-
2
-
-
10744224439
-
Integrated analysis of protein composition, tissue diversity, and gene regulation in mouse mitochondria
-
[2] Mootha VK, Bunkenborg J, Olsen JV, et al. Integrated analysis of protein composition, tissue diversity, and gene regulation in mouse mitochondria. Cell 2003; 115: 629-40.
-
(2003)
Cell
, vol.115
, pp. 629-640
-
-
Mootha, V.K.1
Bunkenborg, J.2
Olsen, J.V.3
-
3
-
-
46349103594
-
A mitochondrial protein compedium elucidates complex I disease biology
-
[3] Pagliarini DJ, Calvo SE, Chang B, et al. A mitochondrial protein compedium elucidates complex I disease biology. Cell 2008; 134: 112-23.
-
(2008)
Cell
, vol.134
, pp. 112-123
-
-
Pagliarini, D.J.1
Calvo, S.E.2
Chang, B.3
-
4
-
-
77956255442
-
A history of mitochondrial diseases
-
[4] DiMauro S. A history of mitochondrial diseases. J Inherit Metab Dis 2011; 34: 261-76.
-
(2011)
J Inherit Metab Dis
, vol.34
, pp. 261-276
-
-
Dimauro, S.1
-
5
-
-
77955498525
-
Mitochondrial quality control and neurological disease: An emerging connection
-
[5] De Castro IP, Martins ML, Tufi R. Mitochondrial quality control and neurological disease: an emerging connection. Expert Rev Mol Med 2010; 12: e12.
-
(2010)
Expert Rev Mol Med
, vol.12
, pp. 12
-
-
De Castro, I.P.1
Martins, M.L.2
Tufi, R.3
-
6
-
-
84871921370
-
The dynamics of the mitochondrial organelle as a potential therapeutic organelle
-
[6] Stetler RA, Leak R, Gao Y, Chen J. The dynamics of the mitochondrial organelle as a potential therapeutic organelle. J Cereb Blood Flow Metab 2013; 33: 22-32.
-
(2013)
J Cereb Blood Flow Metab
, vol.33
, pp. 22-32
-
-
Stetler, R.A.1
Leak, R.2
Gao, Y.3
Chen, J.4
-
7
-
-
0034784359
-
An energy budget for signaling in the grey matter of the brain
-
[7] Attwell D, Laughlin SB. An energy budget for signaling in the grey matter of the brain. J Cereb Blood Flow Metab 2001; 21: 1133-45.
-
(2001)
J Cereb Blood Flow Metab
, vol.21
, pp. 1133-1145
-
-
Attwell, D.1
Laughlin, S.B.2
-
8
-
-
4143051638
-
Energy metabolism in mammalian brain during development
-
[8] Erecinska M, Cherian S, Silver IA. Energy metabolism in mammalian brain during development. Prog Neurobiol 2004; 73: 397-445.
-
(2004)
Prog Neurobiol
, vol.73
, pp. 397-445
-
-
Erecinska, M.1
Cherian, S.2
Silver, I.A.3
-
9
-
-
0028095807
-
Mitochondrial calcium transport: Physiological and pathological relevance
-
[9] Gunter TE, Gunter KK, Sheu SS, Gavin CE. Mitochondrial calcium transport: physiological and pathological relevance. Am J Physiol 1994; 267: C313-39.
-
(1994)
Am J Physiol
, vol.267
, pp. 39-313
-
-
Gunter, T.E.1
Gunter, K.K.2
Sheu, S.S.3
Gavin, C.E.4
-
10
-
-
0037220750
-
Actin-ATP hydrolysis is a major energy drain for neurons
-
[10] Bernstein BW, Bamburg JR. Actin-ATP hydrolysis is a major energy drain for neurons. J Neurosci 2003; 23: 1-6.
-
(2003)
J Neurosci
, vol.23
, pp. 1-6
-
-
Bernstein, B.W.1
Bamburg, J.R.2
-
11
-
-
23044506102
-
Synaptic mitochondria are critical for mobilization of reserve pool vesicles at Drosophila neuromuscular junctions
-
[11] Verstreken P, Ly CV, Venken KJ, Koh TW, Zhou Y, Bellen HJ. Synaptic mitochondria are critical for mobilization of reserve pool vesicles at Drosophila neuromuscular junctions. Neuron 2005; 47: 365-78.
-
(2005)
Neuron
, vol.47
, pp. 365-378
-
-
Verstreken, P.1
Ly, C.V.2
Venken, K.J.3
Koh, T.W.4
Zhou, Y.5
Bellen, H.J.6
-
12
-
-
33847043933
-
Mitochondria and neuronal activity
-
[12] Kann O, Kovács R. Mitochondria and neuronal activity. Am J Physiol Cell Physiol 2007; 292: C641-57.
-
(2007)
Am J Physiol Cell Physiol
, vol.292
, pp. 57-641
-
-
Kann, O.1
Kovács, R.2
-
13
-
-
38749103445
-
The function of mitochondria in presynaptic development at the neuromuscular junction
-
[13] Lee CW, Peng HB. The function of mitochondria in presynaptic development at the neuromuscular junction. Mol Biol Cell 2008; 19: 150-8.
-
(2008)
Mol Biol Cell
, vol.19
, pp. 150-158
-
-
Lee, C.W.1
Peng, H.B.2
-
14
-
-
27644561355
-
Neuroenergetics and the kinetic design of excitatory synapses
-
[14] Attwell D, Gibb A. Neuroenergetics and the kinetic design of excitatory synapses. Nat Rev Neurosci 2005; 6:841-9.
-
(2005)
Nat Rev Neurosci
, vol.6
, pp. 841-849
-
-
Attwell, D.1
Gibb, A.2
-
15
-
-
36248972284
-
Timing of potential and metabolic brain energy
-
[15] Korf J, Gramsbergen JB. Timing of potential and metabolic brain energy. J Neurochem 2007; 103: 1697-708.
-
(2007)
J Neurochem
, vol.103
, pp. 1697-1708
-
-
Korf, J.1
Gramsbergen, J.B.2
-
16
-
-
75149118852
-
Disease and the brain’s dark energy
-
[16] Zhang D, Raichle ME. Disease and the brain’s dark energy. Nat Rev Neurol 2010; 6: 15-28.
-
(2010)
Nat Rev Neurol
, vol.6
, pp. 15-28
-
-
Zhang, D.1
Raichle, M.E.2
-
17
-
-
0034025298
-
The role of mitochondria in presynaptic calcium handling at a ribbon synapse
-
[17] Zenisek D, Matthews G. The role of mitochondria in presynaptic calcium handling at a ribbon synapse. Neuron 2000; 25: 229-37.
-
(2000)
Neuron
, vol.25
, pp. 229-237
-
-
Zenisek, D.1
Matthews, G.2
-
18
-
-
1642540210
-
The mitochondrial calcium uniporter is a highly selective ion channel
-
[18] Kirichok Y, Krapivinsky G, Clapman DE. The mitochondrial calcium uniporter is a highly selective ion channel. Nature 2004; 427: 360-4.
-
(2004)
Nature
, vol.427
, pp. 360-364
-
-
Kirichok, Y.1
Krapivinsky, G.2
Clapman, D.E.3
-
19
-
-
80051946060
-
Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter
-
[19] Baughman JM, Perocchi F, Girgis HS, et al. Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter. Nature 2011; 476: 341-5.
-
(2011)
Nature
, vol.476
, pp. 341-345
-
-
Baughman, J.M.1
Perocchi, F.2
Girgis, H.S.3
-
20
-
-
80051936634
-
A fortykilodalton protein of the inner membrane is the mitochondrial calcium uniporter
-
[20] De Stefani D, Raffaello A, Teardo E, Szabo I, Rizzuto R. A fortykilodalton protein of the inner membrane is the mitochondrial calcium uniporter. Nature 2011; 476: 336-40.
-
(2011)
Nature
, vol.476
, pp. 336-340
-
-
De Stefani, D.1
Raffaello, A.2
Teardo, E.3
Szabo, I.4
Rizzuto, R.5
-
22
-
-
80053056620
-
Mitochondrial matrix Ca2+ as an intrinsic signal regulating mitochondrial motility in axons
-
[22] Chang K, Niescier RF, Min K-T. Mitochondrial matrix Ca2+ as an intrinsic signal regulating mitochondrial motility in axons. Proc Natl Acad Sci USA 2011; 108: 15456-61.
-
(2011)
Proc Natl Acad Sci USA
, vol.108
, pp. 15456-15461
-
-
Chang, K.1
Niescier, R.F.2
Min, K.-T.3
-
23
-
-
84856056846
-
Mitochondrial transport in neurons: Impact on synaptic homeostasis and neurodegeneration
-
[23] Sheng Z-H, Cai Q. Mitochondrial transport in neurons: impact on synaptic homeostasis and neurodegeneration. Nat Rev Neurosci 2012; 13: 77-93.
