메뉴 건너뛰기




Volumn 20, Issue 35, 2014, Pages 5574-5593

Mitochondrial biogenesis: A therapeutic target for neurodevelopmental disorders and neurodegenerative diseases

Author keywords

Adaptive mitochondrial biogenesis; Huntington s disease; Maternally inherited mitochondrial diseases; Mitochondrial DNA maintenance; Mitochondrial fusion fission; Mitophagy; Parkinson s disease; Small molecule based therapies

Indexed keywords

ARTICLE; BIOGENESIS; CELL ORGANELLE; DEGENERATIVE DISEASE; DEVELOPMENTAL DISORDER; HOMEOSTASIS; HUMAN; MITOCHONDRIAL BIOGENESIS; MITOCHONDRION; NERVE CELL; NERVOUS SYSTEM DEVELOPMENT; NONHUMAN; PRIORITY JOURNAL; SIGNAL TRANSDUCTION; ANIMAL; CHILD; CHILD DEVELOPMENT; DRUG DELIVERY SYSTEM; DRUG EFFECTS; ENERGY METABOLISM; METABOLISM; NEURODEGENERATIVE DISEASES; PHYSIOLOGY; PROCEDURES;

EID: 84925858717     PISSN: 13816128     EISSN: 18734286     Source Type: Journal    
DOI: 10.2174/1381612820666140305224906     Document Type: Article
Times cited : (178)

References (342)
  • 1
  • 2
    • 10744224439 scopus 로고    scopus 로고
    • Integrated analysis of protein composition, tissue diversity, and gene regulation in mouse mitochondria
    • [2] Mootha VK, Bunkenborg J, Olsen JV, et al. Integrated analysis of protein composition, tissue diversity, and gene regulation in mouse mitochondria. Cell 2003; 115: 629-40.
    • (2003) Cell , vol.115 , pp. 629-640
    • Mootha, V.K.1    Bunkenborg, J.2    Olsen, J.V.3
  • 3
    • 46349103594 scopus 로고    scopus 로고
    • A mitochondrial protein compedium elucidates complex I disease biology
    • [3] Pagliarini DJ, Calvo SE, Chang B, et al. A mitochondrial protein compedium elucidates complex I disease biology. Cell 2008; 134: 112-23.
    • (2008) Cell , vol.134 , pp. 112-123
    • Pagliarini, D.J.1    Calvo, S.E.2    Chang, B.3
  • 4
    • 77956255442 scopus 로고    scopus 로고
    • A history of mitochondrial diseases
    • [4] DiMauro S. A history of mitochondrial diseases. J Inherit Metab Dis 2011; 34: 261-76.
    • (2011) J Inherit Metab Dis , vol.34 , pp. 261-276
    • Dimauro, S.1
  • 5
    • 77955498525 scopus 로고    scopus 로고
    • Mitochondrial quality control and neurological disease: An emerging connection
    • [5] De Castro IP, Martins ML, Tufi R. Mitochondrial quality control and neurological disease: an emerging connection. Expert Rev Mol Med 2010; 12: e12.
    • (2010) Expert Rev Mol Med , vol.12 , pp. 12
    • De Castro, I.P.1    Martins, M.L.2    Tufi, R.3
  • 6
    • 84871921370 scopus 로고    scopus 로고
    • The dynamics of the mitochondrial organelle as a potential therapeutic organelle
    • [6] Stetler RA, Leak R, Gao Y, Chen J. The dynamics of the mitochondrial organelle as a potential therapeutic organelle. J Cereb Blood Flow Metab 2013; 33: 22-32.
    • (2013) J Cereb Blood Flow Metab , vol.33 , pp. 22-32
    • Stetler, R.A.1    Leak, R.2    Gao, Y.3    Chen, J.4
  • 7
    • 0034784359 scopus 로고    scopus 로고
    • An energy budget for signaling in the grey matter of the brain
    • [7] Attwell D, Laughlin SB. An energy budget for signaling in the grey matter of the brain. J Cereb Blood Flow Metab 2001; 21: 1133-45.
    • (2001) J Cereb Blood Flow Metab , vol.21 , pp. 1133-1145
    • Attwell, D.1    Laughlin, S.B.2
  • 8
    • 4143051638 scopus 로고    scopus 로고
    • Energy metabolism in mammalian brain during development
    • [8] Erecinska M, Cherian S, Silver IA. Energy metabolism in mammalian brain during development. Prog Neurobiol 2004; 73: 397-445.
    • (2004) Prog Neurobiol , vol.73 , pp. 397-445
    • Erecinska, M.1    Cherian, S.2    Silver, I.A.3
  • 9
    • 0028095807 scopus 로고
    • Mitochondrial calcium transport: Physiological and pathological relevance
    • [9] Gunter TE, Gunter KK, Sheu SS, Gavin CE. Mitochondrial calcium transport: physiological and pathological relevance. Am J Physiol 1994; 267: C313-39.
    • (1994) Am J Physiol , vol.267 , pp. 39-313
    • Gunter, T.E.1    Gunter, K.K.2    Sheu, S.S.3    Gavin, C.E.4
  • 10
    • 0037220750 scopus 로고    scopus 로고
    • Actin-ATP hydrolysis is a major energy drain for neurons
    • [10] Bernstein BW, Bamburg JR. Actin-ATP hydrolysis is a major energy drain for neurons. J Neurosci 2003; 23: 1-6.
    • (2003) J Neurosci , vol.23 , pp. 1-6
    • Bernstein, B.W.1    Bamburg, J.R.2
  • 11
    • 23044506102 scopus 로고    scopus 로고
    • Synaptic mitochondria are critical for mobilization of reserve pool vesicles at Drosophila neuromuscular junctions
    • [11] Verstreken P, Ly CV, Venken KJ, Koh TW, Zhou Y, Bellen HJ. Synaptic mitochondria are critical for mobilization of reserve pool vesicles at Drosophila neuromuscular junctions. Neuron 2005; 47: 365-78.
    • (2005) Neuron , vol.47 , pp. 365-378
    • Verstreken, P.1    Ly, C.V.2    Venken, K.J.3    Koh, T.W.4    Zhou, Y.5    Bellen, H.J.6
  • 12
    • 33847043933 scopus 로고    scopus 로고
    • Mitochondria and neuronal activity
    • [12] Kann O, Kovács R. Mitochondria and neuronal activity. Am J Physiol Cell Physiol 2007; 292: C641-57.
    • (2007) Am J Physiol Cell Physiol , vol.292 , pp. 57-641
    • Kann, O.1    Kovács, R.2
  • 13
    • 38749103445 scopus 로고    scopus 로고
    • The function of mitochondria in presynaptic development at the neuromuscular junction
    • [13] Lee CW, Peng HB. The function of mitochondria in presynaptic development at the neuromuscular junction. Mol Biol Cell 2008; 19: 150-8.
    • (2008) Mol Biol Cell , vol.19 , pp. 150-158
    • Lee, C.W.1    Peng, H.B.2
  • 14
    • 27644561355 scopus 로고    scopus 로고
    • Neuroenergetics and the kinetic design of excitatory synapses
    • [14] Attwell D, Gibb A. Neuroenergetics and the kinetic design of excitatory synapses. Nat Rev Neurosci 2005; 6:841-9.
    • (2005) Nat Rev Neurosci , vol.6 , pp. 841-849
    • Attwell, D.1    Gibb, A.2
  • 15
    • 36248972284 scopus 로고    scopus 로고
    • Timing of potential and metabolic brain energy
    • [15] Korf J, Gramsbergen JB. Timing of potential and metabolic brain energy. J Neurochem 2007; 103: 1697-708.
    • (2007) J Neurochem , vol.103 , pp. 1697-1708
    • Korf, J.1    Gramsbergen, J.B.2
  • 16
    • 75149118852 scopus 로고    scopus 로고
    • Disease and the brain’s dark energy
    • [16] Zhang D, Raichle ME. Disease and the brain’s dark energy. Nat Rev Neurol 2010; 6: 15-28.
    • (2010) Nat Rev Neurol , vol.6 , pp. 15-28
    • Zhang, D.1    Raichle, M.E.2
  • 17
    • 0034025298 scopus 로고    scopus 로고
    • The role of mitochondria in presynaptic calcium handling at a ribbon synapse
    • [17] Zenisek D, Matthews G. The role of mitochondria in presynaptic calcium handling at a ribbon synapse. Neuron 2000; 25: 229-37.
    • (2000) Neuron , vol.25 , pp. 229-237
    • Zenisek, D.1    Matthews, G.2
  • 18
    • 1642540210 scopus 로고    scopus 로고
    • The mitochondrial calcium uniporter is a highly selective ion channel
    • [18] Kirichok Y, Krapivinsky G, Clapman DE. The mitochondrial calcium uniporter is a highly selective ion channel. Nature 2004; 427: 360-4.
    • (2004) Nature , vol.427 , pp. 360-364
    • Kirichok, Y.1    Krapivinsky, G.2    Clapman, D.E.3
  • 19
    • 80051946060 scopus 로고    scopus 로고
    • Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter
    • [19] Baughman JM, Perocchi F, Girgis HS, et al. Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter. Nature 2011; 476: 341-5.
    • (2011) Nature , vol.476 , pp. 341-345
    • Baughman, J.M.1    Perocchi, F.2    Girgis, H.S.3
  • 20
    • 80051936634 scopus 로고    scopus 로고
    • A fortykilodalton protein of the inner membrane is the mitochondrial calcium uniporter
    • [20] De Stefani D, Raffaello A, Teardo E, Szabo I, Rizzuto R. A fortykilodalton protein of the inner membrane is the mitochondrial calcium uniporter. Nature 2011; 476: 336-40.
    • (2011) Nature , vol.476 , pp. 336-340
    • De Stefani, D.1    Raffaello, A.2    Teardo, E.3    Szabo, I.4    Rizzuto, R.5
  • 21
  • 22
    • 80053056620 scopus 로고    scopus 로고
    • Mitochondrial matrix Ca2+ as an intrinsic signal regulating mitochondrial motility in axons
    • [22] Chang K, Niescier RF, Min K-T. Mitochondrial matrix Ca2+ as an intrinsic signal regulating mitochondrial motility in axons. Proc Natl Acad Sci USA 2011; 108: 15456-61.
    • (2011) Proc Natl Acad Sci USA , vol.108 , pp. 15456-15461
    • Chang, K.1    Niescier, R.F.2    Min, K.-T.3
  • 23
    • 84856056846 scopus 로고    scopus 로고
    • Mitochondrial transport in neurons: Impact on synaptic homeostasis and neurodegeneration
    • [23] Sheng Z-H, Cai Q. Mitochondrial transport in neurons: impact on synaptic homeostasis and neurodegeneration. Nat Rev Neurosci 2012; 13: 77-93.
    • (2012) Nat Rev Neurosci , vol.13 , pp. 77-93
    • Sheng, Z.-H.1    Cai, Q.2
  • 25
    • 77956319634 scopus 로고    scopus 로고
    • Calcium-dependent mitochondrial function and dysfunction in neurons
    • [25] Pivovarova NB, Andrews SB. Calcium-dependent mitochondrial function and dysfunction in neurons. FEBS J 2010; 277: 3622-36.
    • (2010) FEBS J , vol.277 , pp. 3622-3636
    • Pivovarova, N.B.1    Rews, S.B.2
  • 26
    • 30544452263 scopus 로고    scopus 로고
    • The axonal transport of mitochondria
    • [26] Hollenbeck PJ, Saxton WM. The axonal transport of mitochondria. J Cell Sci 2005; 118: 5411-9.
    • (2005) J Cell Sci , vol.118 , pp. 5411-5419
    • Hollenbeck, P.J.1    Saxton, W.M.2
  • 27
    • 0027210387 scopus 로고
    • The regulation of bidirectional mitochondrial transport is coordinated with axonal outgrowth
    • [27] Morris RL, Hollenbeck PJ. The regulation of bidirectional mitochondrial transport is coordinated with axonal outgrowth. J Cell Sci 1993; 104: 917-27.
    • (1993) J Cell Sci , vol.104 , pp. 917-927
    • Morris, R.L.1    Hollenbeck, P.J.2
  • 28
    • 0141792787 scopus 로고    scopus 로고
    • Response of mitochondrial traffic to axon determination and differential branch growth
    • [28] Ruthel G, Hollenbeck PJ. Response of mitochondrial traffic to axon determination and differential branch growth. J Neurosci 2003; 23: 8618-24.
    • (2003) J Neurosci , vol.23 , pp. 8618-8624
    • Ruthel, G.1    Hollenbeck, P.J.2
  • 29
    • 3242875557 scopus 로고    scopus 로고
    • Axonal mitochondrial transport and potential are correlated
    • [29] Miller KE, Sheetz MP. Axonal mitochondrial transport and potential are correlated. J Cell Sci 2004; 117: 2791-804.
    • (2004) J Cell Sci , vol.117 , pp. 2791-2804
    • Miller, K.E.1    Sheetz, M.P.2
  • 30
    • 51149106133 scopus 로고    scopus 로고
    • Mitochondrial membrane potential in axons increases with local nerve growth factor or semaphoring signaling
    • [30] Verberg J, Hollenbeck PJ. Mitochondrial membrane potential in axons increases with local nerve growth factor or semaphoring signaling. J Neurosci 2008; 28: 8306-15.
    • (2008) J Neurosci , vol.28 , pp. 8306-8315
    • Verberg, J.1    Hollenbeck, P.J.2
  • 31
    • 70349745946 scopus 로고    scopus 로고
    • The neurogenic basic helix-loop-helix transcription factor NeuroD6 concomitantly increases mitochondrial mass and regulates cytoskeletal organization in the early stages of neuronal differentiation
    • [31] Baxter KK, Uittenbogaard M, Yoon J, Chiaramello A. The neurogenic basic helix-loop-helix transcription factor NeuroD6 concomitantly increases mitochondrial mass and regulates cytoskeletal organization in the early stages of neuronal differentiation. ASN Neuro 2009; 1: e00016.
    • (2009) ASN Neuro , vol.1
    • Baxter, K.K.1    Uittenbogaard, M.2    Yoon, J.3    Chiaramello, A.4
  • 32
    • 0027384710 scopus 로고
    • Axoplasmic organelles at nodes of Ranvier. I. Occurrence and distribution in large myelinated spinal root axons of the adult cat
    • [32] Berthold CH, Fabricius C, Rydmark M, Andersen B. Axoplasmic organelles at nodes of Ranvier. I. Occurrence and distribution in large myelinated spinal root axons of the adult cat. J Neurocytol 1993; 22: 925-40.
    • (1993) J Neurocytol , vol.22 , pp. 925-940
    • Berthold, C.H.1    Fabricius, C.2    Rydmark, M.3    Ersen, B.4
  • 33
    • 0031822283 scopus 로고    scopus 로고
    • Focal accumulation of intra-axonal mitochondria in demyelination of the cat optic nerve
    • [33] Mutsaers SE, Carroll WM. Focal accumulation of intra-axonal mitochondria in demyelination of the cat optic nerve. Acta Neuropathol 1998; 96: 139-43.
    • (1998) Acta Neuropathol , vol.96 , pp. 139-143
    • Mutsaers, S.E.1    Carroll, W.M.2
  • 35
    • 0014690248 scopus 로고
    • Apparent turnover of mitochondrial deoxyribonucleic acid and mitochondrial phospholipids in the tissues of the rat
    • [35] Gross NJ, Getz GS, Rabinowitz M. Apparent turnover of mitochondrial deoxyribonucleic acid and mitochondrial phospholipids in the tissues of the rat. J Biol Chem 1969; 244:1552-62.
    • (1969) J Biol Chem , vol.244 , pp. 1552-1562
    • Gross, N.J.1    Getz, G.S.2    Rabinowitz, M.3
  • 36
    • 0015239454 scopus 로고
    • The turnover of mitochondria in a variety of tissues of young adult and aged rats
    • [36] Menzies RA, Gold PH. The turnover of mitochondria in a variety of tissues of young adult and aged rats. J Biol Chem 1971; 246: 2425-9.
    • (1971) J Biol Chem , vol.246 , pp. 2425-2429
    • Menzies, R.A.1    Gold, P.H.2
  • 38
    • 56849084137 scopus 로고    scopus 로고
    • Mitochondrial turnover in liver is fast in vivo and is accelerated by dietary restriction: Application of a simple dynamic model
    • [38] Miwa S, Lawless C, von Zglinicki T. Mitochondrial turnover in liver is fast in vivo and is accelerated by dietary restriction: application of a simple dynamic model. Aging Cell 2008; 7: 920-23.
    • (2008) Aging Cell , vol.7 , pp. 920-923
    • Miwa, S.1    Lawless, C.2    Von Zglinicki, T.3
  • 39
    • 55949126922 scopus 로고    scopus 로고
    • Modeling mitochondrial dynamics during in vivo axonal elongation
    • [39] O’Toole M, Latham R, Baqri RM, Miller KE. Modeling mitochondrial dynamics during in vivo axonal elongation. J Theor Biol 2008; 255: 369-77.
    • (2008) J Theor Biol , vol.255 , pp. 369-377
    • O’toole, M.1    Latham, R.2    Baqri, R.M.3    Miller, K.E.4
  • 40
  • 41
    • 33846272138 scopus 로고    scopus 로고
    • Role of cardiolipin alterations in mitochondrial dysfunction and disease
    • [41] Chicco AJ, Sparagna GC. Role of cardiolipin alterations in mitochondrial dysfunction and disease. Am J Physiol Cell Physiol 2007; 292: C33-44.
    • (2007) Am J Physiol Cell Physiol , vol.292 , pp. 33-44
    • Chicco, A.J.1    Sparagna, G.C.2
  • 42
    • 70349558836 scopus 로고    scopus 로고
    • The role of cardiolipin in the structural organization of mitochondrial membranes
    • [42] Schlame M, Ren M. The role of cardiolipin in the structural organization of mitochondrial membranes. Biochem Biophys Acta 2009; 1788: 2080-83.
    • (2009) Biochem Biophys Acta , vol.1788 , pp. 2080-2083
    • Schlame, M.1    Ren, M.2
  • 43
    • 51349163907 scopus 로고    scopus 로고
    • Mitochondrial biogenesis in the axons of vertebrate peripheral neurons
    • [43] Amiri M, Hollenbeck JP. Mitochondrial biogenesis in the axons of vertebrate peripheral neurons. Dev Neurobiol 2008; 68: 1348-61.
    • (2008) Dev Neurobiol , vol.68 , pp. 1348-1361
    • Amiri, M.1    Hollenbeck, J.P.2
  • 44
    • 34250204271 scopus 로고    scopus 로고
    • The machines that divide and fuse mitochondria
    • [44] Hoppins S, Lackner L, Nunnari J. The machines that divide and fuse mitochondria. Annu Rev Biochem 2007; 76: 751-80.
    • (2007) Annu Rev Biochem , vol.76 , pp. 751-780
    • Hoppins, S.1    Lackner, L.2    Nunnari, J.3
  • 45
    • 84869030015 scopus 로고    scopus 로고
    • Fusion and fission: Interlinked processes critical for mitochondrial health
    • [45] Chan DC. Fusion and fission: interlinked processes critical for mitochondrial health. Annu Rev Genet 2012; 46: 265-87.
