. Chem. , vol.285 , pp. 7417-7429
    • Yang, Y.1
  • 46
    • 37549002891 scopus 로고    scopus 로고
    • Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation
    • Lombard D.B., et al. Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation. Mol. Cell Biol. 2007, 27:8807-8814.
    • (2007) Mol. Cell Biol. , vol.27 , pp. 8807-8814
    • Lombard, D.B.1
  • 47
    • 65249087389 scopus 로고    scopus 로고
    • SIRT5 deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cycle
    • Nakagawa T., et al. SIRT5 deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cycle. Cell 2009, 137:560-570.
    • (2009) Cell , vol.137 , pp. 560-570
    • Nakagawa, T.1
  • 48
    • 77249128352 scopus 로고    scopus 로고
    • Overexpression of SIRT5 confirms its involvement in deacetylation and activation of carbamoyl phosphate synthetase 1
    • Ogura M., et al. Overexpression of SIRT5 confirms its involvement in deacetylation and activation of carbamoyl phosphate synthetase 1. Biochem. Biophys. Res. Commun. 2010, 393:73-78.
    • (2010) Biochem. Biophys. Res. Commun. , vol.393 , pp. 73-78
    • Ogura, M.1
  • 49
    • 14544282413 scopus 로고    scopus 로고
    • Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1
    • Rodgers J.T., et al. Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature 2005, 434:113-118.
    • (2005) Nature , vol.434 , pp. 113-118
    • Rodgers, J.T.1
  • 50
    • 34247259630 scopus 로고    scopus 로고
    • Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1alpha
    • Gerhart-Hines Z., et al. Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1alpha. EMBO J. 2007, 26:1913-1923.
    • (2007) EMBO J. , vol.26 , pp. 1913-1923
    • Gerhart-Hines, Z.1
  • 51
    • 1842665662 scopus 로고    scopus 로고
    • Mitochondrial signaling: the retrograde response
    • Butow R.A., Avadhani N.G. Mitochondrial signaling: the retrograde response. Mol. Cell 2004, 14:1-15.
    • (2004) Mol. Cell , vol.14 , pp. 1-15
    • Butow, R.A.1    Avadhani, N.G.2
  • 52
    • 42049121101 scopus 로고    scopus 로고
    • +-operated transcriptional networks: molecular mechanisms and in vivo models
    • +-operated transcriptional networks: molecular mechanisms and in vivo models. Physiol. Rev. 2008, 88:421-449.
    • (2008) Physiol. Rev. , vol.88 , pp. 421-449
    • Mellstrom, B.1
  • 53
    • 66049087696 scopus 로고    scopus 로고
    • The coordination of nuclear and mitochondrial communication during aging and calorie restriction
    • Finley L.W., Haigis M.C. The coordination of nuclear and mitochondrial communication during aging and calorie restriction. Ageing Res. Rev. 2009, 8:173-188.
    • (2009) Ageing Res. Rev. , vol.8 , pp. 173-188
    • Finley, L.W.1    Haigis, M.C.2
  • 54
    • 77952940043 scopus 로고    scopus 로고
    • Diet and exercise signals regulate SIRT3 and activate AMPK and PGC-1alpha in skeletal muscle
    • Palacios O.M., et al. Diet and exercise signals regulate SIRT3 and activate AMPK and PGC-1alpha in skeletal muscle. Aging 2009, 1:771-783.
    • (2009) Aging , vol.1 , pp. 771-783
    • Palacios, O.M.1
  • 55
    • 76349125988 scopus 로고    scopus 로고
    • SIRT3 reduces lipid accumulation via AMPK activation in human hepatic cells
    • Shi T., et al. SIRT3 reduces lipid accumulation via AMPK activation in human hepatic cells. J. Digest. Dis. 2010, 11:55-62.