-
(2012)
Nat Rev Neurosci
, vol.13
, pp. 77-93
-
-
Sheng, Z.-H.1
Cai, Q.2
-
25
-
-
77956319634
-
Calcium-dependent mitochondrial function and dysfunction in neurons
-
[25] Pivovarova NB, Andrews SB. Calcium-dependent mitochondrial function and dysfunction in neurons. FEBS J 2010; 277: 3622-36.
-
(2010)
FEBS J
, vol.277
, pp. 3622-3636
-
-
Pivovarova, N.B.1
Rews, S.B.2
-
26
-
-
30544452263
-
The axonal transport of mitochondria
-
[26] Hollenbeck PJ, Saxton WM. The axonal transport of mitochondria. J Cell Sci 2005; 118: 5411-9.
-
(2005)
J Cell Sci
, vol.118
, pp. 5411-5419
-
-
Hollenbeck, P.J.1
Saxton, W.M.2
-
27
-
-
0027210387
-
The regulation of bidirectional mitochondrial transport is coordinated with axonal outgrowth
-
[27] Morris RL, Hollenbeck PJ. The regulation of bidirectional mitochondrial transport is coordinated with axonal outgrowth. J Cell Sci 1993; 104: 917-27.
-
(1993)
J Cell Sci
, vol.104
, pp. 917-927
-
-
Morris, R.L.1
Hollenbeck, P.J.2
-
28
-
-
0141792787
-
Response of mitochondrial traffic to axon determination and differential branch growth
-
[28] Ruthel G, Hollenbeck PJ. Response of mitochondrial traffic to axon determination and differential branch growth. J Neurosci 2003; 23: 8618-24.
-
(2003)
J Neurosci
, vol.23
, pp. 8618-8624
-
-
Ruthel, G.1
Hollenbeck, P.J.2
-
29
-
-
3242875557
-
Axonal mitochondrial transport and potential are correlated
-
[29] Miller KE, Sheetz MP. Axonal mitochondrial transport and potential are correlated. J Cell Sci 2004; 117: 2791-804.
-
(2004)
J Cell Sci
, vol.117
, pp. 2791-2804
-
-
Miller, K.E.1
Sheetz, M.P.2
-
30
-
-
51149106133
-
Mitochondrial membrane potential in axons increases with local nerve growth factor or semaphoring signaling
-
[30] Verberg J, Hollenbeck PJ. Mitochondrial membrane potential in axons increases with local nerve growth factor or semaphoring signaling. J Neurosci 2008; 28: 8306-15.
-
(2008)
J Neurosci
, vol.28
, pp. 8306-8315
-
-
Verberg, J.1
Hollenbeck, P.J.2
-
31
-
-
70349745946
-
The neurogenic basic helix-loop-helix transcription factor NeuroD6 concomitantly increases mitochondrial mass and regulates cytoskeletal organization in the early stages of neuronal differentiation
-
[31] Baxter KK, Uittenbogaard M, Yoon J, Chiaramello A. The neurogenic basic helix-loop-helix transcription factor NeuroD6 concomitantly increases mitochondrial mass and regulates cytoskeletal organization in the early stages of neuronal differentiation. ASN Neuro 2009; 1: e00016.
-
(2009)
ASN Neuro
, vol.1
-
-
Baxter, K.K.1
Uittenbogaard, M.2
Yoon, J.3
Chiaramello, A.4
-
32
-
-
0027384710
-
Axoplasmic organelles at nodes of Ranvier. I. Occurrence and distribution in large myelinated spinal root axons of the adult cat
-
[32] Berthold CH, Fabricius C, Rydmark M, Andersen B. Axoplasmic organelles at nodes of Ranvier. I. Occurrence and distribution in large myelinated spinal root axons of the adult cat. J Neurocytol 1993; 22: 925-40.
-
(1993)
J Neurocytol
, vol.22
, pp. 925-940
-
-
Berthold, C.H.1
Fabricius, C.2
Rydmark, M.3
Ersen, B.4
-
33
-
-
0031822283
-
Focal accumulation of intra-axonal mitochondria in demyelination of the cat optic nerve
-
[33] Mutsaers SE, Carroll WM. Focal accumulation of intra-axonal mitochondria in demyelination of the cat optic nerve. Acta Neuropathol 1998; 96: 139-43.
-
(1998)
Acta Neuropathol
, vol.96
, pp. 139-143
-
-
Mutsaers, S.E.1
Carroll, W.M.2
-
34
-
-
0036275652
-
The distribution of mitochondrial activity in relation to optic nerve structure
-
[34] Bristow EA, Griffiths PG, Andrews RM, Johnson MA, Turnbull DM. The distribution of mitochondrial activity in relation to optic nerve structure. Arch Ophtalmol 2002; 120: 791-6.
-
(2002)
Arch Ophtalmol
, vol.120
, pp. 791-796
-
-
Bristow, E.A.1
Griffiths, P.G.2
Rews, R.M.3
Johnson, M.A.4
Turnbull, D.M.5
-
35
-
-
0014690248
-
Apparent turnover of mitochondrial deoxyribonucleic acid and mitochondrial phospholipids in the tissues of the rat
-
[35] Gross NJ, Getz GS, Rabinowitz M. Apparent turnover of mitochondrial deoxyribonucleic acid and mitochondrial phospholipids in the tissues of the rat. J Biol Chem 1969; 244:1552-62.
-
(1969)
J Biol Chem
, vol.244
, pp. 1552-1562
-
-
Gross, N.J.1
Getz, G.S.2
Rabinowitz, M.3
-
36
-
-
0015239454
-
The turnover of mitochondria in a variety of tissues of young adult and aged rats
-
[36] Menzies RA, Gold PH. The turnover of mitochondria in a variety of tissues of young adult and aged rats. J Biol Chem 1971; 246: 2425-9.
-
(1971)
J Biol Chem
, vol.246
, pp. 2425-2429
-
-
Menzies, R.A.1
Gold, P.H.2
-
37
-
-
0031990207
-
Synthesis studied autoradiographically in various cell types in vivo
-
[37] Korr H, Kurz C, Seidler TO, Sommer D, Schmitz C. Mitochondrial DNA synthesis studied autoradiographically in various cell types in vivo. Braz J Med Biol Res 1998; 31:289-98.
-
(1998)
Braz J Med Biol Res
, vol.31
, pp. 289-298
-
-
Korr, H.1
Kurz, C.2
Seidler, T.O.3
Sommer, D.4
Schmitz, C.5
Mitochondrial, D.6
-
38
-
-
56849084137
-
Mitochondrial turnover in liver is fast in vivo and is accelerated by dietary restriction: Application of a simple dynamic model
-
[38] Miwa S, Lawless C, von Zglinicki T. Mitochondrial turnover in liver is fast in vivo and is accelerated by dietary restriction: application of a simple dynamic model. Aging Cell 2008; 7: 920-23.
-
(2008)
Aging Cell
, vol.7
, pp. 920-923
-
-
Miwa, S.1
Lawless, C.2
Von Zglinicki, T.3
-
39
-
-
55949126922
-
Modeling mitochondrial dynamics during in vivo axonal elongation
-
[39] O’Toole M, Latham R, Baqri RM, Miller KE. Modeling mitochondrial dynamics during in vivo axonal elongation. J Theor Biol 2008; 255: 369-77.
-
(2008)
J Theor Biol
, vol.255
, pp. 369-377
-
-
O’toole, M.1
Latham, R.2
Baqri, R.M.3
Miller, K.E.4
-
41
-
-
33846272138
-
Role of cardiolipin alterations in mitochondrial dysfunction and disease
-
[41] Chicco AJ, Sparagna GC. Role of cardiolipin alterations in mitochondrial dysfunction and disease. Am J Physiol Cell Physiol 2007; 292: C33-44.
-
(2007)
Am J Physiol Cell Physiol
, vol.292
, pp. 33-44
-
-
Chicco, A.J.1
Sparagna, G.C.2
-
42
-
-
70349558836
-
The role of cardiolipin in the structural organization of mitochondrial membranes
-
[42] Schlame M, Ren M. The role of cardiolipin in the structural organization of mitochondrial membranes. Biochem Biophys Acta 2009; 1788: 2080-83.
-
(2009)
Biochem Biophys Acta
, vol.1788
, pp. 2080-2083
-
-
Schlame, M.1
Ren, M.2
-
43
-
-
51349163907
-
Mitochondrial biogenesis in the axons of vertebrate peripheral neurons
-
[43] Amiri M, Hollenbeck JP. Mitochondrial biogenesis in the axons of vertebrate peripheral neurons. Dev Neurobiol 2008; 68: 1348-61.