    • (2012) Annu Rev Genet , vol.46 , pp. 265-287
    • Chan, D.C.1
  • 46
    • 84865544952 scopus 로고    scopus 로고
    • Mitochondrial fission, fusion, and stress
    • [46] Youle RJ, van der Bliek AM. Mitochondrial fission, fusion, and stress. Science 2012; 337: 1062-5.
    • (2012) Science , vol.337 , pp. 1062-1065
    • Youle, R.J.1    Van Der Bliek, A.M.2
  • 47
    • 84871820635 scopus 로고    scopus 로고
    • Mechanistic perspective of mitochondrial fusion: Tubulation vs. Fragmentation
    • [47] Escobar-Henriques M, Anton F. Mechanistic perspective of mitochondrial fusion: Tubulation vs. fragmentation. Biochem Biophys Acta 2013; 1833: 162-75.
    • (2013) Biochem Biophys Acta , vol.1833 , pp. 162-175
    • Escobar-Henriques, M.1    Anton, F.2
  • 48
    • 84871739055 scopus 로고    scopus 로고
    • The dynamin GTPase OPA1: More than mitochondria
    • [48] Belenguer P, Pellegrini L. The dynamin GTPase OPA1: More than mitochondria. Biochem Biophys Acta 2013; 1833: 176-83.
    • (2013) Biochem Biophys Acta , vol.1833 , pp. 176-183
    • Belenguer, P.1    Pellegrini, L.2
  • 49
    • 84871805845 scopus 로고    scopus 로고
    • Mitochondrial dynamics and physiology
    • [49] McBride H, Scorrano L. Mitochondrial dynamics and physiology. Biochem Byiophys Acta 2013; 1833: 148-9.
    • (2013) Biochem Byiophys Acta , vol.1833 , pp. 148-149
    • McBride, H.1    Scorrano, L.2
  • 50
    • 0037455575 scopus 로고    scopus 로고
    • Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fu sion and are essential for embryonic development
    • [50] Chen H, Detmer SA, Ewald AJ, Griffin EE, Fraser SE, Chan DC. Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fu sion and are essential for embryonic development. J Cell Biol 2003; 160: 189-200.
    • (2003) J Cell Biol , vol.160 , pp. 189-200
    • Chen, H.1    Detmer, S.A.2    Ewald, A.J.3    Griffin, E.E.4    Fraser, S.E.5    Chan, D.C.6
  • 51
    • 34547601410 scopus 로고    scopus 로고
    • Mitochondrial fusion protects against neurodegeneration in the cerebellum
    • [51] Chen H, McCaffery M, Chan DC. Mitochondrial fusion protects against neurodegeneration in the cerebellum. Cell 2007; 130: 548-62.
    • (2007) Cell , vol.130 , pp. 548-562
    • Chen, H.1    McCaffery, M.2    Chan, D.C.3
  • 52
    • 20244381365 scopus 로고    scopus 로고
    • Nuclear gene OPA1, encoding a mitochondrial dynamin-related protein, is mutated in dominant optic atrophy
    • [52] Delettre C, Lenaers G, Griffoin JM, et al. Nuclear gene OPA1, encoding a mitochondrial dynamin-related protein, is mutated in dominant optic atrophy. Nat Genet 2000; 26: 207-10.
    • (2000) Nat Genet , vol.26 , pp. 207-210
    • Delettre, C.1    Lenaers, G.2    Griffoin, J.M.3
  • 53
    • 0033772264 scopus 로고    scopus 로고
    • OPA1, encoding a dynamin-related GTPase, is mutated in autosomal dominant optic atrophy linked to chromosome 3q28
    • [53] Alexander C, Votruba M, Pesch UE, et al. OPA1, encoding a dynamin-related GTPase, is mutated in autosomal dominant optic atrophy linked to chromosome 3q28. Nat Genet 2000; 26: 211-15.
    • (2000) Nat Genet , vol.26 , pp. 211-215
    • Alexander, C.1    Votruba, M.2    Pesch, U.E.3
  • 54
    • 2442589922 scopus 로고    scopus 로고
    • Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot-Marie-Tooth neuropathy type 2A
    • [54] Züchner S, Mersiyanova LV, Muglia M, et al. Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot-Marie-Tooth neuropathy type 2A. Nat Genet 2004; 36: 449-51.
    • (2004) Nat Genet , vol.36 , pp. 449-451
    • Züchner, S.1    Mersiyanova, L.V.2    Muglia, M.3
  • 55
    • 20044385920 scopus 로고    scopus 로고
    • Axonopathy and transport deficits early in the pathogenesis of Alzheimer’s disease
    • [55] Stokin GB, Lillo C, Falzone TL, et al. Axonopathy and transport deficits early in the pathogenesis of Alzheimer’s disease. Science 2005; 307: 1282-8.
    • (2005) Science , vol.307 , pp. 1282-1288
    • Stokin, G.B.1    Lillo, C.2    Falzone, T.L.3
  • 56
    • 33846224191 scopus 로고    scopus 로고
    • Altered axonal mitochondrial transport in the pathogenesis of Charcot-Marie-Tooth disease from mitofusin 2 mutations
    • [56] Baloh RH, Schmidt RE, Pestronk A, Milbrandt J. Altered axonal mitochondrial transport in the pathogenesis of Charcot-Marie-Tooth disease from mitofusin 2 mutations. J Neurosci 2007; 27: 422-30.
    • (2007) J Neurosci , vol.27 , pp. 422-430
    • Baloh, R.H.1    Schmidt, R.E.2    Pestronk, A.3    Milbrandt, J.4
  • 57
    • 84871802627 scopus 로고    scopus 로고
    • Recent advances into the understanding of mitochondrial fission
    • [57] Elgass K, Pakay J, Ryan MT, Palmer CS. Recent advances into the understanding of mitochondrial fission. Biochem Biophys Acta 2013; 1833: 150-61.
    • (2013) Biochem Biophys Acta , vol.1833 , pp. 150-161
    • Elgass, K.1    Pakay, J.2    Ryan, M.T.3    Palmer, C.S.4
  • 58
    • 10944269186 scopus 로고    scopus 로고
    • The importance of dendritic mitochondria in the morphogenesis and plasticity of spines and synapses
    • [58] Li Z, Okamoto K, Hayashi Y, Sheng M. The importance of dendritic mitochondria in the morphogenesis and plasticity of spines and synapses. Cell 2004; 119: 873-87.
    • (2004) Cell , vol.119 , pp. 873-887
    • Li, Z.1    Okamoto, K.2    Hayashi, Y.3    Sheng, M.4
  • 59
    • 23044506102 scopus 로고    scopus 로고
    • Synaptic mitochondria are critical for mobilization of reserve pool vesicles at Drosophila neuromuscular junctions
    • [59] Verstreken P, Ly CV, Venken KJ, Koh TW, Zhou Y, Bellen HJ. Synaptic mitochondria are critical for mobilization of reserve pool vesicles at Drosophila neuromuscular junctions. Neuron 2005; 4: 365-78.
    • (2005) Neuron , vol.4 , pp. 365-378
    • Verstreken, P.1    Ly, C.V.2    Venken, K.J.3    Koh, T.W.4    Zhou, Y.5    Bellen, H.J.6
  • 61
    • 77951096150 scopus 로고    scopus 로고
    • Mitochondrial dynamics-fusion, fission, movement, and mitophagy-in neurodegenerative diseases
    • [61] Chen H, Chan DC. Mitochondrial dynamics-fusion, fission, movement, and mitophagy-in neurodegenerative diseases. Hum Mol Genet 2009; 18: 169-76.
    • (2009) Hum Mol Genet , vol.18 , pp. 169-176
    • Chen, H.1    Chan, D.C.2
  • 62
    • 77957358299 scopus 로고    scopus 로고
    • Mitochondrial dynamics in cell death and neurodegeneration
    • [62] Cho DH, Nakamura T, Lipton SA. Mitochondrial dynamics in cell death and neurodegeneration. Cell Mol Life Sci 2010; 67: 3435-47.
    • (2010) Cell Mol Life Sci , vol.67 , pp. 3435-3447
    • Cho, D.H.1    Nakamura, T.2    Lipton, S.A.3
  • 63
    • 84858794256 scopus 로고    scopus 로고
    • Neurodegeneration: Trouble in the cell’s powerhouse
    • [63] Narendra DP, Youle RJ. Neurodegeneration: Trouble in the cell’s powerhouse. Nature 2012; 483: 418-9.
    • (2012) Nature , vol.483 , pp. 418-419
    • Narendra, D.P.1    Youle, R.J.2
  • 64
    • 84858791998 scopus 로고    scopus 로고
    • Mitochondrial quality control: A matter of life and death for neurons
    • [64] Rugarli EI, Langer T. Mitochondrial quality control: a matter of life and death for neurons. EMBO J 2012; 31: 1336-49.
    • (2012) EMBO J , vol.31 , pp. 1336-1349
    • Rugarli, E.I.1    Langer, T.2
  • 65
    • 84871005673 scopus 로고    scopus 로고
    • The pathways of mitophagy for quality control and clearance of mitochondria
    • [65] Ashrafi G, Schwarz TL. The pathways of mitophagy for quality control and clearance of mitochondria. Cell Death Diff 2013; 20: 31-42.
    • (2013) Cell Death Diff , vol.20 , pp. 31-42
    • Ashrafi, G.1    Schwarz, T.L.2
  • 67
    • 0013832794 scopus 로고
    • Lysosomes in the rate sciatic nerve following crush
    • [67] Holtzman E, Novikoff AB. Lysosomes in the rate sciatic nerve following crush. J Cell Biol 1965; 27: 651-69.
    • (1965) J Cell Biol , vol.27 , pp. 651-669
    • Holtzman, E.1    Novikoff, A.B.2
  • 68
    • 84858701257 scopus 로고    scopus 로고
    • Spatial Parkin translocation and degradation of damaged mitochondria via mitophagy in live cortical neurons
    • [68] Cai Q, Zakaria HM, Simone A, Sheng ZH. Spatial Parkin translocation and degradation of damaged mitochondria via mitophagy in live cortical neurons. Curr Biol 2012; 22: 545-52.
    • (2012) Curr Biol , vol.22 , pp. 545-552
    • Cai, Q.1    Zakaria, H.M.2    Simone, A.3    Sheng, Z.H.4
  • 69
    • 84857858536 scopus 로고    scopus 로고
    • Autophagosomes initiate distally and mature during transport toward the cell soma in primary neurons
    • [69] Maday S, Wallace KE, Holzbaur EL. Autophagosomes initiate distally and mature during transport toward the cell soma in primary neurons. J Cell Biol 2012; 196: 407-11.
    • (2012) J Cell Biol , vol.196 , pp. 407-411
    • Maday, S.1    Wallace, K.E.2    Holzbaur, E.L.3
  • 70
    • 84862589643 scopus 로고    scopus 로고
    • Autophagosome assembly and cargo capture in the distal axon
    • [70] Maday S, Holzbaur EL. Autophagosome assembly and cargo capture in the distal axon. Autophagy 2012; 8: 858-60.
    • (2012) Autophagy , vol.8 , pp. 858-860
    • Maday, S.1    Holzbaur, E.L.2
  • 71
    • 84861204926 scopus 로고    scopus 로고
    • PINK1-and Parkin-mediated mitophagy at a glance
    • [71] Jin SM, Youle RJ. PINK1-and Parkin-mediated mitophagy at a glance. J Cell Sci 2012; 125: 795-9.
    • (2012) J Cell Sci , vol.125 , pp. 795-799
    • Jin, S.M.1    Youle, R.J.2
  • 72
    • 81055140895 scopus 로고    scopus 로고
    • PINK1 and Parkin target Miro for phosphorylation and degradation to arrest mitochondrial motility
    • [72] Wang X, Winter D, Ashrafi G, et al. PINK1 and Parkin target Miro for phosphorylation and degradation to arrest mitochondrial motility. Cell 2011;147: 893-906.
    • (2011) Cell , vol.147 , pp. 893-906
    • Wang, X.1    Winter, D.2    Ashrafi, G.3
  • 73
    • 81055129611 scopus 로고    scopus 로고
    • PINK1 and Parkin flag Miro to direct mitochondrial traffic
    • [73] Kane LA, Youle RJ. PINK1 and Parkin flag Miro to direct mitochondrial traffic. Cell 2011:147, 721-3.
    • (2011) Cell , vol.147 , pp. 721-723
    • Kane, L.A.1    Youle, R.J.2
  • 74
    • 78649463381 scopus 로고    scopus 로고
    • Mitofusin 1 and mitofusin 2 are ubiquitinated in a PIK1/parkindependent manner upon induction of mitophagy
    • [74] Gegg ME, Cooper JM, Chau KY, Schapira AH, Taanman JW. Mitofusin 1 and mitofusin 2 are ubiquitinated in a PIK1/parkindependent manner upon induction of mitophagy. Hum Mol Genet 2010; 19: 4861-70.
    • (2010) Hum Mol Genet , vol.19 , pp. 4861-4870
    • Gegg, M.E.1    Cooper, J.M.2    Chau, K.Y.3    Schapira, A.H.4    Taanman, J.W.5
  • 75
    • 79960493052 scopus 로고    scopus 로고
    • Parkin promotes the ubiquitination and degradation of the mitochondrial fusion factor mitofusin 1
    • [75] Glauser L, Sonnay S, Stafa K, Moore DJ. Parkin promotes the ubiquitination and degradation of the mitochondrial fusion factor mitofusin 1. J Neurochem 2011; 118: 636-45.
    • (2011) J Neurochem , vol.118 , pp. 636-645
    • Glauser, L.1    Sonnay, S.2    Stafa, K.3    Moore, D.J.4
  • 76
    • 84876296881 scopus 로고    scopus 로고
    • Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization
    • [76] Sarraf SA, Raman M, Guarani-Pereira V, et al. Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization. Nature 2013; 496: 372-6.
    • (2013) Nature , vol.496 , pp. 372-376
    • Sarraf, S.A.1    Raman, M.2    Guarani-Pereira, V.3
  • 77
    • 0032499264 scopus 로고    scopus 로고
    • Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism
    • [77] Kitada T, Asakawa S, Hattori N, et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 1998; 392: 605-8.
    • (1998) Nature , vol.392 , pp. 605-608
    • Kitada, T.1    Asakawa, S.2    Hattori, N.3
  • 78
    • 2442668926 scopus 로고    scopus 로고
    • Hereditary earlyonset Parkinson’s disease caused by mutations in PINK1
    • [78] Valente EM, Abou-Sleiman PM, Caputo V, et al. Hereditary earlyonset Parkinson’s disease caused by mutations in PINK1. Science 2004; 304: 1158-60.
    • (2004) Science , vol.304 , pp. 1158-1160
    • Valente, E.M.1    Abou-Sleiman, P.M.2    Caputo, V.3
  • 79
    • 26444515364 scopus 로고    scopus 로고
    • Autophagy and its possible roles in nervous system diseases, damage and repair
    • [79] Rubinsztein DC, DiFiglia M, Hintz N, et al. Autophagy and its possible roles in nervous system diseases, damage and repair. Autophagy 2005; 1: 11-22.
    • (2005) Autophagy , vol.1 , pp. 11-22
    • Rubinsztein, D.C.1    Difiglia, M.2    Hintz, N.3
  • 81
    • 80855139395 scopus 로고    scopus 로고
    • Mitochondrial pathology in Parkinson’s disease
    • [81] Schapira AHV. Mitochondrial pathology in Parkinson’s disease. Mount Sin J Med 2011; 78: 872-81.
    • (2011) Mount Sin J Med , vol.78 , pp. 872-881
    • Schapira, A.1
  • 82
    • 79955945927 scopus 로고    scopus 로고
    • Mitochondrial autophagy in neural function, neurodegenerative disease, neural cell death, and aging
    • [82] Battevi Y, La Spada AR. Mitochondrial autophagy in neural function, neurodegenerative disease, neural cell death, and aging. Neurobiol Dis 2011; 43: 46-51.
    • (2011) Neurobiol Dis , vol.43 , pp. 46-51
    • Battevi, Y.1    La Spada, A.R.2
  • 83
    • 42049114034 scopus 로고    scopus 로고
    • Transcriptional paradigms in mammalian mitochondrial biogenesis and function
    • [83] Scarpulla RC. Transcriptional paradigms in mammalian mitochondrial biogenesis and function. Physiol Rev 2008; 88: 611-38.
    • (2008) Physiol Rev , vol.88 , pp. 611-638
    • Scarpulla, R.C.1
  • 85
    • 35448960851 scopus 로고    scopus 로고
    • Functions and dysfunctions of mitochondrial dynamics
    • [85] Detmer SA, Chan DC. Functions and dysfunctions of mitochondrial dynamics. Nat Rev Mol Cell Biol 2007; 8: 870-9.
    • (2007) Nat Rev Mol Cell Biol , vol.8 , pp. 870-879
    • Detmer, S.A.1    Chan, D.C.2
  • 86
    • 23644433329 scopus 로고    scopus 로고
    • The mitochondrial genome in human adaptive radiation and disease: On the road to therapeutics and performance enhancement
    • [86] Wallace DC. The mitochondrial genome in human adaptive radiation and disease: on the road to therapeutics and performance enhancement. Gene 2005; 354: 169-80.
    • (2005) Gene , vol.354 , pp. 169-180
    • Wallace, D.C.1
  • 87
    • 0029076820 scopus 로고
    • Elimination of paternal mitochondrial DNA in intraspecific crosses during early mouse embryogenesis
    • [87] Kaneda H, Hayashi J, Takahama S, Taya C, Lindahl KF, Yonekawa H. Elimination of paternal mitochondrial DNA in intraspecific crosses during early mouse embryogenesis. Proc Natl Acad Sci USA 1995; 92: 4542-6.
    • (1995) Proc Natl Acad Sci USA , vol.92 , pp. 4542-4546
    • Kaneda, H.1    Hayashi, J.2    Takahama, S.3    Taya, C.4    Lindahl, K.F.5    Yonekawa, H.6
  • 88
    • 0033646646 scopus 로고    scopus 로고
    • Mitochondrial DNA segregation in the developing embryo
    • [88] Shoubridge EA. Mitochondrial DNA segregation in the developing embryo. Hum Reprod 2000; 15: 229-34.
    • (2000) Hum Reprod , vol.15 , pp. 229-234
    • Shoubridge, E.A.1
  • 89
    • 33644674439 scopus 로고    scopus 로고
    • The organization and inheritance of the mitochondrial genome
    • [89] Chen XJ, Butow RA. The organization and inheritance of the mitochondrial genome. Nat Rev Genet 2005; 6: 815-25.
    • (2005) Nat Rev Genet , vol.6 , pp. 815-825
    • Chen, X.J.1    Butow, R.A.2
  • 90
    • 77950573964 scopus 로고    scopus 로고
    • Functional organization of mammalian mitochondrial DNA in nucleoids: History, recent developments, and future challenges
    • [90] Spelbrink JN. Functional organization of mammalian mitochondrial DNA in nucleoids: history, recent developments, and future challenges. IUBMB Life 2010; 62: 19-32.