    • (2010) J. Digest. Dis. , vol.11 , pp. 55-62
    • Shi, T.1
  • 56
    • 77449120223 scopus 로고    scopus 로고
    • Exogenous NAD blocks cardiac hypertrophic response via activation of the SIRT3-LKB1-AMP-activated kinase pathway
    • Pillai V.B., et al. Exogenous NAD blocks cardiac hypertrophic response via activation of the SIRT3-LKB1-AMP-activated kinase pathway. J. Biol. Chem. 2010, 285:3133-3144.
    • (2010) J. Biol. Chem. , vol.285 , pp. 3133-3144
    • Pillai, V.B.1
  • 57
    • 33744480316 scopus 로고    scopus 로고
    • + and NADH in cellular functions and cell death
    • + and NADH in cellular functions and cell death. Front. Biosci. 2006, 11:3129-3148.
    • (2006) Front. Biosci. , vol.11 , pp. 3129-3148
    • Ying, W.1
  • 58
    • 64549127790 scopus 로고    scopus 로고
    • PGC-1alpha, SIRT1 and AMPK, an energy sensing network that controls energy expenditure
    • Canto C., Auwerx J. PGC-1alpha, SIRT1 and AMPK, an energy sensing network that controls energy expenditure. Curr. Opin. Lipidol. 2009, 20:98-105.
    • (2009) Curr. Opin. Lipidol. , vol.20 , pp. 98-105
    • Canto, C.1    Auwerx, J.2
  • 59
    • 67349276169 scopus 로고    scopus 로고
    • + metabolism and SIRT1 activity
    • + metabolism and SIRT1 activity. Nature 2009, 458:1056-1060.
    • (2009) Nature , vol.458 , pp. 1056-1060
    • Canto, C.1
  • 60
    • 74049094817 scopus 로고    scopus 로고
    • SIRT3 is a mitochondria-localized tumor suppressor required for maintenance of mitochondrial integrity and metabolism during stress
    • Kim H.S., et al. SIRT3 is a mitochondria-localized tumor suppressor required for maintenance of mitochondrial integrity and metabolism during stress. Cancer Cell 2010, 17:41-52.
    • (2010) Cancer Cell , vol.17 , pp. 41-52
    • Kim, H.S.1
  • 61
    • 36849002444 scopus 로고    scopus 로고
    • SIRT3 is pro-apoptotic and participates in distinct basal apoptotic pathways
    • Allison S.J., Milner J. SIRT3 is pro-apoptotic and participates in distinct basal apoptotic pathways. Cell Cycle 2007, 6:2669-2677.
    • (2007) Cell Cycle , vol.6 , pp. 2669-2677
    • Allison, S.J.1    Milner, J.2
  • 62
    • 34548627517 scopus 로고    scopus 로고
    • + levels dictate cell survival
    • + levels dictate cell survival. Cell 2007, 130:1095-1107.
    • (2007) Cell , vol.130 , pp. 1095-1107
    • Yang, H.1
  • 63
    • 70349208608 scopus 로고    scopus 로고
    • Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice
    • Sundaresan N.R., et al. Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice. J. Clin. Invest. 2009, 119:2758-2771.
    • (2009) J. Clin. Invest. , vol.119 , pp. 2758-2771
    • Sundaresan, N.R.1
  • 64
    • 0034956304 scopus 로고    scopus 로고
    • Structure of the histone deacetylase SIRT2
    • Finnin M.S., et al. Structure of the histone deacetylase SIRT2. Nat. Struct. Biol. 2001, 8:621-625.
    • (2001) Nat. Struct. Biol. , vol.8 , pp. 621-625
    • Finnin, M.S.1
  • 65
    • 4444221565 scopus 로고    scopus 로고
    • UCSF Chimera - a visualization system for exploratory research and analysis
    • Pettersen E.F., et al. UCSF Chimera - a visualization system for exploratory research and analysis. J. Comput. Chem. 2004, 25:1605-1612.
    • (2004) J. Comput. Chem. , vol.25 , pp. 1605-1612
    • Pettersen, E.F.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.