-
(2008)
Dev Neurobiol
, vol.68
, pp. 1348-1361
-
-
Amiri, M.1
Hollenbeck, J.P.2
-
44
-
-
34250204271
-
The machines that divide and fuse mitochondria
-
[44] Hoppins S, Lackner L, Nunnari J. The machines that divide and fuse mitochondria. Annu Rev Biochem 2007; 76: 751-80.
-
(2007)
Annu Rev Biochem
, vol.76
, pp. 751-780
-
-
Hoppins, S.1
Lackner, L.2
Nunnari, J.3
-
45
-
-
84869030015
-
Fusion and fission: Interlinked processes critical for mitochondrial health
-
[45] Chan DC. Fusion and fission: interlinked processes critical for mitochondrial health. Annu Rev Genet 2012; 46: 265-87.
-
(2012)
Annu Rev Genet
, vol.46
, pp. 265-287
-
-
Chan, D.C.1
-
46
-
-
84865544952
-
Mitochondrial fission, fusion, and stress
-
[46] Youle RJ, van der Bliek AM. Mitochondrial fission, fusion, and stress. Science 2012; 337: 1062-5.
-
(2012)
Science
, vol.337
, pp. 1062-1065
-
-
Youle, R.J.1
Van Der Bliek, A.M.2
-
47
-
-
84871820635
-
Mechanistic perspective of mitochondrial fusion: Tubulation vs. Fragmentation
-
[47] Escobar-Henriques M, Anton F. Mechanistic perspective of mitochondrial fusion: Tubulation vs. fragmentation. Biochem Biophys Acta 2013; 1833: 162-75.
-
(2013)
Biochem Biophys Acta
, vol.1833
, pp. 162-175
-
-
Escobar-Henriques, M.1
Anton, F.2
-
48
-
-
84871739055
-
The dynamin GTPase OPA1: More than mitochondria
-
[48] Belenguer P, Pellegrini L. The dynamin GTPase OPA1: More than mitochondria. Biochem Biophys Acta 2013; 1833: 176-83.
-
(2013)
Biochem Biophys Acta
, vol.1833
, pp. 176-183
-
-
Belenguer, P.1
Pellegrini, L.2
-
49
-
-
84871805845
-
Mitochondrial dynamics and physiology
-
[49] McBride H, Scorrano L. Mitochondrial dynamics and physiology. Biochem Byiophys Acta 2013; 1833: 148-9.
-
(2013)
Biochem Byiophys Acta
, vol.1833
, pp. 148-149
-
-
McBride, H.1
Scorrano, L.2
-
50
-
-
0037455575
-
Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fu sion and are essential for embryonic development
-
[50] Chen H, Detmer SA, Ewald AJ, Griffin EE, Fraser SE, Chan DC. Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fu sion and are essential for embryonic development. J Cell Biol 2003; 160: 189-200.
-
(2003)
J Cell Biol
, vol.160
, pp. 189-200
-
-
Chen, H.1
Detmer, S.A.2
Ewald, A.J.3
Griffin, E.E.4
Fraser, S.E.5
Chan, D.C.6
-
51
-
-
34547601410
-
Mitochondrial fusion protects against neurodegeneration in the cerebellum
-
[51] Chen H, McCaffery M, Chan DC. Mitochondrial fusion protects against neurodegeneration in the cerebellum. Cell 2007; 130: 548-62.
-
(2007)
Cell
, vol.130
, pp. 548-562
-
-
Chen, H.1
McCaffery, M.2
Chan, D.C.3
-
52
-
-
20244381365
-
Nuclear gene OPA1, encoding a mitochondrial dynamin-related protein, is mutated in dominant optic atrophy
-
[52] Delettre C, Lenaers G, Griffoin JM, et al. Nuclear gene OPA1, encoding a mitochondrial dynamin-related protein, is mutated in dominant optic atrophy. Nat Genet 2000; 26: 207-10.
-
(2000)
Nat Genet
, vol.26
, pp. 207-210
-
-
Delettre, C.1
Lenaers, G.2
Griffoin, J.M.3
-
53
-
-
0033772264
-
OPA1, encoding a dynamin-related GTPase, is mutated in autosomal dominant optic atrophy linked to chromosome 3q28
-
[53] Alexander C, Votruba M, Pesch UE, et al. OPA1, encoding a dynamin-related GTPase, is mutated in autosomal dominant optic atrophy linked to chromosome 3q28. Nat Genet 2000; 26: 211-15.
-
(2000)
Nat Genet
, vol.26
, pp. 211-215
-
-
Alexander, C.1
Votruba, M.2
Pesch, U.E.3
-
54
-
-
2442589922
-
Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot-Marie-Tooth neuropathy type 2A
-
[54] Züchner S, Mersiyanova LV, Muglia M, et al. Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot-Marie-Tooth neuropathy type 2A. Nat Genet 2004; 36: 449-51.
-
(2004)
Nat Genet
, vol.36
, pp. 449-451
-
-
Züchner, S.1
Mersiyanova, L.V.2
Muglia, M.3
-
55
-
-
20044385920
-
Axonopathy and transport deficits early in the pathogenesis of Alzheimer’s disease
-
[55] Stokin GB, Lillo C, Falzone TL, et al. Axonopathy and transport deficits early in the pathogenesis of Alzheimer’s disease. Science 2005; 307: 1282-8.
-
(2005)
Science
, vol.307
, pp. 1282-1288
-
-
Stokin, G.B.1
Lillo, C.2
Falzone, T.L.3
-
56
-
-
33846224191
-
Altered axonal mitochondrial transport in the pathogenesis of Charcot-Marie-Tooth disease from mitofusin 2 mutations
-
[56] Baloh RH, Schmidt RE, Pestronk A, Milbrandt J. Altered axonal mitochondrial transport in the pathogenesis of Charcot-Marie-Tooth disease from mitofusin 2 mutations. J Neurosci 2007; 27: 422-30.
-
(2007)
J Neurosci
, vol.27
, pp. 422-430
-
-
Baloh, R.H.1
Schmidt, R.E.2
Pestronk, A.3
Milbrandt, J.4
-
57
-
-
84871802627
-
Recent advances into the understanding of mitochondrial fission
-
[57] Elgass K, Pakay J, Ryan MT, Palmer CS. Recent advances into the understanding of mitochondrial fission. Biochem Biophys Acta 2013; 1833: 150-61.
-
(2013)
Biochem Biophys Acta
, vol.1833
, pp. 150-161
-
-
Elgass, K.1
Pakay, J.2
Ryan, M.T.3
Palmer, C.S.4
-
58
-
-
10944269186
-
The importance of dendritic mitochondria in the morphogenesis and plasticity of spines and synapses
-
[58] Li Z, Okamoto K, Hayashi Y, Sheng M. The importance of dendritic mitochondria in the morphogenesis and plasticity of spines and synapses. Cell 2004; 119: 873-87.
-
(2004)
Cell
, vol.119
, pp. 873-887
-
-
Li, Z.1
Okamoto, K.2
Hayashi, Y.3
Sheng, M.4
-
59
-
-
23044506102
-
Synaptic mitochondria are critical for mobilization of reserve pool vesicles at Drosophila neuromuscular junctions
-
[59] Verstreken P, Ly CV, Venken KJ, Koh TW, Zhou Y, Bellen HJ. Synaptic mitochondria are critical for mobilization of reserve pool vesicles at Drosophila neuromuscular junctions. Neuron 2005; 4: 365-78.
-
(2005)
Neuron
, vol.4
, pp. 365-378
-
-
Verstreken, P.1
Ly, C.V.2
Venken, K.J.3
Koh, T.W.4
Zhou, Y.5
Bellen, H.J.6
-
61
-
-
77951096150
-
Mitochondrial dynamics-fusion, fission, movement, and mitophagy-in neurodegenerative diseases
-
[61] Chen H, Chan DC. Mitochondrial dynamics-fusion, fission, movement, and mitophagy-in neurodegenerative diseases. Hum Mol Genet 2009; 18: 169-76.
-
(2009)
Hum Mol Genet
, vol.18
, pp. 169-176
-
-
Chen, H.1
Chan, D.C.2
-
62
-
-
77957358299
-
Mitochondrial dynamics in cell death and neurodegeneration
-
[62] Cho DH, Nakamura T, Lipton SA. Mitochondrial dynamics in cell death and neurodegeneration. Cell Mol Life Sci 2010; 67: 3435-47.
-
(2010)
Cell Mol Life Sci
, vol.67
, pp. 3435-3447
-
-
Cho, D.H.1
Nakamura, T.2
Lipton, S.A.3
-
63
-
-
84858794256
-
Neurodegeneration: Trouble in the cell’s powerhouse
-
[63] Narendra DP, Youle RJ. Neurodegeneration: Trouble in the cell’s powerhouse. Nature 2012; 483: 418-9.