    • (2010) IUBMB Life , vol.62 , pp. 19-32
    • Spelbrink, J.N.1
  • 92
    • 3242705680 scopus 로고    scopus 로고
    • The functional organization of mitochondrial genomes in human cells
    • [92] Iborra F, Kimura H, Cook P. The functional organization of mitochondrial genomes in human cells. BMC Biol 2004; 2: 9.
    • (2004) BMC Biol , vol.2 , pp. 9
    • Iborra, F.1    Kimura, H.2    Cook, P.3
  • 93
    • 33748746678 scopus 로고    scopus 로고
    • Human mitochondrial DNA nucleoids are linked to protein folding machinery and metabolic enzymes at the mitochondrial inner membrane
    • [93] Wang Y, Bogenhagen DF. Human mitochondrial DNA nucleoids are linked to protein folding machinery and metabolic enzymes at the mitochondrial inner membrane. J Bio Chem 2006; 281: 25791-802.
    • (2006) J Bio Chem , vol.281 , pp. 25791-25802
    • Wang, Y.1    Bogenhagen, D.F.2
  • 94
    • 46249106487 scopus 로고    scopus 로고
    • Mitochondrial nucleoids maintain genetic autonomy but allow for functional complementation
    • [94] Gilkerson RW, Schon EA, Hernandez E, Davidson MM. Mitochondrial nucleoids maintain genetic autonomy but allow for functional complementation. J Cell Biol 2008; 181: 1117-28.
    • (2008) J Cell Biol , vol.181 , pp. 1117-1128
    • Gilkerson, R.W.1    Schon, E.A.2    Hernandez, E.3    Davidson, M.M.4
  • 96
    • 41249098355 scopus 로고    scopus 로고
    • The layered structure of human mitochondrial DNA nucleoids
    • [96] Bogenhagen DF, Rousseau D, Burke S. The layered structure of human mitochondrial DNA nucleoids. J Biol Chem 2008; 283: 3665-75.
    • (2008) J Biol Chem , vol.283 , pp. 3665-3675
    • Bogenhagen, D.F.1    Rousseau, D.2    Burke, S.3
  • 98
    • 68949156130 scopus 로고    scopus 로고
    • Mitochondrial DNA nucleoids determine mitochondrial genetics and dysfunction
    • [98] Gilkerson RW. Mitochondrial DNA nucleoids determine mitochondrial genetics and dysfunction. Int J Biochem Cell Biol 2009; 41: 1899-906.
    • (2009) Int J Biochem Cell Biol , vol.41 , pp. 1899-1906
    • Gilkerson, R.W.1
  • 99
    • 0034121640 scopus 로고    scopus 로고
    • No sex please, we’re mitochondria: A hypothesis on the somatic unit of inheritance of mammalian mtDNA
    • [99] Jacobs HT, Lehtinen SK, Spelbrink JN. No sex please, we’re mitochondria: a hypothesis on the somatic unit of inheritance of mammalian mtDNA. Bioessays 2000; 22: 564-72.
    • (2000) Bioessays , vol.22 , pp. 564-572
    • Jacobs, H.T.1    Lehtinen, S.K.2    Spelbrink, J.N.3
  • 100
    • 1542373685 scopus 로고    scopus 로고
    • Transcriptional regulatory circuits controlling mitochondrial biogenesis and function
    • [100] Kelly DP, Scarpulla RC. Transcriptional regulatory circuits controlling mitochondrial biogenesis and function. Genes Dev 2004; 18: 357-68.
    • (2004) Genes Dev , vol.18 , pp. 357-368
    • Kelly, D.P.1    Scarpulla, R.C.2
  • 101
    • 0032549811 scopus 로고    scopus 로고
    • A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis
    • [101] Puigserver P, Wu Z, Park CW, Graves R, Wright M, Spiegelman BM. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 1998; 92: 829-39.
    • (1998) Cell , vol.92 , pp. 829-839
    • Puigserver, P.1    Wu, Z.2    Park, C.W.3    Graves, R.4    Wright, M.5    Spiegelman, B.M.6
  • 102
    • 0037326196 scopus 로고    scopus 로고
    • Peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α): Transcriptonal coactivator and metabolic regulator
    • [102] Puigserver P, Spiegelman BM. Peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α): Transcriptonal coactivator and metabolic regulator. Endocrine Rev 2003; 24: 78-90.
    • (2003) Endocrine Rev , vol.24 , pp. 78-90
    • Puigserver, P.1    Spiegelman, B.M.2
  • 103
    • 0032715653 scopus 로고    scopus 로고
    • Human peroxisome proliferator activated receptor gamma coactivator 1 (PPARGC1) gene: CDNA sequence, genomic organization, chro mosomal localization, and tissue expression
    • [103] Estesbauer H, Oberkofler H, Krempler F, Patsch W. Human peroxisome proliferator activated receptor gamma coactivator 1 (PPARGC1) gene: cDNA sequence, genomic organization, chro mosomal localization, and tissue expression. Genomics 1999; 62: 98-102.
    • (1999) Genomics , vol.62 , pp. 98-102
    • Estesbauer, H.1    Oberkofler, H.2    Krempler, F.3    Patsch, W.4
  • 104
    • 0037127204 scopus 로고    scopus 로고
    • Peroxisome proliferator-activated receptor gamma coactivator 1beta (PGC-1beta), a novel PGC-1-related transcription coactivator associated with host cell factor
    • [104] Lin J, Puigserver P, Donovan J, Tarr P, Spiegelman BM. Peroxisome proliferator-activated receptor gamma coactivator 1beta (PGC-1beta), a novel PGC-1-related transcription coactivator associated with host cell factor. J Biol Chem 2002; 277: 1645-8.
    • (2002) J Biol Chem , vol.277 , pp. 1645-1648
    • Lin, J.1    Puigserver, P.2    Donovan, J.3    Tarr, P.4    Spiegelman, B.M.5
  • 105
    • 33947577655 scopus 로고    scopus 로고
    • Localization of the transcriptional coactivator PGC-1alpha to GABAergic neurons during maturation of the rat brain
    • [105] Cowell R, Blake KR, Russel JW. Localization of the transcriptional coactivator PGC-1alpha to GABAergic neurons during maturation of the rat brain. J Comp Neurol 2007; 502: 1-18.
    • (2007) J Comp Neurol , vol.502 , pp. 1-18
    • Cowell, R.1    Blake, K.R.2    Russel, J.W.3
  • 106
    • 5344252327 scopus 로고    scopus 로고
    • Defects in adaptive energy metabolism with CNS-linked hyperactivity in PGC-1alpha null mice
    • [106] Lin J, Wu PH, Tarr PT, et al. Defects in adaptive energy metabolism with CNS-linked hyperactivity in PGC-1alpha null mice. Cell 2004; 119: 121-35.
    • (2004) Cell , vol.119 , pp. 121-135
    • Lin, J.1    Wu, P.H.2    Tarr, P.T.3
  • 107
    • 0037029049 scopus 로고    scopus 로고
    • Transcriptional activators and coactivators in the nuclear control of mitochondrial function in mammalian cells
    • [107] Scarpulla RC. Transcriptional activators and coactivators in the nuclear control of mitochondrial function in mammalian cells. Gene 2002; 286: 81-9.
    • (2002) Gene , vol.286 , pp. 81-89
    • Scarpulla, R.C.1
  • 108
    • 0033538473 scopus 로고    scopus 로고
    • Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1
    • [108] Wu Z, Puigserver P, Andersson U, et al. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 1999; 98: 115-24.
    • (1999) Cell , vol.98 , pp. 115-124
    • Wu, Z.1    Puigserver, P.2    Ersson, U.3
  • 109
    • 0033803048 scopus 로고    scopus 로고
    • Peroxisome proliferator-activated receptor gamma coactivator-1 promotes cardiac mitochondrial biogenesis
    • [109] Lehman JJ, Barger PM, Kovacs A, Saffitz JE, Medeiros DM, Kelly DP. Peroxisome proliferator-activated receptor gamma coactivator-1 promotes cardiac mitochondrial biogenesis. J Clin Invest 2000; 106: 847-56.
    • (2000) J Clin Invest , vol.106 , pp. 847-856
    • Lehman, J.J.1    Barger, P.M.2    Kovacs, A.3    Saffitz, J.E.4    Medeiros, D.M.5    Kelly, D.P.6
  • 110
    • 33847253895 scopus 로고    scopus 로고
    • PGC-1alpha over-expression promotes recovery from mitochondrial dysfunction and cell injury
    • [110] Rasbach KA, Schnellmann RG. PGC-1alpha over-expression promotes recovery from mitochondrial dysfunction and cell injury. Biochem Biophys Res Comm 2007; 355: 734-9.
    • (2007) Biochem Biophys Res Comm , vol.355 , pp. 734-739
    • Rasbach, K.A.1    Schnellmann, R.G.2
  • 112
    • 2442555970 scopus 로고    scopus 로고
    • The protein import machinery of mitochondria
    • [112] Wiedermann N, Frazier AE, Pfanner N. The protein import machinery of mitochondria. J Biol Chem 2004; 279: 14473-6.
    • (2004) J Biol Chem , vol.279 , pp. 14473-14476
    • Wiedermann, N.1    Frazier, A.E.2    Pfanner, N.3
  • 113
    • 34249873947 scopus 로고    scopus 로고
    • Translocation of proteins into mitochondria
    • [113] Neupert W, Herrmann JH. Translocation of proteins into mitochondria. Annu Rev Biochem 2007; 76: 723-49.
    • (2007) Annu Rev Biochem , vol.76 , pp. 723-749
    • Neupert, W.1    Herrmann, J.H.2
  • 114
    • 84860695796 scopus 로고    scopus 로고
    • PGC-1α at the intersection of bioenergetics regulation and neuronal function: From Huntington’s disease to Parkinson’s disease and beyond
    • [114] Tsunemi T, La Spada AR. PGC-1α at the intersection of bioenergetics regulation and neuronal function: From Huntington’s disease to Parkinson’s disease and beyond. Prog Neurobiol 2012; 97: 142-51.
    • (2012) Prog Neurobiol , vol.97 , pp. 142-151
    • Tsunemi, T.1    La Spada, A.R.2
  • 115
    • 33645011201 scopus 로고    scopus 로고
    • Nuclear control of respiratory gene expression in mammalian cells
    • [115] Scarpulla RC. Nuclear control of respiratory gene expression in mammalian cells. J Cell Biochem 2006; 97: 673-83.
    • (2006) J Cell Biochem , vol.97 , pp. 673-683
    • Scarpulla, R.C.1
  • 116
    • 79957960940 scopus 로고    scopus 로고
    • Metabolic control of mitochondrial biogenesis through the PGC-1 family regulatory network
    • [116] Scarpulla RC. Metabolic control of mitochondrial biogenesis through the PGC-1 family regulatory network. Biochem Biophys Acta 2011; 1813: 1269-78.
    • (2011) Biochem Biophys Acta , vol.1813 , pp. 1269-1278
    • Scarpulla, R.C.1
  • 117
  • 118
    • 0035169827 scopus 로고    scopus 로고
    • Mitochondrial DNA instability and periimplantation lethality associated with targeted disruption of nuclear respiratory factor 1 in mice
    • [118] Huo L, Scarpulla RC. Mitochondrial DNA instability and periimplantation lethality associated with targeted disruption of nuclear respiratory factor 1 in mice. Mol Cell Biol 2001; 21: 644-54.
    • (2001) Mol Cell Biol , vol.21 , pp. 644-654
    • Huo, L.1    Scarpulla, R.C.2
  • 120
    • 84863751189 scopus 로고    scopus 로고
    • Bigenomic regulation of cytochrome c oxidase in neurons and the tight coupling between neuronal activity and energy metabolism
    • [120] Wong-Riley MT. Bigenomic regulation of cytochrome c oxidase in neurons and the tight coupling between neuronal activity and energy metabolism. Adv Exp Med Biol 2012; 748: 283-304.
    • (2012) Adv Exp Med Biol , vol.748 , pp. 283-304
    • Wong-Riley, M.T.1
  • 121
    • 0024561501 scopus 로고
    • Cytcohrome oxidase: An endogenous metabolic marker for neuronal activity
    • [121] Wong-Riley MT. Cytcohrome oxidase: an endogenous metabolic marker for neuronal activity. Trends Neurosci 1989; 12: 94-101.
    • (1989) Trends Neurosci , vol.12 , pp. 94-101
    • Wong-Riley, M.T.1
  • 122
    • 26444545461 scopus 로고    scopus 로고
    • Is nuclear respiratory factor 2 a master transcriptional coordinator for all ten nuclear-encoded cytochrome c oxidase subunits in neurons?
    • [122] Ongwijitwat S, Wong-Riley MT. Is nuclear respiratory factor 2 a master transcriptional coordinator for all ten nuclear-encoded cytochrome c oxidase subunits in neurons? Gene 2005; 360: 65-77.
    • (2005) Gene , vol.360 , pp. 65-77
    • Ongwijitwat, S.1    Wong-Riley, M.T.2
  • 123
    • 33646690296 scopus 로고    scopus 로고
    • Nuclear respiratory factor 2 senses changing cellular energy demands and its silencing down-regulates cytochrome oxidase and other target gene mRNAs
    • [123] Ongwijitwat S, Liang HL, Graboyes EM, Wong-Riley MT. Nuclear respiratory factor 2 senses changing cellular energy demands and its silencing down-regulates cytochrome oxidase and other target gene mRNAs. Gene 2006; 374: 39-49.
    • (2006) Gene , vol.374 , pp. 39-49
    • Ongwijitwat, S.1    Liang, H.L.2    Graboyes, E.M.3    Wong-Riley, M.T.4
  • 124
    • 33746406058 scopus 로고    scopus 로고
    • Activity-dependent transcriptional regulation of nuclear respiratory factor-1 in cultured rat visual cortical neurons
    • [124] Yang SJ, Liang HL, Wong-Riley MT. Activity-dependent transcriptional regulation of nuclear respiratory factor-1 in cultured rat visual cortical neurons. Neuroscience 2006; 141: 1181-92.
    • (2006) Neuroscience , vol.141 , pp. 1181-1192
    • Yang, S.J.1    Liang, H.L.2    Wong-Riley, M.T.3
  • 125
    • 41249086496 scopus 로고    scopus 로고
    • Nuclear respiratory factor 1 regulates all ten nuclear-encoded subunits of cytochrome c oxidase in neurons
    • [125] Dhar SS, Ongwijitwat S, Wong-Riley MT. Nuclear respiratory factor 1 regulates all ten nuclear-encoded subunits of cytochrome c oxidase in neurons. J Biol Chem 2008; 283: 3120-9.
    • (2008) J Biol Chem , vol.283 , pp. 3120-3129
    • Dhar, S.S.1    Ongwijitwat, S.2    Wong-Riley, M.T.3
  • 126
    • 58849149820 scopus 로고    scopus 로고
    • Coupling of energy metabolism and synaptic transmission at the transcriptional level: Role of nuclear respiratory factor 1 I regulating both cytochrome c oxidase and NMDA glutamate receptor subunit genes
    • [126] Dhar SS, Wong-Riley MT. Coupling of energy metabolism and synaptic transmission at the transcriptional level: role of nuclear respiratory factor 1 I regulating both cytochrome c oxidase and NMDA glutamate receptor subunit genes. J Neurosci 2009; 29: 483-92.
    • (2009) J Neurosci , vol.29 , pp. 483-492
    • Dhar, S.S.1    Wong-Riley, M.T.2
  • 127
    • 0031930319 scopus 로고    scopus 로고
    • Mitochondrial transcription factor A is necessary for mtDNA maintenance and embryogenesis in mice
    • [127] Larsson NG, Wang JM, Wilhelmsson H, et al. Mitochondrial transcription factor A is necessary for mtDNA maintenance and embryogenesis in mice. Nature Genet 1998; 18: 231-6.
    • (1998) Nature Genet , vol.18 , pp. 231-236
    • Larsson, N.G.1    Wang, J.M.2    Wilhelmsson, H.3
  • 129
    • 34548627532 scopus 로고    scopus 로고
    • DNA replication and transcription in mammalian mitochondria
    • [129] Falkenberg M, Larsson NG, Gustafsson CM. DNA replication and transcription in mammalian mitochondria. Annu Rev Biochem 2007; 76: 679-99.
    • (2007) Annu Rev Biochem , vol.76 , pp. 679-699
    • Falkenberg, M.1    Larsson, N.G.2    Gustafsson, C.M.3
  • 131
    • 10644229290 scopus 로고    scopus 로고
    • The mitochondrial RNA polymerase contributes critically to promoter specificity in mammalian cells
    • [131] Gaspari M, Falkenberg M, Larsson NG, Gustafsson CM. The mitochondrial RNA polymerase contributes critically to promoter specificity in mammalian cells. EMBO J 2004; 23: 4606-14.
    • (2004) EMBO J , vol.23 , pp. 4606-4614
    • Gaspari, M.1    Falkenberg, M.2    Larsson, N.G.3    Gustafsson, C.M.4
  • 132
    • 0037443884 scopus 로고    scopus 로고
    • Human mitochondrial DNA is packaged with TFAM
    • [132] Alam TI, Kanki T, Muta T, et al. Human mitochondrial DNA is packaged with TFAM. Nucleic Acids Res 2003; 31: 1640-5.
    • (2003) Nucleic Acids Res , vol.31 , pp. 1640-1645
    • Alam, T.I.1    Kanki, T.2    Muta, T.3
  • 133
    • 34548495323 scopus 로고    scopus 로고
    • The mitochondrial transcription factor TFAM coordinates the assembly of multiple DNA molecules into nucleoid-like structures
    • [133] Kaufman BA, Durisic N, Mativetsky JM, et al. The mitochondrial transcription factor TFAM coordinates the assembly of multiple DNA molecules into nucleoid-like structures. Mol Biol Cell 2007; 18: 3225-36.
    • (2007) Mol Biol Cell , vol.18 , pp. 3225-3236
    • Kaufman, B.A.1    Durisic, N.2    Mativetsky, J.M.3
  • 134
    • 2442431673 scopus 로고    scopus 로고
    • Mitochondrial transcription factor A regulates mtDNA copy number in mammals
    • [134] Ekstrand M, Falkenberg M, Rantanen A, et al. Mitochondrial transcription factor A regulates mtDNA copy number in mammals. Hum Mol Genet 2004; 13: 935-44.
    • (2004) Hum Mol Genet , vol.13 , pp. 935-944
    • Ekstrand, M.1    Falkenberg, M.2    Rantanen, A.3
  • 135
    • 33845629364 scopus 로고    scopus 로고
    • Alterations to the expression level of mitochondrial transcription factor A, TFAM, modify the mode of mitochondrial DNA replication in cultured human cells
    • [135] Pohjoismaki JL, Wanrooij S, Hyvarinen AK, et al. Alterations to the expression level of mitochondrial transcription factor A, TFAM, modify the mode of mitochondrial DNA replication in cultured human cells. Nucleic Acids Res 2006; 34: 5815-28.