-
(2012)
Nature
, vol.483
, pp. 418-419
-
-
Narendra, D.P.1
Youle, R.J.2
-
64
-
-
84858791998
-
Mitochondrial quality control: A matter of life and death for neurons
-
[64] Rugarli EI, Langer T. Mitochondrial quality control: a matter of life and death for neurons. EMBO J 2012; 31: 1336-49.
-
(2012)
EMBO J
, vol.31
, pp. 1336-1349
-
-
Rugarli, E.I.1
Langer, T.2
-
65
-
-
84871005673
-
The pathways of mitophagy for quality control and clearance of mitochondria
-
[65] Ashrafi G, Schwarz TL. The pathways of mitophagy for quality control and clearance of mitochondria. Cell Death Diff 2013; 20: 31-42.
-
(2013)
Cell Death Diff
, vol.20
, pp. 31-42
-
-
Ashrafi, G.1
Schwarz, T.L.2
-
67
-
-
0013832794
-
Lysosomes in the rate sciatic nerve following crush
-
[67] Holtzman E, Novikoff AB. Lysosomes in the rate sciatic nerve following crush. J Cell Biol 1965; 27: 651-69.
-
(1965)
J Cell Biol
, vol.27
, pp. 651-669
-
-
Holtzman, E.1
Novikoff, A.B.2
-
68
-
-
84858701257
-
Spatial Parkin translocation and degradation of damaged mitochondria via mitophagy in live cortical neurons
-
[68] Cai Q, Zakaria HM, Simone A, Sheng ZH. Spatial Parkin translocation and degradation of damaged mitochondria via mitophagy in live cortical neurons. Curr Biol 2012; 22: 545-52.
-
(2012)
Curr Biol
, vol.22
, pp. 545-552
-
-
Cai, Q.1
Zakaria, H.M.2
Simone, A.3
Sheng, Z.H.4
-
69
-
-
84857858536
-
Autophagosomes initiate distally and mature during transport toward the cell soma in primary neurons
-
[69] Maday S, Wallace KE, Holzbaur EL. Autophagosomes initiate distally and mature during transport toward the cell soma in primary neurons. J Cell Biol 2012; 196: 407-11.
-
(2012)
J Cell Biol
, vol.196
, pp. 407-411
-
-
Maday, S.1
Wallace, K.E.2
Holzbaur, E.L.3
-
70
-
-
84862589643
-
Autophagosome assembly and cargo capture in the distal axon
-
[70] Maday S, Holzbaur EL. Autophagosome assembly and cargo capture in the distal axon. Autophagy 2012; 8: 858-60.
-
(2012)
Autophagy
, vol.8
, pp. 858-860
-
-
Maday, S.1
Holzbaur, E.L.2
-
71
-
-
84861204926
-
PINK1-and Parkin-mediated mitophagy at a glance
-
[71] Jin SM, Youle RJ. PINK1-and Parkin-mediated mitophagy at a glance. J Cell Sci 2012; 125: 795-9.
-
(2012)
J Cell Sci
, vol.125
, pp. 795-799
-
-
Jin, S.M.1
Youle, R.J.2
-
72
-
-
81055140895
-
PINK1 and Parkin target Miro for phosphorylation and degradation to arrest mitochondrial motility
-
[72] Wang X, Winter D, Ashrafi G, et al. PINK1 and Parkin target Miro for phosphorylation and degradation to arrest mitochondrial motility. Cell 2011;147: 893-906.
-
(2011)
Cell
, vol.147
, pp. 893-906
-
-
Wang, X.1
Winter, D.2
Ashrafi, G.3
-
73
-
-
81055129611
-
PINK1 and Parkin flag Miro to direct mitochondrial traffic
-
[73] Kane LA, Youle RJ. PINK1 and Parkin flag Miro to direct mitochondrial traffic. Cell 2011:147, 721-3.
-
(2011)
Cell
, vol.147
, pp. 721-723
-
-
Kane, L.A.1
Youle, R.J.2
-
74
-
-
78649463381
-
Mitofusin 1 and mitofusin 2 are ubiquitinated in a PIK1/parkindependent manner upon induction of mitophagy
-
[74] Gegg ME, Cooper JM, Chau KY, Schapira AH, Taanman JW. Mitofusin 1 and mitofusin 2 are ubiquitinated in a PIK1/parkindependent manner upon induction of mitophagy. Hum Mol Genet 2010; 19: 4861-70.
-
(2010)
Hum Mol Genet
, vol.19
, pp. 4861-4870
-
-
Gegg, M.E.1
Cooper, J.M.2
Chau, K.Y.3
Schapira, A.H.4
Taanman, J.W.5
-
75
-
-
79960493052
-
Parkin promotes the ubiquitination and degradation of the mitochondrial fusion factor mitofusin 1
-
[75] Glauser L, Sonnay S, Stafa K, Moore DJ. Parkin promotes the ubiquitination and degradation of the mitochondrial fusion factor mitofusin 1. J Neurochem 2011; 118: 636-45.
-
(2011)
J Neurochem
, vol.118
, pp. 636-645
-
-
Glauser, L.1
Sonnay, S.2
Stafa, K.3
Moore, D.J.4
-
76
-
-
84876296881
-
Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization
-
[76] Sarraf SA, Raman M, Guarani-Pereira V, et al. Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization. Nature 2013; 496: 372-6.
-
(2013)
Nature
, vol.496
, pp. 372-376
-
-
Sarraf, S.A.1
Raman, M.2
Guarani-Pereira, V.3
-
77
-
-
0032499264
-
Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism
-
[77] Kitada T, Asakawa S, Hattori N, et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 1998; 392: 605-8.
-
(1998)
Nature
, vol.392
, pp. 605-608
-
-
Kitada, T.1
Asakawa, S.2
Hattori, N.3
-
78
-
-
2442668926
-
Hereditary earlyonset Parkinson’s disease caused by mutations in PINK1
-
[78] Valente EM, Abou-Sleiman PM, Caputo V, et al. Hereditary earlyonset Parkinson’s disease caused by mutations in PINK1. Science 2004; 304: 1158-60.
-
(2004)
Science
, vol.304
, pp. 1158-1160
-
-
Valente, E.M.1
Abou-Sleiman, P.M.2
Caputo, V.3
-
79
-
-
26444515364
-
Autophagy and its possible roles in nervous system diseases, damage and repair
-
[79] Rubinsztein DC, DiFiglia M, Hintz N, et al. Autophagy and its possible roles in nervous system diseases, damage and repair. Autophagy 2005; 1: 11-22.
-
(2005)
Autophagy
, vol.1
, pp. 11-22
-
-
Rubinsztein, D.C.1
Difiglia, M.2
Hintz, N.3
-
81
-
-
80855139395
-
Mitochondrial pathology in Parkinson’s disease
-
[81] Schapira AHV. Mitochondrial pathology in Parkinson’s disease. Mount Sin J Med 2011; 78: 872-81.
-
(2011)
Mount Sin J Med
, vol.78
, pp. 872-881
-
-
Schapira, A.1
-
82
-
-
79955945927
-
Mitochondrial autophagy in neural function, neurodegenerative disease, neural cell death, and aging
-
[82] Battevi Y, La Spada AR. Mitochondrial autophagy in neural function, neurodegenerative disease, neural cell death, and aging. Neurobiol Dis 2011; 43: 46-51.
-
(2011)
Neurobiol Dis
, vol.43
, pp. 46-51
-
-
Battevi, Y.1
La Spada, A.R.2
-
83
-
-
42049114034
-
Transcriptional paradigms in mammalian mitochondrial biogenesis and function
-
[83] Scarpulla RC. Transcriptional paradigms in mammalian mitochondrial biogenesis and function. Physiol Rev 2008; 88: 611-38.
-
(2008)
Physiol Rev
, vol.88
, pp. 611-638
-
-
Scarpulla, R.C.1
-
84
-
-
71849092123
-
Regulation of neuronal mitochondrial biogenesis and relevance to brain health
-
[84] Onyango IG, Lu J, Rodova M, Lezi E, Crafter AB, Swerdlow RH. Regulation of neuronal mitochondrial biogenesis and relevance to brain health. Biochem Biophys Acta 2010; 1802: 228-34.
-
(2010)
Biochem Biophys Acta
, vol.1802
, pp. 228-234
-
-
Onyango, I.G.1
Lu, J.2
Rodova, M.3
Lezi, E.4
Crafter, A.B.5
Swerdlow, R.H.6
-
85
-
-
35448960851
-
Functions and dysfunctions of mitochondrial dynamics
-
[85] Detmer SA, Chan DC. Functions and dysfunctions of mitochondrial dynamics. Nat Rev Mol Cell Biol 2007; 8: 870-9.