    • (2006) Nucleic Acids Res , vol.34 , pp. 5815-5828
    • Pohjoismaki, J.L.1    Wanrooij, S.2    Hyvarinen, A.K.3
  • 136
    • 33847656213 scopus 로고    scopus 로고
    • Mitochondrial transcription factor A (TFAM): Roles in maintenance of mtDNA and cellular functions
    • [136] Kang D, Kim SH, Hamasaki N. Mitochondrial transcription factor A (TFAM): roles in maintenance of mtDNA and cellular functions. Mitochondrion 2007; 7:39-44.
    • (2007) Mitochondrion , vol.7 , pp. 39-44
    • Kang, D.1    Kim, S.H.2    Hamasaki, N.3
  • 137
    • 0035887745 scopus 로고    scopus 로고
    • Late-onset corticohippocampal neurodepletion attributable to catastrophic failure of oxidative phosphorylation in MILON mice
    • [137] Sörensen L, Ekstrand M, Silva JP, et al. Late-onset corticohippocampal neurodepletion attributable to catastrophic failure of oxidative phosphorylation in MILON mice. J Neurosci 2001; 21: 8082-90.
    • (2001) J Neurosci , vol.21 , pp. 8082-8090
    • Sörensen, L.1    Ekstrand, M.2    Silva, J.P.3
  • 138
    • 33846636481 scopus 로고    scopus 로고
    • Progressive parkinsonism in mice with respiration-chain-deficient dopamine neurons
    • [138] Ekstrand M, Terzioglu M, Galter D, et al. Progressive parkinsonism in mice with respiration-chain-deficient dopamine neurons. Proc Natl Acad Sci USA 2007; 104: 1325-30.
    • (2007) Proc Natl Acad Sci USA , vol.104 , pp. 1325-1330
    • Ekstrand, M.1    Terzioglu, M.2    Galter, D.3
  • 139
    • 77949342539 scopus 로고    scopus 로고
    • MitoPark mice mirror the slow progression of key symptoms and L-DOPA response in Parkinson’s disease
    • [139] Galter D, Pernold K, Yoshitake T, et al. MitoPark mice mirror the slow progression of key symptoms and L-DOPA response in Parkinson’s disease. Genes Brain Behav 2010; 9: 173-81.
    • (2010) Genes Brain Behav , vol.9 , pp. 173-181
    • Galter, D.1    Pernold, K.2    Yoshitake, T.3
  • 140
    • 84877056321 scopus 로고    scopus 로고
    • Twinkle is an essential mitochondrial helicase required for synthesis of nascent D-loop strands and complete mtDNA replication
    • [140] Milenkovic D, Matic S, Kühl I, et al. Twinkle is an essential mitochondrial helicase required for synthesis of nascent D-loop strands and complete mtDNA replication. Hum Mol Genet 2013; doi:10.1093/hmg/ddt051.
    • (2013) Hum Mol Genet
    • Milenkovic, D.1    Matic, S.2    Kühl, I.3
  • 141
    • 0034938364 scopus 로고    scopus 로고
    • Human mitochondrial DNA deletions associated with mutations in the gene encoding Twinkle, a phage T7 gene 4-like protein localized in mitochondria
    • [141] Spelbrink JN, Li FY, Tiranti V, et al. Human mitochondrial DNA deletions associated with mutations in the gene encoding Twinkle, a phage T7 gene 4-like protein localized in mitochondria. Nat Genet 2001; 28: 223-31.
    • (2001) Nat Genet , vol.28 , pp. 223-231
    • Spelbrink, J.N.1    Li, F.Y.2    Tiranti, V.3
  • 142
    • 1542677230 scopus 로고    scopus 로고
    • TWINKLE has 5’->3’ DNA helicase activity and is specifically stimulated by mitochondrial single-stranded DNA-binding protein
    • [142] Korhonen JA, Gaspari M, Falkenberg M. TWINKLE has 5’->3’ DNA helicase activity and is specifically stimulated by mitochondrial single-stranded DNA-binding protein. J Biol Chem 2003; 278: 48627-32.
    • (2003) J Biol Chem , vol.278 , pp. 48627-48632
    • Korhonen, J.A.1    Gaspari, M.2    Falkenberg, M.3
  • 143
    • 3242739284 scopus 로고    scopus 로고
    • Reconstitution of a minimal mtDNA replisome in vitro
    • [143] Korhonen JA, Pham XH, Pellegrini M, Falkenberg M. Reconstitution of a minimal mtDNA replisome in vitro. EMBO J 2004; 23: 2423-29.
    • (2004) EMBO J , vol.23 , pp. 2423-2429
    • Korhonen, J.A.1    Pham, X.H.2    Pellegrini, M.3    Falkenberg, M.4
  • 144
    • 19944383101 scopus 로고    scopus 로고
    • Twinkle helicase is essential for mtDAN maintenance and regulates mtDNA copy number
    • [144] Tyynismaa H, Sembongi H, Bokori-Brown M, et al. Twinkle helicase is essential for mtDAN maintenance and regulates mtDNA copy number. Hum Mol Genet 2004; 13: 3219-27.
    • (2004) Hum Mol Genet , vol.13 , pp. 3219-3227
    • Tyynismaa, H.1    Sembongi, H.2    Bokori-Brown, M.3
  • 145
    • 0030898772 scopus 로고    scopus 로고
    • Autosomal dominant progressive external ophtalmoplegia with multiple deletions of mtDNA: Clinical, biochemical, and molecular genetic features of the 10q-linked disease
    • [145] Suomalainen A, Majander A, Wallin M, et al. Autosomal dominant progressive external ophtalmoplegia with multiple deletions of mtDNA: clinical, biochemical, and molecular genetic features of the 10q-linked disease. Neurology 1997; 48: 1244-53.
    • (1997) Neurology , vol.48 , pp. 1244-1253
    • Suomalainen, A.1    Majander, A.2    Wallin, M.3
  • 146
    • 29144486726 scopus 로고    scopus 로고
    • Mutant mitochondrial helicase Twinkle causes multiple mtDNA deletions and a lateonset mitochondrial disease in mice
    • [146] Tyynismaa H, Mjosund KP, Wanrooij S, et al. Mutant mitochondrial helicase Twinkle causes multiple mtDNA deletions and a lateonset mitochondrial disease in mice. Proc Natl Acad Sci USA 2005; 102: 17687-92.
    • (2005) Proc Natl Acad Sci USA , vol.102 , pp. 17687-17692
    • Tyynismaa, H.1    Mjosund, K.P.2    Wanrooij, S.3
  • 147
    • 77953811054 scopus 로고    scopus 로고
    • The human mitochondrial replication fork in health and disease
    • [147] Wanrooij S, Falkenberg M. The human mitochondrial replication fork in health and disease. Biochem Biophys Acta 2010; 1797: 1378-88.
    • (2010) Biochem Biophys Acta , vol.1797 , pp. 1378-1388
    • Wanrooij, S.1    Falkenberg, M.2
  • 148
    • 83755205842 scopus 로고    scopus 로고
    • Defects in mitochondrial DNA replication and human disease
    • [148] Copeland WC. Defects in mitochondrial DNA replication and human disease. Crit Rev Biochem Mol Biol 2012; 47: 64-74.
    • (2012) Crit Rev Biochem Mol Biol , vol.47 , pp. 64-74
    • Copeland, W.C.1
  • 149
    • 34648828532 scopus 로고    scopus 로고
    • AMP-activated/SNF1 protein kinases: Conserved guardians of cellular energy
    • [149] Hardie DG. AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nat Rev Mol Cell Biol 2007; 8: 774-85.
    • (2007) Nat Rev Mol Cell Biol , vol.8 , pp. 774-785
    • Hardie, D.G.1
  • 150
    • 76549089547 scopus 로고    scopus 로고
    • Calmodulin-dependent protein kinase-β activates AMPK without forming a stable complex: Synergistic effects of Ca2+ and AMP
    • [150] Fogarty S, Hawley SA, Green KA, Saner N, Mustard KJ, Hardie DG. Calmodulin-dependent protein kinase-β activates AMPK without forming a stable complex: synergistic effects of Ca2+ and AMP. Biochem J 2010; 426: 109-18.
    • (2010) Biochem J , vol.426 , pp. 109-118
    • Fogarty, S.1    Hawley, S.A.2    Green, K.A.3    Saner, N.4    Mustard, K.J.5    Hardie, D.G.6
  • 151
    • 23044514282 scopus 로고    scopus 로고
    • Activating AMP-activated protein kinase without AMP
    • [151] Bierbaum M. Activating AMP-activated protein kinase without AMP. Mol Cell 2005; 19: 289-90.
    • (2005) Mol Cell , vol.19 , pp. 289-290
    • Bierbaum, M.1
  • 153
    • 67650914230 scopus 로고    scopus 로고
    • AMPK in health and disease
    • [153] Steinberg GR, Kemp BE. AMPK in health and disease. Physiol Rev 2009; 89: 1025-78.
    • (2009) Physiol Rev , vol.89 , pp. 1025-1078
    • Steinberg, G.R.1    Kemp, B.E.2
  • 154
    • 77957349477 scopus 로고    scopus 로고
    • AMP-activated protein kinase and its downstream transcriptional pathways
    • [154] Cantó C, Auwerx J. AMP-activated protein kinase and its downstream transcriptional pathways. Cell Mol Life Sci 2010; 67: 3407-23.
    • (2010) Cell Mol Life Sci , vol.67 , pp. 3407-3423
    • Cantó, C.1    Auwerx, J.2
  • 155
    • 34247511497 scopus 로고    scopus 로고
    • LKB1 and SAD kinases define a pathway required for the polarization of cortical neurons
    • [155] Barnes AP, Lilley BN, Pan YA, et al. LKB1 and SAD kinases define a pathway required for the polarization of cortical neurons. Cell 2007; 129: 549-63.
    • (2007) Cell , vol.129 , pp. 549-563
    • Barnes, A.P.1    Lilley, B.N.2    Pan, Y.A.3
  • 156
    • 42649105456 scopus 로고    scopus 로고
    • Hypothalamic CAMKK2 contributes to the regulation of energy balance
    • [156] Anderson KA, Ribar TJ, Lin F, et al. Hypothalamic CAMKK2 contributes to the regulation of energy balance. Cell Metab 2008; 7: 377-88.
    • (2008) Cell Metab , vol.7 , pp. 377-388
    • Anderson, K.A.1    Ribar, T.J.2    Lin, F.3
  • 157
    • 80053254762 scopus 로고    scopus 로고
    • Characterization of the CaMKKβ-AMPK signaling complex
    • [157] Green MF, Anderson KA, Means AR. Characterization of the CaMKKβ-AMPK signaling complex. Cell Signal 2011; 23: 2005-12.
    • (2011) Cell Signal , vol.23 , pp. 2005-2012
    • Green, M.F.1    Erson, K.A.2    Means, A.R.3
  • 158
    • 0037058977 scopus 로고    scopus 로고
    • AMP kinase is required for mitochondrial biogenesis in skeletal muscle in response to chronic energy deprivation
    • [158] Zong H, Ren JM, Young LH, et al. AMP kinase is required for mitochondrial biogenesis in skeletal muscle in response to chronic energy deprivation. Proc Natl Acad Sci USA 2002; 25: 15983-7.
    • (2002) Proc Natl Acad Sci USA , vol.25 , pp. 15983-15987
    • Zong, H.1    Ren, J.M.2    Young, L.H.3
  • 159
    • 0035665594 scopus 로고    scopus 로고
    • Chronic activation of AMP kinase results in NRF-1 activation and mitochondrial biogenesis
    • [159] Bergeron R, Ren JM, Cadman KS, et al. Chronic activation of AMP kinase results in NRF-1 activation and mitochondrial biogenesis. Am J Physiol Endocrinol Metab 2001; 281: E1340-6.
    • (2001) Am J Physiol Endocrinol Metab , vol.281 , pp. 13E6-1340
    • Bergeron, R.1    Ren, J.M.2    Cadman, K.S.3
  • 160
    • 33745215883 scopus 로고    scopus 로고
    • The role of AMP-activated protein kinase in mitochondrial biogenesis
    • [160] Reznick RM, Shulman GI. The role of AMP-activated protein kinase in mitochondrial biogenesis. J Physiol 2006; 574:33-39.
    • (2006) J Physiol , vol.574 , pp. 33-39
    • Reznick, R.M.1    Shulman, G.I.2
  • 161
    • 34547545892 scopus 로고    scopus 로고
    • AMP-actiavted protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha
    • [161] Jäger S, Handschin C, St-Pierre J, Spiegelman BM. AMP-actiavted protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha. Proc Natl Acad Sci USA 2007; 104: 12017-22.
    • (2007) Proc Natl Acad Sci USA , vol.104 , pp. 12017-12022
    • Jäger, S.1    Handschin, C.2    St-Pierre, J.3    Spiegelman, B.M.4
  • 162
    • 77953812778 scopus 로고    scopus 로고
    • AMP-activated protein kinase mediates activitydependent regulation of peroxisome proliferator-activated receptor γ coactivator-1α and nuclear respiratory factor 1 expression in rat visual cortical neurons
    • [162] Yu L, Yang SJ. AMP-activated protein kinase mediates activitydependent regulation of peroxisome proliferator-activated receptor γ coactivator-1α and nuclear respiratory factor 1 expression in rat visual cortical neurons. Neuroscience 2010; 169: 23-38.
    • (2010) Neuroscience , vol.169 , pp. 23-38
    • Yu, L.1    Yang, S.J.2
  • 163
  • 164
    • 79952135798 scopus 로고    scopus 로고
    • AMPactivated protein kinase (AMPK) is a tau kinase, activated in response to amyloid β-peptide exposure
    • [164] Thornton C, Bright NJ, Sastre M, Muckett PJ, Carling D. AMPactivated protein kinase (AMPK) is a tau kinase, activated in response to amyloid β-peptide exposure. Biochem J 2011; 434: 503-12.
    • (2011) Biochem J , vol.434 , pp. 503-512
    • Thornton, C.1    Bright, N.J.2    Sastre, M.3    Muckett, P.J.4    Carling, D.5
  • 165
    • 79952135316 scopus 로고    scopus 로고
    • AMPK is abnormally activated in tangle-and pre-tangle-bearing neurons in Alzheimer’s disease and other tauopathies
    • [165] Vingtdeux V, Davies P, Dickson DW, Marambaud P. AMPK is abnormally activated in tangle-and pre-tangle-bearing neurons in Alzheimer’s disease and other tauopathies. Acta Neuropathol 2011; 121: 337-49.
    • (2011) Acta Neuropathol , vol.121 , pp. 337-349
    • Vingtdeux, V.1    Davies, P.2    Dickson, D.W.3    Marambaud, P.4
  • 166
    • 84865966647 scopus 로고    scopus 로고
    • JNK3 perpetuates metabolic stress induced by Aβ peptides
    • [166] Yoon SO, Park DJ, Ryu JC, et al. JNK3 perpetuates metabolic stress induced by Aβ peptides. Neuron 2012; 75: 824-37.
    • (2012) Neuron , vol.75 , pp. 824-837
    • Yoon, S.O.1    Park, D.J.2    Ryu, J.C.3
  • 167
    • 77950575506 scopus 로고    scopus 로고
    • AMP-activated protein kinase signaling activation by resveratrol modulates amyloid-beta peptide metabolism
    • [167] Vingtdeux V, Giliberto L, Zhao H, et al. AMP-activated protein kinase signaling activation by resveratrol modulates amyloid-beta peptide metabolism. J Biol Chem 2010; 285:9100-9113.
    • (2010) J Biol Chem , vol.285 , pp. 9100-9113
    • Vingtdeux, V.1    Giliberto, L.2    Zhao, H.3
  • 168
    • 79251556232 scopus 로고    scopus 로고
    • Novel synthetic small-molecule activators of AMPK as enhancers of autophagy and amyloid-β peptide degradation
    • [168] Vingtdeux V, Chadakkar P, Zhao H, d’Abramo C, Davies P, Marambaud P. Novel synthetic small-molecule activators of AMPK as enhancers of autophagy and amyloid-β peptide degradation. FASEB J 2011; 25: 219-31.
    • (2011) FASEB J , vol.25 , pp. 219-231
    • Vingtdeux, V.1    Chadakkar, P.2    Zhao, H.3    D’abramo, C.4    Davies, P.5    Marambaud, P.6
  • 169
    • 72949122084 scopus 로고    scopus 로고
    • AMP-activated proteine kinase is activated in Parkinson’s disease models mediated by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
    • [169] Choi JS, Park C, Jeong JW. AMP-activated proteine kinase is activated in Parkinson’s disease models mediated by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Biochem Biophys Res Commun 2010; 391: 147-51.
    • (2010) Biochem Biophys Res Commun , vol.391 , pp. 147-151
    • Choi, J.S.1    Park, C.2    Jeong, J.W.3
  • 170
    • 0020680904 scopus 로고
    • Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis
    • [170] Langston JW, Ballard P, Tetrud JW, Irwin I. Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science 1983; 219: 979-80.
    • (1983) Science , vol.219 , pp. 979-980
    • Langston, J.W.1    Ballard, P.2    Tetrud, J.W.3    Irwin, I.4
  • 171
    • 0141741347 scopus 로고    scopus 로고
    • Parkinson’s disease: Mechanisms and models
    • [171] Dauer W, Przedborski S. Parkinson’s disease: mechanisms and models. Neuron 2003; 39: 889-909.
    • (2003) Neuron , vol.39 , pp. 889-909
    • Dauer, W.1    Przedborski, S.2
  • 172
    • 0024848034 scopus 로고
    • Abnormalities of the electron transport chain in idiopathic Parkinson’s disease
    • [172] Parker WD Jr, Boyson SJ, Parks JK. Abnormalities of the electron transport chain in idiopathic Parkinson’s disease. Ann Neurol 1989; 26: 719-23.
    • (1989) Ann Neurol , vol.26 , pp. 719-723
    • Parker, W.D.1    Boyson, S.J.2    Parks, J.K.3
  • 174
    • 41749104745 scopus 로고    scopus 로고
    • Deficiency in Parkinson’s disease frontal cortex
    • [174] Parker WD Jr, Parks JK, Swerdlow RH. Complex I deficiency in Parkinson’s disease frontal cortex. Brain Res 2008; 1189: 215-18.
    • (2008) Brain Res , vol.1189 , pp. 215-218
    • Parker, W.D.1    Parks, J.K.2    Swerdlow, R.H.3    Complex, I.4
  • 175
    • 33846460819 scopus 로고    scopus 로고
    • Mitochondria mass is low in mouse substantia nigra dopamine neurons: Implications for Parkinson’s disease
    • [175] Liang CL, Wang TT, Luby-Phelps K, German DC. Mitochondria mass is low in mouse substantia nigra dopamine neurons: implications for Parkinson’s disease. Exp Neurol 2007; 203: 370-80.
    • (2007) Exp Neurol , vol.203 , pp. 370-380
    • Liang, C.L.1    Wang, T.T.2    Luby-Phelps, K.3    German, D.C.4
  • 176
    • 64549127790 scopus 로고    scopus 로고
    • PGC-1α, SIRT1 and AMPK, an energy sensing network that controls energy expenditure
    • [176] Cantó C, Auwerx J. PGC-1α, SIRT1 and AMPK, an energy sensing network that controls energy expenditure. Curr Opin Lipidol 2009; 20: 98-105.
    • (2009) Curr Opin Lipidol , vol.20 , pp. 98-105
    • Cantó, C.1    Auwerx, J.2
  • 178
    • 34249083199 scopus 로고    scopus 로고
    • Sirtuins in mammals: Insights into their biological function
    • [178] Michan S, Sinclair D. Sirtuins in mammals: insights into their biological function. Biochem J 2007; 404: 1-13.
    • (2007) Biochem J , vol.404 , pp. 1-13
    • Michan, S.1    Sinclair, D.2
  • 179
    • 72849130743 scopus 로고    scopus 로고
    • Neuronal SIRT1 regulates endocrine and behavioral responses to calorie restriction
    • [179] Cohen DE, Supinski AM, Bonkowski MS, Domnez G, Guarente LP. Neuronal SIRT1 regulates endocrine and behavioral responses to calorie restriction. Genes Dev 2009; 23: 2812-7.
    • (2009) Genes Dev , vol.23 , pp. 2812-2817
    • Cohen, D.E.1    Supinski, A.M.2    Bonkowski, M.S.3    Domnez, G.4    Guarente, L.P.5
  • 180
    • 0141814680 scopus 로고    scopus 로고
    • Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice
    • [180] Cheng HL, Mostoslavsky R, Saito S, et al. Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice. Proc Natl Acad Sci USA 2003; 100: 10794-9.
    • (2003) Proc Natl Acad Sci USA , vol.100 , pp. 10794-10799
    • Cheng, H.L.1    Mostoslavsky, R.2    Saito, S.3
  • 181
    • 55749095213 scopus 로고    scopus 로고
    • Histone deacetylase SIRT1 modulates neuronal differentiation by its nuclear translocation
    • [181] Hisahara S, Chiba S, Matsumoto H, et al. Histone deacetylase SIRT1 modulates neuronal differentiation by its nuclear translocation. Proc Natl Acad Sci USA 2008; 105: 15599-604.
    • (2008) Proc Natl Acad Sci USA , vol.105 , pp. 15599-15604
    • Hisahara, S.1    Chiba, S.2    Matsumoto, H.3
  • 182
    • 77956185062 scopus 로고    scopus 로고
    • A novel pathway regulates memory and plasticity via SIRT1 and miR-134
    • [182] Gao J, Wang WY, Mao YW, et al. A novel pathway regulates memory and plasticity via SIRT1 and miR-134. Nature 2010; 466: 1105-9.
    • (2010) Nature , vol.466 , pp. 1105-1109
    • Gao, J.1    Wang, W.Y.2    Mao, Y.W.3
  • 183
    • 77954855825 scopus 로고    scopus 로고
    • SIRT1 is essential for normal cognitive function and synaptic plasticity
    • [183] Michán S, Li Y, Chou MM, et al. SIRT1 is essential for normal cognitive function and synaptic plasticity. J Neurosci 2010; 30: 9695-07.
    • (2010) J Neurosci , vol.30 , pp. 9695-9707
    • Michán, S.1    Li, Y.2    Chou, M.M.3
  • 184
    • 4043165678 scopus 로고    scopus 로고
    • Increased nuclear NAD biosynthesis and SIRt1 activation prevent axonal degeneration
    • [184] Araki T, Sasaki Y, Milbrandt J. Increased nuclear NAD biosynthesis and SIRt1 activation prevent axonal degeneration. Science 2004; 305: 1010-3.
    • (2004) Science , vol.305 , pp. 1010-1013
    • Araki, T.1    Sasaki, Y.2    Milbrandt, J.3
  • 185
    • 28844474597 scopus 로고    scopus 로고
    • SIRT1 protects against microglia-dependent amyloid-beta toxicity through inhibiting NFkappaB signaling
    • [185] Chen J, Zhou Y, Mueller-Steiner S, et al. SIRT1 protects against microglia-dependent amyloid-beta toxicity through inhibiting NFkappaB signaling. J Biol Chem 2005; 280: 40364-74.
    • (2005) J Biol Chem , vol.280 , pp. 40364-40374
    • Chen, J.1    Zhou, Y.2    Mueller-Steiner, S.3
  • 186
    • 34447308268 scopus 로고    scopus 로고
    • SIRT1 deacetylase protects against neurodegeneration in models for Alzheimer’s disease and amyotrophic sclerosis
    • [186] Kim D, Nguyen MD, Dobbin MM, et al. SIRT1 deacetylase protects against neurodegeneration in models for Alzheimer’s disease and amyotrophic sclerosis. EMBO J 2007; 26: 3169-79.
    • (2007) EMBO J , vol.26 , pp. 3169-3179
    • Kim, D.1    Nguyen, M.D.2    Dobbin, M.M.3
  • 187
    • 77955046461 scopus 로고    scopus 로고
    • SIRT1 suppresses beta-amyloid production by activating the alpha-secretase gene ADAM10
    • [187] Donmez G, Wang D, Cohen DE, Guarente L. SIRT1 suppresses beta-amyloid production by activating the alpha-secretase gene ADAM10. Cell 2010; 142: 320-32.
    • (2010) Cell , vol.142 , pp. 320-332
    • Donmez, G.1    Wang, D.2    Cohen, D.E.3    Guarente, L.4
  • 188
    • 14544282413 scopus 로고    scopus 로고
    • Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1
    • [188] Rodgers JT, Lerin C, Haas W, Gysi SP, Spiegelman BM, Puigserver P. Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature 2005; 434: 113-8.
    • (2005) Nature , vol.434 , pp. 113-118
    • Rodgers, J.T.1    Lerin, C.2    Haas, W.3    Gysi, S.P.4    Spiegelman, B.M.5    Puigserver, P.6
  • 189
    • 34247259630 scopus 로고    scopus 로고
    • Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1alpha
    • [189] Gerhart-Hines Z, Rodgers JT, Bare O, et al. Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1alpha. EMBO J 2007; 26: 1913-23.
    • (2007) EMBO J , vol.26 , pp. 1913-1923
    • Gerhart-Hines, Z.1    Rodgers, J.T.2    Bare, O.3
  • 190
    • 67349276169 scopus 로고    scopus 로고
    • AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity
    • [190] Cantó C, Gerhart-Hines Z, Feige JN, et al. AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 2009; 458: 1056-60.
    • (2009) Nature , vol.458 , pp. 1056-1060
    • Cantó, C.1    Gerhart-Hines, Z.2    Feige, J.N.3
  • 191
    • 58149202185 scopus 로고    scopus 로고
    • Phosphorylation regulates SIRT1 function
    • [191] Sasaki T, Maier B, Koclega KD, et al. Phosphorylation regulates SIRT1 function. PLoS One 2008; 3: e4020.
    • (2008) Plos One , vol.3 , pp. 4020
    • Sasaki, T.1    Maier, B.2    Koclega, K.D.3
  • 192
    • 69949138641 scopus 로고    scopus 로고
    • CK2 is the regulator of SIRT1 substrate-binding affinity, deacetylase activity and cellular response to DNA damage
    • [192] Kang H, Jung JW, Kim MK, Chung JH. CK2 is the regulator of SIRT1 substrate-binding affinity, deacetylase activity and cellular response to DNA damage. PLoS One 200; 4: e6611.
    • Plos One 200 , vol.4 , pp. 6611
    • Kang, H.1    Jung, J.W.2    Kim, M.K.3    Chung, J.H.4
  • 193
    • 77949539030 scopus 로고    scopus 로고
    • JNK1 phosphorylates SIRT1 and promotes its enzymatic activity
    • [193] Nasrin N, Kaushik VK, Fortier E, et al. JNK1 phosphorylates SIRT1 and promotes its enzymatic activity. PLoS One 2009; 4: e8414.
    • (2009) Plos One , vol.4 , pp. 8414
    • Nasrin, N.1    Kaushik, V.K.2    Fortier, E.3
  • 194
    • 77951225449 scopus 로고    scopus 로고
    • DYRRK1A and DYRK3 promote cell survival through phosphorylation and activation of SIRT1
    • [194] Guo X, Williams JG, Schug TT, Li X. DYRRK1A and DYRK3 promote cell survival through phosphorylation and activation of SIRT1. J Biol Chem 2010; 285: 13223-32.
    • (2010) J Biol Chem , vol.285 , pp. 13223-13232
    • Guo, X.1    Williams, J.G.2    Schug, T.T.3    Li, X.4
  • 195
    • 84866116711 scopus 로고    scopus 로고
    • The NAD+-dependent protein deacetylase activity of SIRT1 is regulated by its oligomeric status
    • [195] Guo X, Kesimer M, Tolun G, et al. The NAD+-dependent protein deacetylase activity of SIRT1 is regulated by its oligomeric status. Sci Rep 2012; 2: 640.
    • (2012) Sci Rep , vol.2 , pp. 640
    • Guo, X.1    Kesimer, M.2    Tolun, G.3
  • 196
    • 18144411313 scopus 로고    scopus 로고
    • SIRT1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1α
    • [196] Nemoto S, Fergusson MM, Finkel T. SIRT1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1α. J Biol Chem 2005; 280: 16456-60.
    • (2005) J Biol Chem , vol.280 , pp. 16456-16460
    • Nemoto, S.1    Fergusson, M.M.2    Finkel, T.3
  • 197
    • 37349110355 scopus 로고    scopus 로고
    • Metabolic adaptations through the PGC-1_ and SIRT1 pathways
    • [197] Rodgers JT, Lerin C, Gerhart-Hines Z, Puigserver P. Metabolic adaptations through the PGC-1_ and SIRT1 pathways. FEBS Lett 2008; 582: 46-53.
    • (2008) FEBS Lett , vol.582 , pp. 46-53
    • Rodgers, J.T.1    Lerin, C.2    Gerhart-Hines, Z.3    Puigserver, P.4
  • 198
    • 43049121395 scopus 로고    scopus 로고
    • Glucose restriction inhibits skeletal myoblast differentiation by activating SIRT1 through AMPKmediated regulation of Nampt
    • [198] Fulco M, Cen Y, Zhao P, et al. Glucose restriction inhibits skeletal myoblast differentiation by activating SIRT1 through AMPKmediated regulation of Nampt. Dev Cell 2008; 14: 661-73.
    • (2008) Dev Cell , vol.14 , pp. 661-673
    • Fulco, M.1    Cen, Y.2    Zhao, P.3
  • 200
    • 77249156847 scopus 로고    scopus 로고
    • Interdependence of AMPK and SIRT1 for metabolic adaptation to fasting and exercise in skeletal muscle
    • [200] Cantó C, Jiang LQ, Deshmukh AS, et al. Interdependence of AMPK and SIRT1 for metabolic adaptation to fasting and exercise in skeletal muscle. Cell Metab 2010; 11: 213-9.
    • (2010) Cell Metab , vol.11 , pp. 213-219
    • Cantó, C.1    Jiang, L.Q.2    Deshmukh, A.S.3
  • 201
    • 0036181469 scopus 로고    scopus 로고
    • Domains of high-polarized and low-polarized mitochondria may occur in mouse and human oocytes and early embryos
    • [201] Van Blerkom J, Davies P, Mathwig V, Alexander S. Domains of high-polarized and low-polarized mitochondria may occur in mouse and human oocytes and early embryos. Human Rep 2002; 17: 393-406.
    • (2002) Human Rep , vol.17 , pp. 393-406
    • Van Blerkom, J.1    Davies, P.2    Mathwig, V.3    Alexander, S.4
  • 202
    • 38649091334 scopus 로고    scopus 로고
    • A reduction of mitochondrial DNA molecules during embryogenesis explains the rapid segregation of genotypes
    • [202] Cree LM, Samuels DC, de Sousa Lopes SC, et al. A reduction of mitochondrial DNA molecules during embryogenesis explains the rapid segregation of genotypes. Nat Genet 2008; 40: 249-54.
    • (2008) Nat Genet , vol.40 , pp. 249-254
    • Cree, L.M.1    Samuels, D.C.2    De Sousa Lopes, S.C.3
  • 205
    • 0032519872 scopus 로고    scopus 로고
    • Neuronal basic helix-loop-helix proteins (NEX, NeuroD, NDRF): Spatiotemporal expression and targeted disruption of the Nex gene in transgenic mice
    • [205] Schwab MH, Druffel-Augustin S, Gass P, et al. Neuronal basic helix-loop-helix proteins (NEX, NeuroD, NDRF): spatiotemporal expression and targeted disruption of the Nex gene in transgenic mice. J Neurosci 1998; 18: 1408-18.
    • (1998) J Neurosci , vol.18 , pp. 1408-1418
    • Schwab, M.H.1    Druffel-Augustin, S.2    Gass, P.3
  • 206
    • 0034657665 scopus 로고    scopus 로고
    • Neuronal basic helix-loophelix proteins (NEX and BETA/NeuroD) regulate terminal granule cell differentiation in the hippocampus
    • [206] Schwab MH, Bartholomae A, Heimrich B, et al. Neuronal basic helix-loophelix proteins (NEX and BETA/NeuroD) regulate terminal granule cell differentiation in the hippocampus. J Neurosci 2000; 20: 3714-24.
    • (2000) J Neurosci , vol.20 , pp. 3714-3724
    • Schwab, M.H.1    Bartholomae, A.2    Heimrich, B.3
  • 207
    • 28044442918 scopus 로고    scopus 로고
    • Pyramidal neurons of upper cortical layers generated by NEX-positive progenitor cells in the subventricular zone
    • [207] Wu SX, Goebbels S, Nakamura K, et al. Pyramidal neurons of upper cortical layers generated by NEX-positive progenitor cells in the subventricular zone. Proc Natl Acad Sci USA 2005; 102: 17172-7.
    • (2005) Proc Natl Acad Sci USA , vol.102 , pp. 17172-17177
    • Wu, S.X.1    Goebbels, S.2    Nakamura, K.3
  • 208
    • 0037080366 scopus 로고    scopus 로고
    • Constitutive overexpression of the basic helix-loop-helix Nex/MATH-2 transcription factor promotes neuronal differentiation of PC12 cells and neurite regeneration
    • [208] Uittenbogaard M, Chiaramello A. Constitutive overexpression of the basic helix-loop-helix Nex/MATH-2 transcription factor promotes neuronal differentiation of PC12 cells and neurite regeneration. J Neurosci Res 2002; 67: 235-45.
    • (2002) J Neurosci Res , vol.67 , pp. 235-245
    • Uittenbogaard, M.1    Chiaramello, A.2
  • 209
    • 10644257319 scopus 로고    scopus 로고
    • Expression profiling upon Nex1/MATH-2-mediated neuritogenesis in PC12 cells and its implication in regeneration
    • [209] Uittenbogaard M, Chiaramello A. Expression profiling upon Nex1/MATH-2-mediated neuritogenesis in PC12 cells and its implication in regeneration. J Neurochem 2004; 91: 1332-43.
    • (2004) J Neurochem , vol.91 , pp. 1332-1343
    • Uittenbogaard, M.1    Chiaramello, A.2
  • 210
    • 73949151487 scopus 로고    scopus 로고
    • NeuroD6 genomic signature bridging neuronal differentiation to survival via the molecular chaperone network
    • [210] Uittenbogaard M, Baxter KK, Chiaramello A. NeuroD6 genomic signature bridging neuronal differentiation to survival via the molecular chaperone network. J Neurosci 2010a; 88: 33-54.
    • (2010) J Neurosci , vol.88 , pp. 33-54
    • Uittenbogaard, M.1    Baxter, K.K.2    Chiaramello, A.3
  • 211
    • 84864819110 scopus 로고    scopus 로고
    • The neurogenic basic helix-loop-helix transcription factor NeuroD6 enhances mitochondrial biogenesis and bioenergetics to confer tolerance of neuronal PC12-NeuroD6 cells to the mitochondrial stressor rotenone
    • [211] Baxter KK, Uittenbogaard M, Chiaramello A. The neurogenic basic helix-loop-helix transcription factor NeuroD6 enhances mitochondrial biogenesis and bioenergetics to confer tolerance of neuronal PC12-NeuroD6 cells to the mitochondrial stressor rotenone. Exp Cell Res 2012; 318: 2200-14.
    • (2012) Exp Cell Res , vol.318 , pp. 2200-2214
    • Baxter, K.K.1    Uittenbogaard, M.2    Chiaramello, A.3
  • 212
    • 0023905661 scopus 로고
    • The establishment of polarity by hippocampal neurons in culture
    • [212] Dotti CG, Sullivan CA, Banker GA. The establishment of polarity by hippocampal neurons in culture. J Neurosci 1988; 8: 1454-68.
    • (1988) J Neurosci , vol.8 , pp. 1454-1468
    • Dotti, C.G.1    Sullivan, C.A.2    Banker, G.A.3
  • 213
    • 84870052893 scopus 로고    scopus 로고
    • The neurogenic basic helix-loop-helix transcription factor NeuroD6 confers tolerance to oxidative stress by triggering an antioxidant response and sustaining the mitochondrial biomass
    • [213] Uittenbogaard M, Baxter KK, Chiaramello A. The neurogenic basic helix-loop-helix transcription factor NeuroD6 confers tolerance to oxidative stress by triggering an antioxidant response and sustaining the mitochondrial biomass. ASN Neuro 2010b; 2: e00034.
    • (2010) ASN Neuro , vol.2
    • Uittenbogaard, M.1    Baxter, K.K.2    Chiaramello, A.3
  • 214
    • 58349112352 scopus 로고    scopus 로고
    • Mitochondrial remodeling in differentiating neuroblasts
    • [214] Voccoli V, Colombaioni L. Mitochondrial remodeling in differentiating neuroblasts. Brain Res 2009; 152: 15-29.
    • (2009) Brain Res , vol.152 , pp. 15-29
    • Voccoli, V.1    Colombaioni, L.2
  • 215
    • 70349592516 scopus 로고    scopus 로고
    • The relationship between pluripotency and mitochondrial DNA proliferation during early embryo development and embryonic stem cell differentiation
    • [215] Facucho-Oliveira JM, St John JC. The relationship between pluripotency and mitochondrial DNA proliferation during early embryo development and embryonic stem cell differentiation. Stem Cell Rev Rep 2009; 5: 140-58.
    • (2009) Stem Cell Rev Rep , vol.5 , pp. 140-158
    • Facucho-Oliveira, J.M.1    St John, J.C.2
  • 216
    • 0034028901 scopus 로고    scopus 로고
    • Quantitative expression of Oct-3/4 defines differentiation or self-renewal of ES cells
    • [216] Niwa H, Miyazaki J, Smith AG. Quantitative expression of Oct-3/4 defines differentiation or self-renewal of ES cells. Nat Genet 2000; 24: 372-6.