-
(2007)
Nat Rev Mol Cell Biol
, vol.8
, pp. 870-879
-
-
Detmer, S.A.1
Chan, D.C.2
-
86
-
-
23644433329
-
The mitochondrial genome in human adaptive radiation and disease: On the road to therapeutics and performance enhancement
-
[86] Wallace DC. The mitochondrial genome in human adaptive radiation and disease: on the road to therapeutics and performance enhancement. Gene 2005; 354: 169-80.
-
(2005)
Gene
, vol.354
, pp. 169-180
-
-
Wallace, D.C.1
-
87
-
-
0029076820
-
Elimination of paternal mitochondrial DNA in intraspecific crosses during early mouse embryogenesis
-
[87] Kaneda H, Hayashi J, Takahama S, Taya C, Lindahl KF, Yonekawa H. Elimination of paternal mitochondrial DNA in intraspecific crosses during early mouse embryogenesis. Proc Natl Acad Sci USA 1995; 92: 4542-6.
-
(1995)
Proc Natl Acad Sci USA
, vol.92
, pp. 4542-4546
-
-
Kaneda, H.1
Hayashi, J.2
Takahama, S.3
Taya, C.4
Lindahl, K.F.5
Yonekawa, H.6
-
88
-
-
0033646646
-
Mitochondrial DNA segregation in the developing embryo
-
[88] Shoubridge EA. Mitochondrial DNA segregation in the developing embryo. Hum Reprod 2000; 15: 229-34.
-
(2000)
Hum Reprod
, vol.15
, pp. 229-234
-
-
Shoubridge, E.A.1
-
89
-
-
33644674439
-
The organization and inheritance of the mitochondrial genome
-
[89] Chen XJ, Butow RA. The organization and inheritance of the mitochondrial genome. Nat Rev Genet 2005; 6: 815-25.
-
(2005)
Nat Rev Genet
, vol.6
, pp. 815-825
-
-
Chen, X.J.1
Butow, R.A.2
-
90
-
-
77950573964
-
Functional organization of mammalian mitochondrial DNA in nucleoids: History, recent developments, and future challenges
-
[90] Spelbrink JN. Functional organization of mammalian mitochondrial DNA in nucleoids: history, recent developments, and future challenges. IUBMB Life 2010; 62: 19-32.
-
(2010)
IUBMB Life
, vol.62
, pp. 19-32
-
-
Spelbrink, J.N.1
-
92
-
-
3242705680
-
The functional organization of mitochondrial genomes in human cells
-
[92] Iborra F, Kimura H, Cook P. The functional organization of mitochondrial genomes in human cells. BMC Biol 2004; 2: 9.
-
(2004)
BMC Biol
, vol.2
, pp. 9
-
-
Iborra, F.1
Kimura, H.2
Cook, P.3
-
93
-
-
33748746678
-
Human mitochondrial DNA nucleoids are linked to protein folding machinery and metabolic enzymes at the mitochondrial inner membrane
-
[93] Wang Y, Bogenhagen DF. Human mitochondrial DNA nucleoids are linked to protein folding machinery and metabolic enzymes at the mitochondrial inner membrane. J Bio Chem 2006; 281: 25791-802.
-
(2006)
J Bio Chem
, vol.281
, pp. 25791-25802
-
-
Wang, Y.1
Bogenhagen, D.F.2
-
94
-
-
46249106487
-
Mitochondrial nucleoids maintain genetic autonomy but allow for functional complementation
-
[94] Gilkerson RW, Schon EA, Hernandez E, Davidson MM. Mitochondrial nucleoids maintain genetic autonomy but allow for functional complementation. J Cell Biol 2008; 181: 1117-28.
-
(2008)
J Cell Biol
, vol.181
, pp. 1117-1128
-
-
Gilkerson, R.W.1
Schon, E.A.2
Hernandez, E.3
Davidson, M.M.4
-
95
-
-
0038709292
-
Composition and dynamics of human mitochondrial nucleoids
-
[95] Garrido N, Griparic L, Jokitalo E, Wartiovaara J, van der Bliek AM, Spelbrink JN. Composition and dynamics of human mitochondrial nucleoids. Mol Biol Cell 2003; 14: 1583-96.
-
(2003)
Mol Biol Cell
, vol.14
, pp. 1583-1596
-
-
Garrido, N.1
Griparic, L.2
Jokitalo, E.3
Wartiovaara, J.4
Van Der Bliek, A.M.5
Spelbrink, J.N.6
-
96
-
-
41249098355
-
The layered structure of human mitochondrial DNA nucleoids
-
[96] Bogenhagen DF, Rousseau D, Burke S. The layered structure of human mitochondrial DNA nucleoids. J Biol Chem 2008; 283: 3665-75.
-
(2008)
J Biol Chem
, vol.283
, pp. 3665-3675
-
-
Bogenhagen, D.F.1
Rousseau, D.2
Burke, S.3
-
97
-
-
77954158731
-
Copy number has detrimental effects in mice
-
[97] Ylikallio E, Tyynismaa H, Tsutsui H, Ide T, Suomalainen A. High mitochondrial DNA copy number has detrimental effects in mice. Hum Mol Genet 2010; 19: 2695-705.
-
(2010)
Hum Mol Genet
, vol.19
, pp. 2695-2705
-
-
Ylikallio, E.1
Tyynismaa, H.2
Tsutsui, H.3
Ide, T.4
Suomalainen, A.5
High Mitochondrial, D.6
-
98
-
-
68949156130
-
Mitochondrial DNA nucleoids determine mitochondrial genetics and dysfunction
-
[98] Gilkerson RW. Mitochondrial DNA nucleoids determine mitochondrial genetics and dysfunction. Int J Biochem Cell Biol 2009; 41: 1899-906.
-
(2009)
Int J Biochem Cell Biol
, vol.41
, pp. 1899-1906
-
-
Gilkerson, R.W.1
-
99
-
-
0034121640
-
No sex please, we’re mitochondria: A hypothesis on the somatic unit of inheritance of mammalian mtDNA
-
[99] Jacobs HT, Lehtinen SK, Spelbrink JN. No sex please, we’re mitochondria: a hypothesis on the somatic unit of inheritance of mammalian mtDNA. Bioessays 2000; 22: 564-72.
-
(2000)
Bioessays
, vol.22
, pp. 564-572
-
-
Jacobs, H.T.1
Lehtinen, S.K.2
Spelbrink, J.N.3
-
100
-
-
1542373685
-
Transcriptional regulatory circuits controlling mitochondrial biogenesis and function
-
[100] Kelly DP, Scarpulla RC. Transcriptional regulatory circuits controlling mitochondrial biogenesis and function. Genes Dev 2004; 18: 357-68.
-
(2004)
Genes Dev
, vol.18
, pp. 357-368
-
-
Kelly, D.P.1
Scarpulla, R.C.2
-
101
-
-
0032549811
-
A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis
-
[101] Puigserver P, Wu Z, Park CW, Graves R, Wright M, Spiegelman BM. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 1998; 92: 829-39.
-
(1998)
Cell
, vol.92
, pp. 829-839
-
-
Puigserver, P.1
Wu, Z.2
Park, C.W.3
Graves, R.4
Wright, M.5
Spiegelman, B.M.6
-
102
-
-
0037326196
-
Peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α): Transcriptonal coactivator and metabolic regulator
-
[102] Puigserver P, Spiegelman BM. Peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α): Transcriptonal coactivator and metabolic regulator. Endocrine Rev 2003; 24: 78-90.
-
(2003)
Endocrine Rev
, vol.24
, pp. 78-90
-
-
Puigserver, P.1
Spiegelman, B.M.2
-
103
-
-
0032715653
-
Human peroxisome proliferator activated receptor gamma coactivator 1 (PPARGC1) gene: CDNA sequence, genomic organization, chro mosomal localization, and tissue expression
-
[103] Estesbauer H, Oberkofler H, Krempler F, Patsch W. Human peroxisome proliferator activated receptor gamma coactivator 1 (PPARGC1) gene: cDNA sequence, genomic organization, chro mosomal localization, and tissue expression. Genomics 1999; 62: 98-102.
-
(1999)
Genomics
, vol.62
, pp. 98-102
-
-
Estesbauer, H.1
Oberkofler, H.2
Krempler, F.3
Patsch, W.4
-
104
-
-
0037127204
-
Peroxisome proliferator-activated receptor gamma coactivator 1beta (PGC-1beta), a novel PGC-1-related transcription coactivator associated with host cell factor
-
[104] Lin J, Puigserver P, Donovan J, Tarr P, Spiegelman BM. Peroxisome proliferator-activated receptor gamma coactivator 1beta (PGC-1beta), a novel PGC-1-related transcription coactivator associated with host cell factor. J Biol Chem 2002; 277: 1645-8.