    • (2000) Nat Genet , vol.24 , pp. 372-376
    • Niwa, H.1    Miyazaki, J.2    Smith, A.G.3
  • 217
    • 0038143611 scopus 로고    scopus 로고
    • Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells
    • [217] Chambers I, Colby D, Robertson M, et al. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 2003; 113: 643-55.
    • (2003) Cell , vol.113 , pp. 643-655
    • Chambers, I.1    Colby, D.2    Robertson, M.3
  • 218
    • 27744563079 scopus 로고    scopus 로고
    • The expression of mitochondrial DNA transcription factors during early cardiomyocyte in vitro differentiation from human embryonic stem cells
    • [218] St John JC, Ramalho-Santos J, Gray HL, et al. The expression of mitochondrial DNA transcription factors during early cardiomyocyte in vitro differentiation from human embryonic stem cells. Cloning Stem Cells 2005; 7: 141-53.
    • (2005) Cloning Stem Cells , vol.7 , pp. 141-153
    • St John, J.C.1    Ramalho-Santos, J.2    Gray, H.L.3
  • 220
    • 34547115028 scopus 로고    scopus 로고
    • A dominant-negative form of mouse SOX2 induces trophectoderm differentiation and progressive polyploidy in mouse embryonic stem cells
    • [220] Li J, Pan G, Cui K, Liu Y, Xu S, Pei D. A dominant-negative form of mouse SOX2 induces trophectoderm differentiation and progressive polyploidy in mouse embryonic stem cells. J Biol Chem 2007; 282: 19481-92.
    • (2007) J Biol Chem , vol.282 , pp. 19481-19492
    • Li, J.1    Pan, G.2    Cui, K.3    Liu, Y.4    Xu, S.5    Pei, D.6
  • 222
    • 33846420629 scopus 로고    scopus 로고
    • A high glycolytic flux supports the proliferative potential of murine embryonic stem cells
    • [222] Kondoh H, Lleonart ME, Nakashima Y, et al. A high glycolytic flux supports the proliferative potential of murine embryonic stem cells. Antioxid Redox Signal 2007; 9: 293-9.
    • (2007) Antioxid Redox Signal , vol.9 , pp. 293-299
    • Kondoh, H.1    Lleonart, M.E.2    Nakashima, Y.3
  • 223
    • 67651119928 scopus 로고    scopus 로고
    • Mitochondria: Determinants of stem cell fate?
    • [223] Parket GC, Acsadi G, Brenner CA. Mitochondria: Determinants of stem cell fate? Stem Cells Dev 2009; 18: 803-6.
    • (2009) Stem Cells Dev , vol.18 , pp. 803-806
    • Parket, G.C.1    Acsadi, G.2    Brenner, C.A.3
  • 224
    • 0030601129 scopus 로고    scopus 로고
    • Retinoic acid promotes neural and represses mesodermal gene expression in mouse embryonic stem cells in culture
    • [224] Bain G, Ray WJ, Yao M, Gottlieb DI. Retinoic acid promotes neural and represses mesodermal gene expression in mouse embryonic stem cells in culture. Biochem Biophys Res Comm 1996; 223: 691-4.
    • (1996) Biochem Biophys Res Comm , vol.223 , pp. 691-694
    • Bain, G.1    Ray, W.J.2    Yao, M.3    Gottlieb, D.I.4
  • 225
    • 0031409876 scopus 로고    scopus 로고
    • Retinoic acid mediates Pax6 expression during in vitro differentiation of embryonic stem cells
    • [225] Gajovic S, St-Onge L, Yokota Y, Gruss P. Retinoic acid mediates Pax6 expression during in vitro differentiation of embryonic stem cells. Differentiation 1997; 62: 187-92.
    • (1997) Differentiation , vol.62 , pp. 187-192
    • Gajovic, S.1    St-Onge, L.2    Yokota, Y.3    Gruss, P.4
  • 226
    • 4344601961 scopus 로고    scopus 로고
    • Differentiation of mouse embryonic stem cells into a defined neuronal lineage
    • [226] Bibel M, Richter J, Schrenk K, et al. Differentiation of mouse embryonic stem cells into a defined neuronal lineage. Nat Neurosci 2004; 7: 1003-9.
    • (2004) Nat Neurosci , vol.7 , pp. 1003-1009
    • Bibel, M.1    Richter, J.2    Schrenk, K.3
  • 227
    • 40349091595 scopus 로고    scopus 로고
    • Expression profiles of Wnt genes during neural differentiation of mouse embryonic stem cells
    • [227] Nordin N, Li M, Mason JO. Expression profiles of Wnt genes during neural differentiation of mouse embryonic stem cells. Cloning Stem Cells 2008; 10: 37-48.
    • (2008) Cloning Stem Cells , vol.10 , pp. 37-48
    • Nordin, N.1    Li, M.2    Mason, J.O.3
  • 229
    • 79951963668 scopus 로고    scopus 로고
    • Roles of mitochondria in human disease
    • [229] Duchen MR, Szabadkai G. Roles of mitochondria in human disease. Essays Biochem 2010; 47: 115-37.
    • (2010) Essays Biochem , vol.47 , pp. 115-137
    • Duchen, M.R.1    Szabadkai, G.2
  • 231
    • 0024242545 scopus 로고
    • Mitochondrial DNA mutation associated with Leber’s hereditary optic neuropathy
    • [231] Wallace DC, Singh G, Lott MT, et al. Mitochondrial DNA mutation associated with Leber’s hereditary optic neuropathy. Science 1988a; 242: 1427-30.
    • (1988) Science , vol.242 , pp. 1427-1430
    • Wallace, D.C.1    Singh, G.2    Lott, M.T.3
  • 232
    • 0024163051 scopus 로고
    • Familial mitochondrial encephalopathy (MERRF): Genetic, pathophysiological, and biochemical characterization of a mitochondrial DNA disease
    • [232] Wallace DC, Zheng X, Lott MT, et al. Familial mitochondrial encephalopathy (MERRF): genetic, pathophysiological, and biochemical characterization of a mitochondrial DNA disease. Cell 1988b; 55: 601-10.
    • (1988) Cell , vol.55 , pp. 601-610
    • Wallace, D.C.1    Zheng, X.2    Lott, M.T.3
  • 233
    • 0033525773 scopus 로고    scopus 로고
    • Mitochondrial diseases in man and mouse
    • [233] Wallace DC. Mitochondrial diseases in man and mouse. Science 1999; 283: 1482-8.
    • (1999) Science , vol.283 , pp. 1482-1488
    • Wallace, D.C.1
  • 234
    • 0032833421 scopus 로고    scopus 로고
    • Mitochondrial DNA variation in human evolution and disease
    • [234] Wallace DC, Brown MD, Lott MT. Mitochondrial DNA variation in human evolution and disease. Gene 1999; 238: 211-30.
    • (1999) Gene , vol.238 , pp. 211-230
    • Wallace, D.C.1    Brown, M.D.2    Lott, M.T.3
  • 235
    • 0025267548 scopus 로고
    • A new mitochondrial disease associated with mitochondrial DNA heteroplasmy
    • [235] Holt IJ, Harding AE, Petty RK, Morgan-Hughes JA. A new mitochondrial disease associated with mitochondrial DNA heteroplasmy. Am J Hum Genet 1990; 46: 428-33.
    • (1990) Am J Hum Genet , vol.46 , pp. 428-433
    • Holt, I.J.1    Harding, A.E.2    Petty, R.K.3    Morgan-Hughes, J.A.4
  • 236
    • 0028574053 scopus 로고
    • Mitochondrial DNA sequence variation inhuman evolution and disease
    • [236] Wallace DC. Mitochondrial DNA sequence variation inhuman evolution and disease. Proc Natl Acad Sci USA 1994; 91: 8739-46.
    • (1994) Proc Natl Acad Sci USA , vol.91 , pp. 8739-8746
    • Wallace, D.C.1
  • 238
    • 0028140454 scopus 로고
    • Distribution of wild type and common deletion forms of mtDNA in normal and respiration-deficient muscle fibers from patients with mitochondrial myopathy
    • [238] Sciacco M, Bonilla E, Schon EA, DiMauro S, Moraes CT. Distribution of wild type and common deletion forms of mtDNA in normal and respiration-deficient muscle fibers from patients with mitochondrial myopathy. Hum Mol Genet 1994; 3: 13-9.
    • (1994) Hum Mol Genet , vol.3 , pp. 13-19
    • Sciacco, M.1    Bonilla, E.2    Schon, E.A.3    Dimauro, S.4    Moraes, C.T.5
  • 239
    • 0029587469 scopus 로고
    • Molecular genetic aspects of human mitochondrial disorders
    • [239] Larsson NG, Clayton DA. Molecular genetic aspects of human mitochondrial disorders. Annu Rev Genet 1995; 29: 151-78.
    • (1995) Annu Rev Genet , vol.29 , pp. 151-178
    • Larsson, N.G.1    Clayton, D.A.2
  • 240
  • 241
    • 79959305691 scopus 로고    scopus 로고
    • Przedborski. Mitochondria: The next (neurode) generation
    • [241] Schon EA, Przedborski. Mitochondria: the next (neurode) generation. Neuron 2011; 70: 1033-53.
    • (2011) Neuron , vol.70 , pp. 1033-1053
    • Schon, E.A.1
  • 242
    • 48249156188 scopus 로고    scopus 로고
    • Mitochondrial disorders in the nervous system
    • [242] DiMauro S, Schon EA. Mitochondrial disorders in the nervous system. Annu Rev Neurosci 2008; 31: 91-123.
    • (2008) Annu Rev Neurosci , vol.31 , pp. 91-123
    • Dimauro, S.1    Schon, E.A.2
  • 243
    • 33745410626 scopus 로고    scopus 로고
    • Mitochondrial disease
    • [243] Schapira AH. Mitochondrial disease. Lancet 2006; 368: 70-82.
    • (2006) Lancet , vol.368 , pp. 70-82
    • Schapira, A.H.1
  • 244
    • 79953311631 scopus 로고    scopus 로고
    • Inherited mitochondrial neuropathies
    • [244] Finsterer J. Inherited mitochondrial neuropathies. J Neurol Sci 2011; 304: 9-16.
    • (2011) J Neurol Sci , vol.304 , pp. 9-16
    • Finsterer, J.1
  • 245
    • 0025666322 scopus 로고
    • A mutation in the tRNA(Leu)(UUR) gene associated with the MELAS subgroup of mitochondrial encephalopathies
    • [245] Goto Y, Nonaka I, Horai S. A mutation in the tRNA(Leu)(UUR) gene associated with the MELAS subgroup of mitochondrial encephalopathies. Nature 1990; 348: 651-3.
    • (1990) Nature , vol.348 , pp. 651-653
    • Goto, Y.1    Nonaka, I.2    Horai, S.3
  • 246
    • 0025534162 scopus 로고
    • A point mutation in the mitochondrial tRNA(Leu)(UUR) gene in MELAS (mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes)
    • [246] Kobayashi Y, Momoi MY, Tominaga K, et al. A point mutation in the mitochondrial tRNA(Leu)(UUR) gene in MELAS (mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes). Biochem Biophys Res Commun 1990; 173: 816-22.
    • (1990) Biochem Biophys Res Commun , vol.173 , pp. 816-822
    • Kobayashi, Y.1    Momoi, M.Y.2    Tominaga, K.3
  • 247
    • 0026752276 scopus 로고
    • The mitochondrial tRNA(Leu)(UUR) mutation in MELAS: A model for pathogenesis
    • [247] Schon EA, Koga Y, Davidson M, Moraes CT, King MP. The mitochondrial tRNA(Leu)(UUR) mutation in MELAS: a model for pathogenesis. Biochem Biophys Acta 1992; 1101: 206-9.
    • (1992) Biochem Biophys Acta , vol.1101 , pp. 206-209
    • Schon, E.A.1    Koga, Y.2    Davidson, M.3    Moraes, C.T.4    King, M.P.5
  • 248
    • 0025992003 scopus 로고
    • Respirationdeficient cells are caused by a single point mutation in the mitochondrial tRNLeu (UUR) gene in mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS)
    • [248] Kobayashi Y, Momoi MY, Tominaga K, et al. Respirationdeficient cells are caused by a single point mutation in the mitochondrial tRNLeu (UUR) gene in mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS). Am J Hum Genet 1991; 49: 590-9.
    • (1991) Am J Hum Genet , vol.49 , pp. 590-599
    • Kobayashi, Y.1    Momoi, M.Y.2    Tominaga, K.3
  • 249
    • 0028107258 scopus 로고
    • Mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS): Current concepts
    • [249] Hirano M, Pavlakis SG. Mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS): current concepts. J Child Neurol 1994; 9: 4-13.
    • (1994) J Child Neurol , vol.9 , pp. 4-13
    • Hirano, M.1    Pavlakis, S.G.2
  • 250
    • 54949142139 scopus 로고    scopus 로고
    • Mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes: Basic concepts, clinical phenol type, and therapeutic management of MELAS syndrome
    • [250] Sproule DM, Kaufmann P. Mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes: basic concepts, clinical phenol type, and therapeutic management of MELAS syndrome. Ann NY Acad Sci 2008; 1142: 133-58.
    • (2008) Ann NY Acad Sci , vol.1142 , pp. 133-158
    • Sproule, D.M.1    Kaufmann, P.2
  • 252
    • 0025368281 scopus 로고
    • Myoclonic epilepsy and ragger-red fiber disease (MERRF) is associate with a mitochondrial DNA tRNA(Lys) mutation
    • [252] Shoffner JM, Lott MT, Lezza AM, Seibel P, Ballinger SW, Wallace DC. Myoclonic epilepsy and ragger-red fiber disease (MERRF) is associate with a mitochondrial DNA tRNA(Lys) mutation. Cell 1990; 61:931-7.
    • (1990) Cell , vol.61 , pp. 931-937
    • Shoffner, J.M.1    Lott, M.T.2    Lezza, A.M.3    Seibel, P.4    Ballinger, S.W.5    Wallace, D.C.6
  • 253
    • 0031005697 scopus 로고    scopus 로고
    • Mitochondrial dysfunction with myoclonus epilepsy and ragged-red fibers point mutation in nerve, muscle, and adipose tissue of a patient with multiple symmetric lipomatosis
    • [253] Naumann M, Kiefer R, Toyka KV, Sommer C, Seibel P, Reichmann H. Mitochondrial dysfunction with myoclonus epilepsy and ragged-red fibers point mutation in nerve, muscle, and adipose tissue of a patient with multiple symmetric lipomatosis. Muscle Nerve 1997; 20: 833-9.
    • (1997) Muscle Nerve , vol.20 , pp. 833-839
    • Naumann, M.1    Kiefer, R.2    Toyka, K.V.3    Sommer, C.4    Seibel, P.5    Reichmann, H.6
  • 255
    • 0030791665 scopus 로고    scopus 로고
    • Molecular pathology of MELAS and MERRF. The relationship between mutation load and clinical phenotypes
    • [255] Chinnery PF, Howell N, Lightowlers RN, Turnbull DM. Molecular pathology of MELAS and MERRF. The relationship between mutation load and clinical phenotypes. Brain 1997; 120: 1713-21.
    • (1997) Brain , vol.120 , pp. 1713-1721
    • Chinnery, P.F.1    Howell, N.2    Lightowlers, R.N.3    Turnbull, D.M.4
  • 256
    • 0036372802 scopus 로고    scopus 로고
    • Clinical features and genetics of myoclonic epilepsy with ragged red fibers
    • [256] DiMauro S, Hirano M, Kaufman P, et al. Clinical features and genetics of myoclonic epilepsy with ragged red fibers. Adv Neurol 2002; 89: 217-29.
    • (2002) Adv Neurol , vol.89 , pp. 217-229
    • Dimauro, S.1    Hirano, M.2    Kaufman, P.3
  • 257
    • 21144446106 scopus 로고    scopus 로고
    • PGC-1alpha deficiency causes multi-system energy metabolic derangements: Muscle dysfunction, abnormal weight control and hepatic steatosis
    • [257] Leone TC, Lehman JJ, Finck BN, et al. PGC-1alpha deficiency causes multi-system energy metabolic derangements: muscle dysfunction, abnormal weight control and hepatic steatosis. PLoS Biol 2005; 3: e101.
    • (2005) Plos Biol , vol.3 , pp. 101
    • Leone, T.C.1    Lehman, J.J.2    Finck, B.N.3
  • 258
    • 78649819597 scopus 로고    scopus 로고
    • Neuronal inactivation of peroxisome proliferator-activated receptor gamma coactivator 1alpha (PGC-1alpha) protects mice from diet-induced obesity and leads to degenerative lesions
    • [258] Ma D, Li S, Lucas EK, Cowell RM, Lin JD. Neuronal inactivation of peroxisome proliferator-activated receptor gamma coactivator 1alpha (PGC-1alpha) protects mice from diet-induced obesity and leads to degenerative lesions. J Biol Chem 2010; 285: 39087-95.
    • (2010) J Biol Chem , vol.285 , pp. 39087-39095
    • Ma, D.1    Li, S.2    Lucas, E.K.3    Cowell, R.M.4    Lin, J.D.5
  • 259
    • 0030919567 scopus 로고    scopus 로고
    • Oxidative damage and metabolic dysfunction in Huntington’s disease: Selective vulnerability of the basal ganglia
    • [259] Browne SE, Bowling AC, MacGarvey U, et al. Oxidative damage and metabolic dysfunction in Huntington’s disease: selective vulnerability of the basal ganglia. Annu Neurol 1997; 41: 646-53.
    • (1997) Annu Neurol , vol.41 , pp. 646-653
    • Browne, S.E.1    Bowling, A.C.2    Macgarvey, U.3
  • 261
    • 26444441008 scopus 로고    scopus 로고
    • HD CAG repeat implicates a dominant property of huntingtin in mitochondrial energy metabolism
    • [261] Seong IS, Ivanova E, Lee JM, et al. HD CAG repeat implicates a dominant property of huntingtin in mitochondrial energy metabolism. Hum Mol Genet 2005; 14: 2871-80.
    • (2005) Hum Mol Genet , vol.14 , pp. 2871-2880
    • Seong, I.S.1    Ivanova, E.2    Lee, J.M.3
  • 262
    • 33749042331 scopus 로고    scopus 로고
    • Transcriptional repression by PGC-1alpha by mutant huntingtin leads to mitochondrial dysfunction and neurodegeneration
    • [262] Cui L, Jeong H, Borovecki F, Parkhurst CN, Tanese N, Krainc D. Transcriptional repression by PGC-1alpha by mutant huntingtin leads to mitochondrial dysfunction and neurodegeneration. Cell 2006; 127: 59-69.
    • (2006) Cell , vol.127 , pp. 59-69
    • Cui, L.1    Jeong, H.2    Borovecki, F.3    Parkhurst, C.N.4    Tanese, N.5    Krainc, D.6
  • 263
    • 33750437278 scopus 로고    scopus 로고
    • Thermoregulatory and metabolic defects in Huntington’s disease transgenic mice implicate PGC-1alpha in Huntington’s disease neurodegeneration
    • [263] Weydt P, Pineda VV, Torrence AE, et al. Thermoregulatory and metabolic defects in Huntington’s disease transgenic mice implicate PGC-1alpha in Huntington’s disease neurodegeneration. Cell Metab 2006; 4: 349-62.
    • (2006) Cell Metab , vol.4 , pp. 349-362
    • Weydt, P.1    Pineda, V.V.2    Torrence, A.E.3
  • 264
    • 67650061723 scopus 로고    scopus 로고
    • Impaired PGC-1alpha function in muscle in Huntington’s disease
    • [264] Chaturvedi RK, Adhihetty P, Shukla S, et al. Impaired PGC-1alpha function in muscle in Huntington’s disease. Hum Mol Genet 2009; 18: 3048-65.
    • (2009) Hum Mol Genet , vol.18 , pp. 3048-3065
    • Chaturvedi, R.K.1    Adhihetty, P.2    Shukla, S.3
  • 265
    • 58649094617 scopus 로고    scopus 로고
    • The gene coding for PGC-1alpha modifies age at onset in Huntington’s disease
    • [265] Weydt P, Soyal SM, Gellera C, et al. The gene coding for PGC-1alpha modifies age at onset in Huntington’s disease. Mol Neurodegener 2009; 4, 3.
    • (2009) Mol Neurodegener , vol.4 , pp. 3
    • Weydt, P.1    Soyal, S.M.2    Gellera, C.3
  • 266
    • 79959986144 scopus 로고    scopus 로고
    • Peroxisome-proliferatoractivated receptor gamma coactivator 1 {alpha} contributes to dysmyelination in experimental models of Huntington’s disease
    • [266] Xiang Z, Valenza M, Cui L, et al. Peroxisome-proliferatoractivated receptor gamma coactivator 1 {alpha} contributes to dysmyelination in experimental models of Huntington’s disease. J Neurosci 2011; 31: 9544-53.
    • (2011) J Neurosci , vol.31 , pp. 9544-9553
    • Xiang, Z.1    Valenza, M.2    Cui, L.3
  • 267
    • 77958072667 scopus 로고    scopus 로고
    • PGC-1alpha, a potential therapeutic target for early intervention in Parkinson’s disease
    • Zheng B, Liao Z, Locascio JJ, et al. PGC-1alpha, a potential therapeutic target for early intervention in Parkinson’s disease. Sci Transl Med 2010; 2, 52-73.
    • (2010) Sci Transl Med , vol.2 , pp. 52-73
    • Zheng, B.1    Liao, Z.2    Locascio, J.J.3
  • 268
    • 79952303794 scopus 로고    scopus 로고
    • PARIS (ZNF746) repression of PGC-1α contributes to neurodegeneration in Parkinson’s disease
    • [268] Shin JH, Ko HS, Kang H, et al. PARIS (ZNF746) repression of PGC-1α contributes to neurodegeneration in Parkinson’s disease. Cell 2011; 144: 689-702.
    • (2011) Cell , vol.144 , pp. 689-702
    • Shin, J.H.1    Ko, H.S.2    Kang, H.3
  • 269
    • 0036899102 scopus 로고    scopus 로고
    • KRAB zinc finger proteins: An analysis of the molecular mechanisms governing their increase in numbers and complexity during evolution
    • [269] Looman C, Abrink M, Mark C, Hellman L. KRAB zinc finger proteins: an analysis of the molecular mechanisms governing their increase in numbers and complexity during evolution. Mol Biol Evol 2002; 19: 2118-30.
    • (2002) Mol Biol Evol , vol.19 , pp. 2118-2130
    • Looman, C.1    Abrink, M.2    Mark, C.3    Hellman, L.4
  • 270
    • 33746089859 scopus 로고    scopus 로고
    • Mitochondrial abnormalities and oxidative imbalance in Alzheimer disease
    • [270] Zhu X, Perry G, Moreira PL, et al. Mitochondrial abnormalities and oxidative imbalance in Alzheimer disease. J Alzheimers Dis 2006; 9: 147-53.
    • (2006) J Alzheimers Dis , vol.9 , pp. 147-153
    • Zhu, X.1    Perry, G.2    Moreira, P.L.3
  • 271
    • 0035341254 scopus 로고    scopus 로고
    • Mitochondrial abnormalities in Alzheimer’s disease
    • [271] Hirai K, Aliev G, Nunomura A, et al. Mitochondrial abnormalities in Alzheimer’s disease. J Neurosci 2001; 21: 3017-23.
    • (2001) J Neurosci , vol.21 , pp. 3017-3023
    • Hirai, K.1    Aliev, G.2    Nunomura, A.3
  • 272
    • 58049218922 scopus 로고    scopus 로고
    • Amyloid-beta overproduction causes abnormal mitochondrial dynamics via differential modulation of mitochondrial fission/fusion proteins
    • [272] Wang X, Su B, Siedlack SL, et al. Amyloid-beta overproduction causes abnormal mitochondrial dynamics via differential modulation of mitochondrial fission/fusion proteins. Proc Natl Acad Sci USA 2008; 105: 19318-23.
    • (2008) Proc Natl Acad Sci USA , vol.105 , pp. 19318-19323
    • Wang, X.1    Su, B.2    Siedlack, S.L.3
  • 273
    • 62449166389 scopus 로고    scopus 로고
    • PGC-1alpha expression decreases in the Alzheimer disease brain as a function of dementia
    • [273] Qin W, Haroutunian V, Katsel P, et al. PGC-1alpha expression decreases in the Alzheimer disease brain as a function of dementia. Arch Neurol 2009; 66: 352-61.
    • (2009) Arch Neurol , vol.66 , pp. 352-361
    • Qin, W.1    Haroutunian, V.2    Katsel, P.3
  • 274
    • 84855687153 scopus 로고    scopus 로고
    • Impaired mitochondrial biogenesis contributes to mitochondrial dysfunction in Alzheimer’s disease
    • [274] Sheng B, Wang X, Su B, et al. Impaired mitochondrial biogenesis contributes to mitochondrial dysfunction in Alzheimer’s disease. J Neurochem 2011; 120: 419-29.
    • (2011) J Neurochem , vol.120 , pp. 419-429
    • Sheng, B.1    Wang, X.2    Su, B.3
  • 275
    • 0035855905 scopus 로고    scopus 로고
    • CREB regulates hepatic gluconeogenesis through the coactivator PGC-1
    • [275] Herzig S, Long F, Jhala US, et al. CREB regulates hepatic gluconeogenesis through the coactivator PGC-1. Nature 2001; 413: 179-83.
    • (2001) Nature , vol.413 , pp. 179-183
    • Herzig, S.1    Long, F.2    Jhala, U.S.3
  • 276
    • 0033541589 scopus 로고    scopus 로고
    • Impaired phosphorylation of cyclic AMP response element binding protein in the hippocampus of dementia of the Alzheimer type
    • [276] Yamamoto-Sasaki M, Ozawa H, Saito T, Rosler M, Riederer P. Impaired phosphorylation of cyclic AMP response element binding protein in the hippocampus of dementia of the Alzheimer type. Brain Res 1999; 824: 300-3.
    • (1999) Brain Res , vol.824 , pp. 300-303
    • Yamamoto-Sasaki, M.1    Ozawa, H.2    Saito, T.3    Rosler, M.4    Riederer, P.5
  • 277
    • 79959895924 scopus 로고    scopus 로고
    • Therapy for mitochondrial disorders: Little proof, high research activity, some promise
    • [277] Suomalainen A. Therapy for mitochondrial disorders: Little proof, high research activity, some promise. Sem Fetal Neonatal Med 2011; 16: 236-40.
    • (2011) Sem Fetal Neonatal Med , vol.16 , pp. 236-240
    • Suomalainen, A.1
  • 278
    • 77953668597 scopus 로고    scopus 로고
    • Making the most of what you’ve got: Optimizing residual OXPHOS function in mitochondrial diseases
    • [278] Moraes CT. Making the most of what you’ve got: optimizing residual OXPHOS function in mitochondrial diseases. EMBO Mol Med 2009; 1: 357-9.
    • (2009) EMBO Mol Med , vol.1 , pp. 357-359
    • Moraes, C.T.1
  • 279
    • 34447338862 scopus 로고    scopus 로고
    • PGC-1α/β upregulation is associated with improved oxidative phosphorylation in cells harboring nonsense mtDNA mutations
    • [279] Srivastava S, Barrett JN, Moraes CT. PGC-1α/β upregulation is associated with improved oxidative phosphorylation in cells harboring nonsense mtDNA mutations. Hum Mol Genet 2007; 16: 993-1005.
    • (2007) Hum Mol Genet , vol.16 , pp. 993-1005
    • Srivastava, S.1    Barrett, J.N.2    Moraes, C.T.3
  • 280
    • 65449133905 scopus 로고    scopus 로고
    • PGC-1α/β induced expression partially compensates for respiratory chain defects in cells from patients with mitochondrial disorders
    • [280] Srivastava S, Diaz F, Iommarini L, Aure K, Lombes A, Moraes CT. PGC-1α/β induced expression partially compensates for respiratory chain defects in cells from patients with mitochondrial disorders. Hum Mol Genet 2009; 18: 1805-12.
    • (2009) Hum Mol Genet , vol.18 , pp. 1805-1812
    • Srivastava, S.1    Diaz, F.2    Iommarini, L.3    Aure, K.4    Lombes, A.5    Moraes, C.T.6
  • 281
    • 66349120223 scopus 로고    scopus 로고
    • Endurance exercise is protective for mice with mitochondrial myopathy
    • [281] Wenz T, Diaz F, Hernandez D, Moraes CT. Endurance exercise is protective for mice with mitochondrial myopathy. J Appl Physiol 2009; 106: 1712-9.
    • (2009) J Appl Physiol , vol.106 , pp. 1712-1719
    • Wenz, T.1    Diaz, F.2    Hernandez, D.3    Moraes, C.T.4
  • 282
    • 9644294246 scopus 로고    scopus 로고
    • Implications of exercise training in mtDNA defects-use it or lose it?
    • [282] Taivassalo T, Haller RG. Implications of exercise training in mtDNA defects-use it or lose it? Biochem Biophys Acta 2004; 1659: 221-31.
    • (2004) Biochem Biophys Acta , vol.1659 , pp. 221-231
    • Taivassalo, T.1    Haller, R.G.2
  • 283
    • 28844479420 scopus 로고    scopus 로고
    • Exercise and training in mitochondrial myopathies
    • [283] Taivassalo T, Haller RG. Exercise and training in mitochondrial myopathies. Med Sci Sports Exerc 2005; 37: 2094-101.
    • (2005) Med Sci Sports Exerc , vol.37 , pp. 2094-2101
    • Taivassalo, T.1    Haller, R.G.2
  • 284
    • 56349140990 scopus 로고    scopus 로고
    • Mouse models of oxidative phosphorylation defects: Powerful tools to study the pathobiology of mitochondrial diseases
    • [284] Torraco A, Diaz F, Vempati UD, Moraes CT. Mouse models of oxidative phosphorylation defects: Powerful tools to study the pathobiology of mitochondrial diseases. Biochem Biophys Acta 2009; 1793: 171-80.
    • (2009) Biochem Biophys Acta , vol.1793 , pp. 171-180
    • Torraco, A.1    Diaz, F.2    Vempati, U.D.3    Moraes, C.T.4
  • 285
    • 59649115646 scopus 로고    scopus 로고
    • Mouse models of mitochondrial DNA defects and their relevance for human disease
    • [285] Tyynismaa H, Suomalainen A. Mouse models of mitochondrial DNA defects and their relevance for human disease. EMBO Reports 2009; 10: 137-43.
    • (2009) EMBO Reports , vol.10 , pp. 137-143
    • Tyynismaa, H.1    Suomalainen, A.2
  • 286
    • 24944447977 scopus 로고    scopus 로고
    • Mice lacking COX10 in skeletal muscle recapitulate the phenotype of progressive mitochondrial myopathies associated with cytochrome c oxidase deficiency
    • [286] Diaz F, Thomas CK, Garcia S, Hernandez D, Moraes CT. Mice lacking COX10 in skeletal muscle recapitulate the phenotype of progressive mitochondrial myopathies associated with cytochrome c oxidase deficiency. Hum Mol Genet 2005; 14: 2737-48.
    • (2005) Hum Mol Genet , vol.14 , pp. 2737-2748
    • Diaz, F.1    Thomas, C.K.2    Garcia, S.3    Hernandez, D.4    Moraes, C.T.5
  • 287
    • 0018819202 scopus 로고
    • Fatal infantile mitochondrial myopathy and renal dysfunction due to cytochrome c oxidase deficiency
    • [287] DiMauro S, Mendell JR, Sahenk Z, et al. Fatal infantile mitochondrial myopathy and renal dysfunction due to cytochrome c oxidase deficiency. Neurology 1980; 30: 795-804.
    • (1980) Neurology , vol.30 , pp. 795-804
    • Dimauro, S.1    Mendell, J.R.2    Sahenk, Z.3
  • 288
    • 0020502324 scopus 로고
    • Fatal infantile mitochondrial myopathy due to cytochrome c oxidase deficiency
    • [288] Minchom, PE, Dormer RL, Hughes IA, et al. Fatal infantile mitochondrial myopathy due to cytochrome c oxidase deficiency. J. Neurol. Sci. 1983; 60: 453-63.
    • (1983) J. Neurol. Sci , vol.60 , pp. 453-463
    • Minchom, P.E.1    Dormer, R.L.2    Hughes, I.A.3
  • 289
    • 0035831217 scopus 로고    scopus 로고
    • Involvement of mitochondrial ferredoxin and Cox15p in hydroxylation of heme O
    • [289] Barros MH, Carlson CG, Glerum DM, Tzagoloff A. Involvement of mitochondrial ferredoxin and Cox15p in hydroxylation of heme O. FEBS Lett 2001; 492: 133-38.
    • (2001) FEBS Lett , vol.492 , pp. 133-138
    • Barros, M.H.1    Carlson, C.G.2    Glerum, D.M.3    Tzagoloff, A.4
  • 290
    • 0037221950 scopus 로고    scopus 로고
    • Mutations in COX15 produce a defect in the mitochondrial heme biosynthetic pathway, causing early-onset fatal hypertrophic cardiomyopathy
    • [290] Antonicka H, Mattman A, Carlson CG, et al. Mutations in COX15 produce a defect in the mitochondrial heme biosynthetic pathway, causing early-onset fatal hypertrophic cardiomyopathy. Am J Hum Genet 2003; 72: 101-14.
    • (2003) Am J Hum Genet , vol.72 , pp. 101-114
    • Antonicka, H.1    Mattman, A.2    Carlson, C.G.3
  • 291
    • 29544449035 scopus 로고    scopus 로고
    • Biogenesis of cytochrome c oxidase
    • [291] Khalimonchuck O, Rödel G. Biogenesis of cytochrome c oxidase. Mitochondrion 2005; 5: 363-88.
    • (2005) Mitochondrion , vol.5 , pp. 363-388
    • Khalimonchuck, O.1    Rödel, G.2
  • 292
    • 79959314684 scopus 로고    scopus 로고
    • In vivo correction of COX deficiency by activation of the AMPK/PGC-1α
    • [292] Viscomi C, Bottani E, Civiletto G, et al. In vivo correction of COX deficiency by activation of the AMPK/PGC-1α. Cell Metab 2011; 14: 80-90.
    • (2011) Cell Metab , vol.14 , pp. 80-90
    • Viscomi, C.1    Bottani, E.2    Civiletto, G.3
  • 293
    • 33847304164 scopus 로고    scopus 로고
    • Increased longevity and refractoriness to Ca(2+)-dependent neurodegeneration in Surf1 knockout mice
    • [293] Dell’Agnello C, Leo S, Agostino A, et al. Increased longevity and refractoriness to Ca(2+)-dependent neurodegeneration in Surf1 knockout mice. Hum Mol Genet 2007; 16: 4310-444.
    • (2007) Hum Mol Genet , vol.16 , pp. 4310-4444
    • Dell’agnello, C.1    Leo, S.2    Agostino, A.3
  • 294
    • 77449139468 scopus 로고    scopus 로고
    • PGC-1α activation as a therapeutic approach in mitochondrial disease
    • [294] Wenz T. PGC-1α activation as a therapeutic approach in mitochondrial disease. IUBMB Life 2009; 6: 1051-62.
    • (2009) IUBMB Life , vol.6 , pp. 1051-1062
    • Wenz, T.1
  • 295
  • 296
    • 26844431513 scopus 로고    scopus 로고
    • Dual and pan-peroxisome proliferator-activated receptors (PPAR) co-agonism: The bezafibrate lessons
    • [296] Tenenbaum A, Motro M, Fisman EZ. Dual and pan-peroxisome proliferator-activated receptors (PPAR) co-agonism: the bezafibrate lessons. Cardiovasc. Diabetol 2005; 4: 14.
    • (2005) Cardiovasc. Diabetol , vol.4 , pp. 14
    • Tenenbaum, A.1    Motro, M.2    Fisman, E.Z.3
  • 297
    • 28944446431 scopus 로고    scopus 로고
    • The many faces of PPARgamma
    • [297] Lehrke M, Lazar M. The many faces of PPARgamma. Cell 2005; 123: 993-9.
    • (2005) Cell , vol.123 , pp. 993-999
    • Lehrke, M.1    Lazar, M.2
  • 299
    • 33745266146 scopus 로고    scopus 로고
    • Efficacy of rosiglitazone in a genetically defined population with mild-to-moderate Alzheimer’s disease
    • [299] Risner M, Saunders AM, Altman JF, et al. Efficacy of rosiglitazone in a genetically defined population with mild-to-moderate Alzheimer’s disease. Pharmacogenomics J 2006; 6: 246-54.
    • (2006) Pharmacogenomics J , vol.6 , pp. 246-254
    • Risner, M.1    Saunders, A.M.2    Altman, J.F.3
  • 300
    • 50049118173 scopus 로고    scopus 로고
    • Activation of the PPAR/PGC-1alpha pathway prevents a bioenergetic deficit and effectively improves a mitochondrial myopathy phenotype
    • [300] Wenz T, Diaz F, Spiegelman BM, Moraes CT. Activation of the PPAR/PGC-1alpha pathway prevents a bioenergetic deficit and effectively improves a mitochondrial myopathy phenotype. Cell Metab 2008; 8: 249-56.
    • (2008) Cell Metab , vol.8 , pp. 249-256
    • Wenz, T.1    Diaz, F.2    Spiegelman, B.M.3    Moraes, C.T.4
  • 301
    • 84856092782 scopus 로고    scopus 로고
    • Effect of bezafibrate treatment on lateonset mitochondrial myopathy in mice
    • [301] Yatsuga S. Suomalainen A. Effect of bezafibrate treatment on lateonset mitochondrial myopathy in mice. Hum Mol Genet 2012; 21: 526-35.