-
(2002)
J Biol Chem
, vol.277
, pp. 1645-1648
-
-
Lin, J.1
Puigserver, P.2
Donovan, J.3
Tarr, P.4
Spiegelman, B.M.5
-
105
-
-
33947577655
-
Localization of the transcriptional coactivator PGC-1alpha to GABAergic neurons during maturation of the rat brain
-
[105] Cowell R, Blake KR, Russel JW. Localization of the transcriptional coactivator PGC-1alpha to GABAergic neurons during maturation of the rat brain. J Comp Neurol 2007; 502: 1-18.
-
(2007)
J Comp Neurol
, vol.502
, pp. 1-18
-
-
Cowell, R.1
Blake, K.R.2
Russel, J.W.3
-
106
-
-
5344252327
-
Defects in adaptive energy metabolism with CNS-linked hyperactivity in PGC-1alpha null mice
-
[106] Lin J, Wu PH, Tarr PT, et al. Defects in adaptive energy metabolism with CNS-linked hyperactivity in PGC-1alpha null mice. Cell 2004; 119: 121-35.
-
(2004)
Cell
, vol.119
, pp. 121-135
-
-
Lin, J.1
Wu, P.H.2
Tarr, P.T.3
-
107
-
-
0037029049
-
Transcriptional activators and coactivators in the nuclear control of mitochondrial function in mammalian cells
-
[107] Scarpulla RC. Transcriptional activators and coactivators in the nuclear control of mitochondrial function in mammalian cells. Gene 2002; 286: 81-9.
-
(2002)
Gene
, vol.286
, pp. 81-89
-
-
Scarpulla, R.C.1
-
108
-
-
0033538473
-
Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1
-
[108] Wu Z, Puigserver P, Andersson U, et al. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 1999; 98: 115-24.
-
(1999)
Cell
, vol.98
, pp. 115-124
-
-
Wu, Z.1
Puigserver, P.2
Ersson, U.3
-
109
-
-
0033803048
-
Peroxisome proliferator-activated receptor gamma coactivator-1 promotes cardiac mitochondrial biogenesis
-
[109] Lehman JJ, Barger PM, Kovacs A, Saffitz JE, Medeiros DM, Kelly DP. Peroxisome proliferator-activated receptor gamma coactivator-1 promotes cardiac mitochondrial biogenesis. J Clin Invest 2000; 106: 847-56.
-
(2000)
J Clin Invest
, vol.106
, pp. 847-856
-
-
Lehman, J.J.1
Barger, P.M.2
Kovacs, A.3
Saffitz, J.E.4
Medeiros, D.M.5
Kelly, D.P.6
-
110
-
-
33847253895
-
PGC-1alpha over-expression promotes recovery from mitochondrial dysfunction and cell injury
-
[110] Rasbach KA, Schnellmann RG. PGC-1alpha over-expression promotes recovery from mitochondrial dysfunction and cell injury. Biochem Biophys Res Comm 2007; 355: 734-9.
-
(2007)
Biochem Biophys Res Comm
, vol.355
, pp. 734-739
-
-
Rasbach, K.A.1
Schnellmann, R.G.2
-
111
-
-
0033739682
-
X Membrane potential-driven protein import into mitochondria
-
[111] Geissler A, Krimmer T, Bömer U, Guiard B, Rassow J, Pfanner N. x Membrane potential-driven protein import into mitochondria. Mol Biol Cell 2007; 11: 3977-91.
-
(2007)
Mol Biol Cell
, vol.11
, pp. 3977-3991
-
-
Geissler, A.1
Krimmer, T.2
Bömer, U.3
Guiard, B.4
Rassow, J.5
Pfanner, N.6
-
112
-
-
2442555970
-
The protein import machinery of mitochondria
-
[112] Wiedermann N, Frazier AE, Pfanner N. The protein import machinery of mitochondria. J Biol Chem 2004; 279: 14473-6.
-
(2004)
J Biol Chem
, vol.279
, pp. 14473-14476
-
-
Wiedermann, N.1
Frazier, A.E.2
Pfanner, N.3
-
113
-
-
34249873947
-
Translocation of proteins into mitochondria
-
[113] Neupert W, Herrmann JH. Translocation of proteins into mitochondria. Annu Rev Biochem 2007; 76: 723-49.
-
(2007)
Annu Rev Biochem
, vol.76
, pp. 723-749
-
-
Neupert, W.1
Herrmann, J.H.2
-
114
-
-
84860695796
-
PGC-1α at the intersection of bioenergetics regulation and neuronal function: From Huntington’s disease to Parkinson’s disease and beyond
-
[114] Tsunemi T, La Spada AR. PGC-1α at the intersection of bioenergetics regulation and neuronal function: From Huntington’s disease to Parkinson’s disease and beyond. Prog Neurobiol 2012; 97: 142-51.
-
(2012)
Prog Neurobiol
, vol.97
, pp. 142-151
-
-
Tsunemi, T.1
La Spada, A.R.2
-
115
-
-
33645011201
-
Nuclear control of respiratory gene expression in mammalian cells
-
[115] Scarpulla RC. Nuclear control of respiratory gene expression in mammalian cells. J Cell Biochem 2006; 97: 673-83.
-
(2006)
J Cell Biochem
, vol.97
, pp. 673-683
-
-
Scarpulla, R.C.1
-
116
-
-
79957960940
-
Metabolic control of mitochondrial biogenesis through the PGC-1 family regulatory network
-
[116] Scarpulla RC. Metabolic control of mitochondrial biogenesis through the PGC-1 family regulatory network. Biochem Biophys Acta 2011; 1813: 1269-78.
-
(2011)
Biochem Biophys Acta
, vol.1813
, pp. 1269-1278
-
-
Scarpulla, R.C.1
-
118
-
-
0035169827
-
Mitochondrial DNA instability and periimplantation lethality associated with targeted disruption of nuclear respiratory factor 1 in mice
-
[118] Huo L, Scarpulla RC. Mitochondrial DNA instability and periimplantation lethality associated with targeted disruption of nuclear respiratory factor 1 in mice. Mol Cell Biol 2001; 21: 644-54.
-
(2001)
Mol Cell Biol
, vol.21
, pp. 644-654
-
-
Huo, L.1
Scarpulla, R.C.2
-
119
-
-
2942709643
-
The ETS transcription factor GABPα is essential for early embryogenesis
-
[119] Ristevski S, O’Leary DA, Thornell AP, Owen MJ, Kola I, Hertzog PJ. The ETS transcription factor GABPα is essential for early embryogenesis. Mol Cell Biol 2004; 24: 5844-9.
-
(2004)
Mol Cell Biol
, vol.24
, pp. 5844-5849
-
-
Ristevski, S.1
O’leary, D.A.2
Thornell, A.P.3
Owen, M.J.4
Kola, I.5
Hertzog, P.J.6
-
120
-
-
84863751189
-
Bigenomic regulation of cytochrome c oxidase in neurons and the tight coupling between neuronal activity and energy metabolism
-
[120] Wong-Riley MT. Bigenomic regulation of cytochrome c oxidase in neurons and the tight coupling between neuronal activity and energy metabolism. Adv Exp Med Biol 2012; 748: 283-304.
-
(2012)
Adv Exp Med Biol
, vol.748
, pp. 283-304
-
-
Wong-Riley, M.T.1
-
121
-
-
0024561501
-
Cytcohrome oxidase: An endogenous metabolic marker for neuronal activity
-
[121] Wong-Riley MT. Cytcohrome oxidase: an endogenous metabolic marker for neuronal activity. Trends Neurosci 1989; 12: 94-101.
-
(1989)
Trends Neurosci
, vol.12
, pp. 94-101
-
-
Wong-Riley, M.T.1
-
122
-
-
26444545461
-
Is nuclear respiratory factor 2 a master transcriptional coordinator for all ten nuclear-encoded cytochrome c oxidase subunits in neurons?
-
[122] Ongwijitwat S, Wong-Riley MT. Is nuclear respiratory factor 2 a master transcriptional coordinator for all ten nuclear-encoded cytochrome c oxidase subunits in neurons? Gene 2005; 360: 65-77.
-
(2005)
Gene
, vol.360
, pp. 65-77
-
-
Ongwijitwat, S.1
Wong-Riley, M.T.2
-
123
-
-
33646690296
-
Nuclear respiratory factor 2 senses changing cellular energy demands and its silencing down-regulates cytochrome oxidase and other target gene mRNAs
-
[123] Ongwijitwat S, Liang HL, Graboyes EM, Wong-Riley MT. Nuclear respiratory factor 2 senses changing cellular energy demands and its silencing down-regulates cytochrome oxidase and other target gene mRNAs. Gene 2006; 374: 39-49.
-
(2006)
Gene
, vol.374
, pp. 39-49
-
-
Ongwijitwat, S.1
Liang, H.L.2
Graboyes, E.M.3
Wong-Riley, M.T.4
-
124
-
-
33746406058
-
Activity-dependent transcriptional regulation of nuclear respiratory factor-1 in cultured rat visual cortical neurons
-
[124] Yang SJ, Liang HL, Wong-Riley MT. Activity-dependent transcriptional regulation of nuclear respiratory factor-1 in cultured rat visual cortical neurons. Neuroscience 2006; 141: 1181-92.
-
(2006)
Neuroscience
, vol.141
, pp. 1181-1192
-
-
Yang, S.J.1
Liang, H.L.2
Wong-Riley, M.T.3
-
125
-
-
41249086496
-
Nuclear respiratory factor 1 regulates all ten nuclear-encoded subunits of cytochrome c oxidase in neurons
-
[125] Dhar SS, Ongwijitwat S, Wong-Riley MT. Nuclear respiratory factor 1 regulates all ten nuclear-encoded subunits of cytochrome c oxidase in neurons. J Biol Chem 2008; 283: 3120-9.
-
(2008)
J Biol Chem
, vol.283
, pp. 3120-3129
-
-
Dhar, S.S.1
Ongwijitwat, S.2
Wong-Riley, M.T.3
-
126
-
-
58849149820
-
Coupling of energy metabolism and synaptic transmission at the transcriptional level: Role of nuclear respiratory factor 1 I regulating both cytochrome c oxidase and NMDA glutamate receptor subunit genes
-
[126] Dhar SS, Wong-Riley MT. Coupling of energy metabolism and synaptic transmission at the transcriptional level: role of nuclear respiratory factor 1 I regulating both cytochrome c oxidase and NMDA glutamate receptor subunit genes. J Neurosci 2009; 29: 483-92.
-
(2009)
J Neurosci
, vol.29
, pp. 483-492
-
-
Dhar, S.S.1
Wong-Riley, M.T.2
-
127
-
-
0031930319
-
Mitochondrial transcription factor A is necessary for mtDNA maintenance and embryogenesis in mice
-
[127] Larsson NG, Wang JM, Wilhelmsson H, et al. Mitochondrial transcription factor A is necessary for mtDNA maintenance and embryogenesis in mice. Nature Genet 1998; 18: 231-6.
-
(1998)
Nature Genet
, vol.18
, pp. 231-236
-
-
Larsson, N.G.1
Wang, J.M.2
Wilhelmsson, H.3
-
129
-
-
34548627532
-
DNA replication and transcription in mammalian mitochondria
-
[129] Falkenberg M, Larsson NG, Gustafsson CM. DNA replication and transcription in mammalian mitochondria. Annu Rev Biochem 2007; 76: 679-99.
-
(2007)
Annu Rev Biochem
, vol.76
, pp. 679-699
-
-
Falkenberg, M.1
Larsson, N.G.2
Gustafsson, C.M.3
-
130
-
-
0036648997
-
Mitochondrial transcription factors B1 and B2 activate transcription of human mtDNA
-
[130] Falkenberg M, Gaspari M, Rantanen A, Trifunovic A, Larsson NG, Gustafsson CM. Mitochondrial transcription factors B1 and B2 activate transcription of human mtDNA. Nat Genet 2002; 31: 289-94.
-
(2002)
Nat Genet
, vol.31
, pp. 289-294
-
-
Falkenberg, M.1
Gaspari, M.2
Rantanen, A.3
Trifunovic, A.4
Larsson, N.G.5
Gustafsson, C.M.6
-
131
-
-
10644229290
-
The mitochondrial RNA polymerase contributes critically to promoter specificity in mammalian cells
-
[131] Gaspari M, Falkenberg M, Larsson NG, Gustafsson CM. The mitochondrial RNA polymerase contributes critically to promoter specificity in mammalian cells. EMBO J 2004; 23: 4606-14.
-
(2004)
EMBO J
, vol.23
, pp. 4606-4614
-
-
Gaspari, M.1
Falkenberg, M.2
Larsson, N.G.3
Gustafsson, C.M.4
-
132
-
-
0037443884
-
Human mitochondrial DNA is packaged with TFAM
-
[132] Alam TI, Kanki T, Muta T, et al. Human mitochondrial DNA is packaged with TFAM. Nucleic Acids Res 2003; 31: 1640-5.
-
(2003)
Nucleic Acids Res
, vol.31
, pp. 1640-1645
-
-
Alam, T.I.1
Kanki, T.2
Muta, T.3
-
133
-
-
34548495323
-
The mitochondrial transcription factor TFAM coordinates the assembly of multiple DNA molecules into nucleoid-like structures
-
[133] Kaufman BA, Durisic N, Mativetsky JM, et al. The mitochondrial transcription factor TFAM coordinates the assembly of multiple DNA molecules into nucleoid-like structures. Mol Biol Cell 2007; 18: 3225-36.
-
(2007)
Mol Biol Cell
, vol.18
, pp. 3225-3236
-
-
Kaufman, B.A.1
Durisic, N.2
Mativetsky, J.M.3
-
134
-
-
2442431673
-
Mitochondrial transcription factor A regulates mtDNA copy number in mammals
-
[134] Ekstrand M, Falkenberg M, Rantanen A, et al. Mitochondrial transcription factor A regulates mtDNA copy number in mammals. Hum Mol Genet 2004; 13: 935-44.
-
(2004)
Hum Mol Genet
, vol.13
, pp. 935-944
-
-
Ekstrand, M.1
Falkenberg, M.2
Rantanen, A.3
-
135
-
-
33845629364
-
Alterations to the expression level of mitochondrial transcription factor A, TFAM, modify the mode of mitochondrial DNA replication in cultured human cells
-
[135] Pohjoismaki JL, Wanrooij S, Hyvarinen AK, et al. Alterations to the expression level of mitochondrial transcription factor A, TFAM, modify the mode of mitochondrial DNA replication in cultured human cells. Nucleic Acids Res 2006; 34: 5815-28.
-
(2006)
Nucleic Acids Res
, vol.34
, pp. 5815-5828
-
-
Pohjoismaki, J.L.1
Wanrooij, S.2
Hyvarinen, A.K.3
-
136
-
-
33847656213
-
Mitochondrial transcription factor A (TFAM): Roles in maintenance of mtDNA and cellular functions
-
[136] Kang D, Kim SH, Hamasaki N. Mitochondrial transcription factor A (TFAM): roles in maintenance of mtDNA and cellular functions. Mitochondrion 2007; 7:39-44.
-
(2007)
Mitochondrion
, vol.7
, pp. 39-44
-
-
Kang, D.1
Kim, S.H.2
Hamasaki, N.3
-
137
-
-
0035887745
-
Late-onset corticohippocampal neurodepletion attributable to catastrophic failure of oxidative phosphorylation in MILON mice
-
[137] Sörensen L, Ekstrand M, Silva JP, et al. Late-onset corticohippocampal neurodepletion attributable to catastrophic failure of oxidative phosphorylation in MILON mice. J Neurosci 2001; 21: 8082-90.
-
(2001)
J Neurosci
, vol.21
, pp. 8082-8090
-
-
Sörensen, L.1
Ekstrand, M.2
Silva, J.P.3
-
138
-
-
33846636481
-
Progressive parkinsonism in mice with respiration-chain-deficient dopamine neurons
-
[138] Ekstrand M, Terzioglu M, Galter D, et al. Progressive parkinsonism in mice with respiration-chain-deficient dopamine neurons. Proc Natl Acad Sci USA 2007; 104: 1325-30.
-
(2007)
Proc Natl Acad Sci USA
, vol.104
, pp. 1325-1330
-
-
Ekstrand, M.1
Terzioglu, M.2
Galter, D.3
-
139
-
-
77949342539
-
MitoPark mice mirror the slow progression of key symptoms and L-DOPA response in Parkinson’s disease
-
[139] Galter D, Pernold K, Yoshitake T, et al. MitoPark mice mirror the slow progression of key symptoms and L-DOPA response in Parkinson’s disease. Genes Brain Behav 2010; 9: 173-81.
-
(2010)
Genes Brain Behav
, vol.9
, pp. 173-181
-
-
Galter, D.1
Pernold, K.2
Yoshitake, T.3
-
140
-
-
84877056321
-
Twinkle is an essential mitochondrial helicase required for synthesis of nascent D-loop strands and complete mtDNA replication
-
[140] Milenkovic D, Matic S, Kühl I, et al. Twinkle is an essential mitochondrial helicase required for synthesis of nascent D-loop strands and complete mtDNA replication. Hum Mol Genet 2013; doi:10.1093/hmg/ddt051.
-
(2013)
Hum Mol Genet
-
-
Milenkovic, D.1
Matic, S.2
Kühl, I.3
-
141
-
-
0034938364
-
Human mitochondrial DNA deletions associated with mutations in the gene encoding Twinkle, a phage T7 gene 4-like protein localized in mitochondria
-
[141] Spelbrink JN, Li FY, Tiranti V, et al. Human mitochondrial DNA deletions associated with mutations in the gene encoding Twinkle, a phage T7 gene 4-like protein localized in mitochondria. Nat Genet 2001; 28: 223-31.