    • (2012) Hum Mol Genet , vol.21 , pp. 526-535
    • Yatsuga, S.1    Suomalainen, A.2
  • 302
    • 84863011541 scopus 로고    scopus 로고
    • Pharmacological activation of mitochondrial biogenesis exerts widespread beneficial effects in a transgenic mouse model of Huntington’s disease
    • [302] Johri A, Calingasan NY, Hennessey TM, et al. Pharmacological activation of mitochondrial biogenesis exerts widespread beneficial effects in a transgenic mouse model of Huntington’s disease. Hum Mol Genet 2012; 21: 1124-37.
    • (2012) Hum Mol Genet , vol.21 , pp. 1124-1137
    • Johri, A.1    Calingasan, N.Y.2    Hennessey, T.M.3
  • 303
    • 42049114658 scopus 로고    scopus 로고
    • Activation of peroxisome proliferator-activated receptor pathway stimulates the mitochondrial respiratory chain and can correct deficiencies in patients’ cells lacking its components
    • [303] Bastin J, Aubey F, Rötig A, Munnich A, Djouadi F. Activation of peroxisome proliferator-activated receptor pathway stimulates the mitochondrial respiratory chain and can correct deficiencies in patients’ cells lacking its components. J Clin Endocrinol Metab 2008; 93: 1433-41.
    • (2008) J Clin Endocrinol Metab , vol.93 , pp. 1433-1441
    • Bastin, J.1    Aubey, F.2    Rötig, A.3    Munnich, A.4    Djouadi, F.5
  • 304
    • 80054931381 scopus 로고    scopus 로고
    • A metabolic shift induced by a PPAR panagonist markedly reduces the effects of pathogenic mitochondrial tRNA mutations
    • [304] Wenz T, Wang X, Marini M, Moraes CT. A metabolic shift induced by a PPAR panagonist markedly reduces the effects of pathogenic mitochondrial tRNA mutations. J Cell Mol Med 2011; 15: 2317-25.
    • (2011) J Cell Mol Med , vol.15 , pp. 2317-2325
    • Wenz, T.1    Wang, X.2    Marini, M.3    Moraes, C.T.4
  • 305
    • 85047689953 scopus 로고
    • 5-aminoimidazole-4-carboxamide ribonucleoside. A specific method for activating AMP-activating protein kinase in intact cell
    • [305] Corton JM, Gillepsie JG, Hawley SA, Hardie DG. 5-aminoimidazole-4-carboxamide ribonucleoside. A specific method for activating AMP-activating protein kinase in intact cell? Eur J Biochem 1995; 229: 558-65.
    • (1995) Eur J Biochem , vol.229 , pp. 558-565
    • Corton, J.M.1    Gillepsie, J.G.2    Hawley, S.A.3    Hardie, D.G.4
  • 306
    • 0031425839 scopus 로고    scopus 로고
    • AICA riboside increases AMP-activated protein kinase, fatty acid oxidation, and glucose uptake in rat muscle
    • [306] Merrill, GF. Kurth EJ, Hardie DG, Winder WW. AICA riboside increases AMP-activated protein kinase, fatty acid oxidation, and glucose uptake in rat muscle. Am J Physiol 1997; 273: 1107-12.
    • (1997) Am J Physiol , vol.273 , pp. 1107-1112
    • Merrill, G.F.1    Kurth, E.J.2    Hardie, D.G.3    Winder, W.W.4
  • 307
    • 80055050942 scopus 로고    scopus 로고
    • Screening for active small molecules in mitochondrial complex I deficient patient’s fibroblasts, reveal AICAR as the most beneficial compound
    • [307] Golubitzky A, Dan P, Weissman S, Link G, Wikstrom JD, Saada A. Screening for active small molecules in mitochondrial complex I deficient patient’s fibroblasts, reveal AICAR as the most beneficial compound. PLoS One 2011. 6:e26883.
    • (2011) Plos One , vol.6
    • Golubitzky, A.1    Dan, P.2    Weissman, S.3    Link, G.4    Wikstrom, J.D.5    Saada, A.6
  • 308
    • 0034773404 scopus 로고    scopus 로고
    • Role of AMK-activated protein kinase in mechanism of metfomin action
    • [308] Zhou G, Myers R, Li Y, et al. Role of AMK-activated protein kinase in mechanism of metfomin action. J Clin Invest 2001; 108: 1167-74.
    • (2001) J Clin Invest , vol.108 , pp. 1167-1174
    • Zhou, G.1    Myers, R.2    Li, Y.3
  • 309
    • 0034659785 scopus 로고    scopus 로고
    • Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain
    • [309] Owen MR, Doran E, Halestrap AP. Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. Biochem J 2000; 348: 607-14.
    • (2000) Biochem J , vol.348 , pp. 607-614
    • Owen, M.R.1    Doran, E.2    Halestrap, A.P.3
  • 310
    • 12144291275 scopus 로고    scopus 로고
    • Thiazolidinediones, like metformin, inhibit respiratory complex I: A common mechanism contributing to their antidiabetic actions?
    • [310] Brunmair B, Staniek K, Gras F, et al. Thiazolidinediones, like metformin, inhibit respiratory complex I: A common mechanism contributing to their antidiabetic actions? Diabetes 2004; 53: 1052-9.
    • (2004) Diabetes , vol.53 , pp. 1052-1059
    • Brunmair, B.1    Staniek, K.2    Gras, F.3
  • 311
    • 78650931836 scopus 로고    scopus 로고
    • Metformin activates AMP kinase through inhibition of AMP deaminase
    • [311] Ouyang J, Parakhia RA, Ochs RS. Metformin activates AMP kinase through inhibition of AMP deaminase. J Biol Chem 2011; 286: 1-11.
    • (2011) J Biol Chem , vol.286 , pp. 1-11
    • Ouyang, J.1    Parakhia, R.A.2    Ochs, R.S.3
  • 313
    • 70349782312 scopus 로고    scopus 로고
    • Extension of Drosophila life span by RNAi of the mitochondrial respiratory chain
    • [313] Copeland JM, Cho J, Lo T Jr, et al. Extension of Drosophila life span by RNAi of the mitochondrial respiratory chain. Curr Biol 2009; 19: 1591-8.
    • (2009) Curr Biol , vol.19 , pp. 1591-1598
    • Copeland, J.M.1    Cho, J.2    Lo, T.3
  • 314
    • 84869051280 scopus 로고    scopus 로고
    • Mitochondrial disorders as windows into an ancient organelle
    • [314] Vafai SB, Mootha VK. Mitochondrial disorders as windows into an ancient organelle. Nature 2012; 491: 374-83.
    • (2012) Nature , vol.491 , pp. 374-383
    • Vafai, S.B.1    Mootha, V.K.2
  • 315
    • 84869121812 scopus 로고    scopus 로고
    • Exploring the therapeutic space around NAD+
    • [315] Houtkooper RH, Auwerx J. Exploring the therapeutic space around NAD+. J Cell Biol 2012; 199: 205-9.
    • (2012) J Cell Biol , vol.199 , pp. 205-209
    • Houtkooper, R.H.1    Auwerx, J.2
  • 316
    • 70350441907 scopus 로고    scopus 로고
    • The role of sirtuins in the control of metabolic homeostasis
    • [316] Yu J, Auwerx J. The role of sirtuins in the control of metabolic homeostasis. Annu. N.Y. Acad. Sci 2009; Suppl 1, E10-19.
    • (2009) Annu. N.Y. Acad. Sci , Issue.1 , pp. 10-19
    • Yu, J.1    Auwerx, J.2
  • 317
    • 84874709843 scopus 로고    scopus 로고
    • SIRT1 and SIRT2: Emerging targets in neurodegeneration
    • [317] Domnez G, Outeiro TF. SIRT1 and SIRT2: emerging targets in neurodegeneration. EMBO Mol Med 2013; 5: 344-52.
    • (2013) EMBO Mol Med , vol.5 , pp. 344-352
    • Domnez, G.1    Outeiro, T.F.2
  • 318
    • 0037418339 scopus 로고    scopus 로고
    • Dietary restriction normalizes glucose metabolism and BDNF levels, slows disease progression, and increases survival in huntingtin mutant mice
    • [318] Duan W, Guo Z, Jiang H, Ware M, Li XJ, Mattson MP. Dietary restriction normalizes glucose metabolism and BDNF levels, slows disease progression, and increases survival in huntingtin mutant mice. Proc Natl Acad Sci USA 2003; 100: 2911-6.
    • (2003) Proc Natl Acad Sci USA , vol.100 , pp. 2911-2916
    • Duan, W.1    Guo, Z.2    Jiang, H.3    Ware, M.4    Li, X.J.5    Mattson, M.P.6
  • 319
    • 84855563516 scopus 로고    scopus 로고
    • Sirt1 mediates neuroprotection from mutant huntingtin by activation of TORC1 and CREB transcriptional pathway
    • [319] Cohen DE, Cui L, Supinski A, et al. Sirt1 mediates neuroprotection from mutant huntingtin by activation of TORC1 and CREB transcriptional pathway. Nat Med 2012; 18: 159-65.
    • (2012) Nat Med , vol.18 , pp. 159-165
    • Cohen, D.E.1    Cui, L.2    Supinski, A.3
  • 320
    • 84855544817 scopus 로고    scopus 로고
    • Neuroprotective role of Sirt1 in mammalian models of Huntington’s disease through activation of multiple Sirt1 targets
    • [320] Jiang M, Wang J, Fu J, et al. Neuroprotective role of Sirt1 in mammalian models of Huntington’s disease through activation of multiple Sirt1 targets. Nat Med 2012;18: 153-9.
    • (2012) Nat Med , vol.18 , pp. 153-159
    • Jiang, M.1    Wang, J.2    Fu, J.3
  • 321
    • 84855929223 scopus 로고    scopus 로고
    • SIRT1 protects against alpha-synuclein aggregation by activating molecular chaperones
    • [321] Domnez G, Arun A, Chung CY, McLean PJ, Lindquist S, Guarente L. SIRT1 protects against alpha-synuclein aggregation by activating molecular chaperones. J Neurosci 2012; 32: 124-32.
    • (2012) J Neurosci , vol.32 , pp. 124-132
    • Domnez, G.1    Arun, A.2    Chung, C.Y.3    McLean, P.J.4    Lindquist, S.5    Guarente, L.6
  • 322
    • 77955046461 scopus 로고    scopus 로고
    • SIRT1 suppresses beta-amyloid production by activating the alpha-secretase gene ADAM10
    • [322] Domnez G, Wang D, Cohen DE, Guarente L. SIRT1 suppresses beta-amyloid production by activating the alpha-secretase gene ADAM10. Cell 2010; 142: 320-32.
    • (2010) Cell , vol.142 , pp. 320-332
    • Domnez, G.1    Wang, D.2    Cohen, D.E.3    Guarente, L.4
  • 323
    • 0141719702 scopus 로고    scopus 로고
    • Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan
    • [323] Howitz KT, Bitterman KJ, Cohen HY, et al. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 2003; 425: 191-6.
    • (2003) Nature , vol.425 , pp. 191-196
    • Howitz, K.T.1    Bitterman, K.J.2    Cohen, H.Y.3
  • 324
    • 36749087548 scopus 로고    scopus 로고
    • Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes
    • [324] Milne JC, Lambert PD, Schenk S, et al. Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature 2007; 450: 712-6.
    • (2007) Nature , vol.450 , pp. 712-716
    • Milne, J.C.1    Lambert, P.D.2    Schenk, S.3
  • 325
    • 54849425547 scopus 로고    scopus 로고
    • Specific SIRT1 activation mimics low energy levels and protects against diet-induced metabolic disorders by enhancing fat oxidation
    • [325] Feige JN, Lagouge M, Cantó C, et al. Specific SIRT1 activation mimics low energy levels and protects against diet-induced metabolic disorders by enhancing fat oxidation. Cell Metab 2006; 8: 347-58.
    • (2006) Cell Metab , vol.8 , pp. 347-358
    • Feige, J.N.1    Lagouge, M.2    Cantó, C.3
  • 326
    • 42449100009 scopus 로고    scopus 로고
    • Isoflavones promote mitochondrial biogenesis
    • [326] Rasbach KA, Schnellmann RG. Isoflavones promote mitochondrial biogenesis. J Pharmacol Exp Ther 2008; 325: 536-43.
    • (2008) J Pharmacol Exp Ther , vol.325 , pp. 536-543
    • Rasbach, K.A.1    Schnellmann, R.G.2
  • 327
    • 77951049870 scopus 로고    scopus 로고
    • SRT1720 induces mitochondrial biogenesis and rescues mitochondrial function after oxidant injury in renal proximal tubule cells
    • [327] Funk JA, Odejinmi S, Schnellmann RG. SRT1720 induces mitochondrial biogenesis and rescues mitochondrial function after oxidant injury in renal proximal tubule cells. J Pharm Exp Ther 2010; 333: 593-601.
    • (2010) J Pharm Exp Ther , vol.333 , pp. 593-601
    • Funk, J.A.1    Odejinmi, S.2    Schnellmann, R.G.3
  • 328
    • 54849425547 scopus 로고    scopus 로고
    • Specific SIRT1 activation mimics low energy levels and protects against diet-induced metabolic disorders by enhancing fat oxidation
    • [328] Feige JN, Lagouge M, Cantó C, et al. Specific SIRT1 activation mimics low energy levels and protects against diet-induced metabolic disorders by enhancing fat oxidation. Cell Metab 2008; 8: 347-58.
    • (2008) Cell Metab , vol.8 , pp. 347-358
    • Feige, J.N.1    Lagouge, M.2    Cantó, C.3
  • 329
    • 77950246109 scopus 로고    scopus 로고
    • SRT1720, SRT2183, SRT1460, and resveratrol are not direct activators of SIRT1
    • [329] Pacholec M, Bleasdale JE, Chrunyk B, et al. SRT1720, SRT2183, SRT1460, and resveratrol are not direct activators of SIRT1. J Biol Chem 2010; 285: 8340-51.
    • (2010) J Biol Chem , vol.285 , pp. 8340-8351
    • Pacholec, M.1    Bleasdale, J.E.2    Chrunyk, B.3
  • 330
    • 20444431507 scopus 로고    scopus 로고
    • Substrate-specific activation of sirtuins by resveratrol
    • [330] Kaeberlein M, McDonagh T, Heltweg B, et al. Substrate-specific activation of sirtuins by resveratrol. J Biol Chem 2005; 280: 17038-45.
    • (2005) J Biol Chem , vol.280 , pp. 17038-17045
    • Kaeberlein, M.1    McDonagh, T.2    Heltweg, B.3
  • 331
    • 34249846128 scopus 로고    scopus 로고
    • Resveratrol stimulates AMP kinase activity in neurons
    • [331] Dasgupta B, Milbrandt J. Resveratrol stimulates AMP kinase activity in neurons. Proc Natl Acad Sci USA 2007; 104: 7217-22.
    • (2007) Proc Natl Acad Sci USA , vol.104 , pp. 7217-7222
    • Dasgupta, B.1    Milbrandt, J.2
  • 332
    • 33745962138 scopus 로고    scopus 로고
    • Therapeutic potential of resveratrol: The in vivo evidence
    • [332] Baur JA, Sinclair DA. Therapeutic potential of resveratrol: the in vivo evidence. Nat Rev Drug Discov 2006; 5: 493-506.
    • (2006) Nat Rev Drug Discov , vol.5 , pp. 493-506
    • Baur, J.A.1    Sinclair, D.A.2
  • 333
    • 77950348878 scopus 로고    scopus 로고
    • AMP-activated protein kinasedeficient mice are resistant to the metabolic effects of resveratrol
    • [333] Um JH, Park SJ, Kang H, et al. AMP-activated protein kinasedeficient mice are resistant to the metabolic effects of resveratrol. Diabetes 2010; 59: 554-63.
    • (2010) Diabetes , vol.59 , pp. 554-563
    • Um, J.H.1    Park, S.J.2    Kang, H.3
  • 335
    • 83455206803 scopus 로고    scopus 로고
    • Targeting sirtuin 1 to improve metabolism: All you need is NAD+?
    • [335] Cantó C, Auwerx J. Targeting sirtuin 1 to improve metabolism: all you need is NAD+? Pharm. Rev 2012; 64: 166-87.
    • (2012) Pharm. Rev , vol.64 , pp. 166-187
    • Cantó, C.1    Auwerx, J.2
  • 336
    • 33845399894 scopus 로고    scopus 로고
    • Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1α
    • [336] Lagouge M, Argmann C, Gerhart-Hines Z, et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1α. Cell 2006; 127: 1109-22.
    • (2006) Cell , vol.127 , pp. 1109-1122
    • Lagouge, M.1    Argmann, C.2    Gerhart-Hines, Z.3
  • 337
    • 84874925761 scopus 로고    scopus 로고
    • Sirtuin 1-mediated effects of exercise and resveratrol on mitochondrial biogenesis
    • [337] Menzies KJ, Singh K, Saleem A, Hood DA. Sirtuin 1-mediated effects of exercise and resveratrol on mitochondrial biogenesis. J. Biol. Chem 2013; 288: 6968-79.
    • (2013) J. Biol. Chem , vol.288 , pp. 6968-6979
    • Menzies, K.J.1    Singh, K.2    Saleem, A.3    Hood, D.A.4
  • 338
    • 76149140917 scopus 로고    scopus 로고
    • Regulation of OPA1 processing and mitochondrial fusion by m-AAA protease isoenzymes and OMA1
    • [338] Ehses S, Raschke I, Mancuso G, et al. Regulation of OPA1 processing and mitochondrial fusion by m-AAA protease isoenzymes and OMA1. J Cell Biol 2009; 187: 1023-36.
    • (2009) J Cell Biol , vol.187 , pp. 1023-1036
    • Ehses, S.1    Raschke, I.2    Mancuso, G.3
  • 339
    • 76149093590 scopus 로고    scopus 로고
    • Inducible proteolytic inactivation of OPA1 mediated by the OMA1 protease in mammalian cells
    • [339] Head B, Griparic L, Amiri M, Gandre-Babbe S, van der Bliek AM. Inducible proteolytic inactivation of OPA1 mediated by the OMA1 protease in mammalian cells. J Cell Biol 2009; 187: 959-66.
    • (2009) J Cell Biol , vol.187 , pp. 959-966
    • Head, B.1    Griparic, L.2    Amiri, M.3    Gandre-Babbe, S.4    Van Der Bliek, A.M.5
  • 340
    • 79955623510 scopus 로고    scopus 로고
    • During autophagy mitochondria elongate, are spared from degradation and sustain cell viability
    • [340] Gomes LC, Di Benedetto G, Scorrano L. During autophagy mitochondria elongate, are spared from degradation and sustain cell viability. Nat Cell Biol 2011; 13: 589-98.
    • (2011) Nat Cell Biol , vol.13 , pp. 589-598
    • Gomes, L.C.1    Di Benedetto, G.2    Scorrano, L.3
  • 341
    • 84871821848 scopus 로고    scopus 로고
    • The meaning of mitochondrial movement to a neuron’s life
    • [341] Lovas JR, Wang X. The meaning of mitochondrial movement to a neuron’s life. Biochem Biophys Acta 2013; 1833: 184-94.
    • (2013) Biochem Biophys Acta , vol.1833 , pp. 184-194
    • Lovas, J.R.1    Wang, X.2
  • 342


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.