-
(2001)
Nat Genet
, vol.28
, pp. 223-231
-
-
Spelbrink, J.N.1
Li, F.Y.2
Tiranti, V.3
-
142
-
-
1542677230
-
TWINKLE has 5’->3’ DNA helicase activity and is specifically stimulated by mitochondrial single-stranded DNA-binding protein
-
[142] Korhonen JA, Gaspari M, Falkenberg M. TWINKLE has 5’->3’ DNA helicase activity and is specifically stimulated by mitochondrial single-stranded DNA-binding protein. J Biol Chem 2003; 278: 48627-32.
-
(2003)
J Biol Chem
, vol.278
, pp. 48627-48632
-
-
Korhonen, J.A.1
Gaspari, M.2
Falkenberg, M.3
-
144
-
-
19944383101
-
Twinkle helicase is essential for mtDAN maintenance and regulates mtDNA copy number
-
[144] Tyynismaa H, Sembongi H, Bokori-Brown M, et al. Twinkle helicase is essential for mtDAN maintenance and regulates mtDNA copy number. Hum Mol Genet 2004; 13: 3219-27.
-
(2004)
Hum Mol Genet
, vol.13
, pp. 3219-3227
-
-
Tyynismaa, H.1
Sembongi, H.2
Bokori-Brown, M.3
-
145
-
-
0030898772
-
Autosomal dominant progressive external ophtalmoplegia with multiple deletions of mtDNA: Clinical, biochemical, and molecular genetic features of the 10q-linked disease
-
[145] Suomalainen A, Majander A, Wallin M, et al. Autosomal dominant progressive external ophtalmoplegia with multiple deletions of mtDNA: clinical, biochemical, and molecular genetic features of the 10q-linked disease. Neurology 1997; 48: 1244-53.
-
(1997)
Neurology
, vol.48
, pp. 1244-1253
-
-
Suomalainen, A.1
Majander, A.2
Wallin, M.3
-
146
-
-
29144486726
-
Mutant mitochondrial helicase Twinkle causes multiple mtDNA deletions and a lateonset mitochondrial disease in mice
-
[146] Tyynismaa H, Mjosund KP, Wanrooij S, et al. Mutant mitochondrial helicase Twinkle causes multiple mtDNA deletions and a lateonset mitochondrial disease in mice. Proc Natl Acad Sci USA 2005; 102: 17687-92.
-
(2005)
Proc Natl Acad Sci USA
, vol.102
, pp. 17687-17692
-
-
Tyynismaa, H.1
Mjosund, K.P.2
Wanrooij, S.3
-
147
-
-
77953811054
-
The human mitochondrial replication fork in health and disease
-
[147] Wanrooij S, Falkenberg M. The human mitochondrial replication fork in health and disease. Biochem Biophys Acta 2010; 1797: 1378-88.
-
(2010)
Biochem Biophys Acta
, vol.1797
, pp. 1378-1388
-
-
Wanrooij, S.1
Falkenberg, M.2
-
148
-
-
83755205842
-
Defects in mitochondrial DNA replication and human disease
-
[148] Copeland WC. Defects in mitochondrial DNA replication and human disease. Crit Rev Biochem Mol Biol 2012; 47: 64-74.
-
(2012)
Crit Rev Biochem Mol Biol
, vol.47
, pp. 64-74
-
-
Copeland, W.C.1
-
149
-
-
34648828532
-
AMP-activated/SNF1 protein kinases: Conserved guardians of cellular energy
-
[149] Hardie DG. AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nat Rev Mol Cell Biol 2007; 8: 774-85.
-
(2007)
Nat Rev Mol Cell Biol
, vol.8
, pp. 774-785
-
-
Hardie, D.G.1
-
150
-
-
76549089547
-
Calmodulin-dependent protein kinase-β activates AMPK without forming a stable complex: Synergistic effects of Ca2+ and AMP
-
[150] Fogarty S, Hawley SA, Green KA, Saner N, Mustard KJ, Hardie DG. Calmodulin-dependent protein kinase-β activates AMPK without forming a stable complex: synergistic effects of Ca2+ and AMP. Biochem J 2010; 426: 109-18.
-
(2010)
Biochem J
, vol.426
, pp. 109-118
-
-
Fogarty, S.1
Hawley, S.A.2
Green, K.A.3
Saner, N.4
Mustard, K.J.5
Hardie, D.G.6
-
151
-
-
23044514282
-
Activating AMP-activated protein kinase without AMP
-
[151] Bierbaum M. Activating AMP-activated protein kinase without AMP. Mol Cell 2005; 19: 289-90.
-
(2005)
Mol Cell
, vol.19
, pp. 289-290
-
-
Bierbaum, M.1
-
153
-
-
67650914230
-
AMPK in health and disease
-
[153] Steinberg GR, Kemp BE. AMPK in health and disease. Physiol Rev 2009; 89: 1025-78.
-
(2009)
Physiol Rev
, vol.89
, pp. 1025-1078
-
-
Steinberg, G.R.1
Kemp, B.E.2
-
154
-
-
77957349477
-
AMP-activated protein kinase and its downstream transcriptional pathways
-
[154] Cantó C, Auwerx J. AMP-activated protein kinase and its downstream transcriptional pathways. Cell Mol Life Sci 2010; 67: 3407-23.
-
(2010)
Cell Mol Life Sci
, vol.67
, pp. 3407-3423
-
-
Cantó, C.1
Auwerx, J.2
-
155
-
-
34247511497
-
LKB1 and SAD kinases define a pathway required for the polarization of cortical neurons
-
[155] Barnes AP, Lilley BN, Pan YA, et al. LKB1 and SAD kinases define a pathway required for the polarization of cortical neurons. Cell 2007; 129: 549-63.
-
(2007)
Cell
, vol.129
, pp. 549-563
-
-
Barnes, A.P.1
Lilley, B.N.2
Pan, Y.A.3
-
156
-
-
42649105456
-
Hypothalamic CAMKK2 contributes to the regulation of energy balance
-
[156] Anderson KA, Ribar TJ, Lin F, et al. Hypothalamic CAMKK2 contributes to the regulation of energy balance. Cell Metab 2008; 7: 377-88.
-
(2008)
Cell Metab
, vol.7
, pp. 377-388
-
-
Anderson, K.A.1
Ribar, T.J.2
Lin, F.3
-
157
-
-
80053254762
-
Characterization of the CaMKKβ-AMPK signaling complex
-
[157] Green MF, Anderson KA, Means AR. Characterization of the CaMKKβ-AMPK signaling complex. Cell Signal 2011; 23: 2005-12.
-
(2011)
Cell Signal
, vol.23
, pp. 2005-2012
-
-
Green, M.F.1
Erson, K.A.2
Means, A.R.3
-
158
-
-
0037058977
-
AMP kinase is required for mitochondrial biogenesis in skeletal muscle in response to chronic energy deprivation
-
[158] Zong H, Ren JM, Young LH, et al. AMP kinase is required for mitochondrial biogenesis in skeletal muscle in response to chronic energy deprivation. Proc Natl Acad Sci USA 2002; 25: 15983-7.
-
(2002)
Proc Natl Acad Sci USA
, vol.25
, pp. 15983-15987
-
-
Zong, H.1
Ren, J.M.2
Young, L.H.3
-
159
-
-
0035665594
-
Chronic activation of AMP kinase results in NRF-1 activation and mitochondrial biogenesis
-
[159] Bergeron R, Ren JM, Cadman KS, et al. Chronic activation of AMP kinase results in NRF-1 activation and mitochondrial biogenesis. Am J Physiol Endocrinol Metab 2001; 281: E1340-6.
-
(2001)
Am J Physiol Endocrinol Metab
, vol.281
, pp. 13E6-1340
-
-
Bergeron, R.1
Ren, J.M.2
Cadman, K.S.3
-
160
-
-
33745215883
-
The role of AMP-activated protein kinase in mitochondrial biogenesis
-
[160] Reznick RM, Shulman GI. The role of AMP-activated protein kinase in mitochondrial biogenesis. J Physiol 2006; 574:33-39.
-
(2006)
J Physiol
, vol.574
, pp. 33-39
-
-
Reznick, R.M.1
Shulman, G.I.2
-
161
-
-
34547545892
-
AMP-actiavted protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha
-
[161] Jäger S, Handschin C, St-Pierre J, Spiegelman BM. AMP-actiavted protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha. Proc Natl Acad Sci USA 2007; 104: 12017-22.
-
(2007)
Proc Natl Acad Sci USA
, vol.104
, pp. 12017-12022
-
-
Jäger, S.1
Handschin, C.2
St-Pierre, J.3
Spiegelman, B.M.4
-
162
-
-
77953812778
-
AMP-activated protein kinase mediates activitydependent regulation of peroxisome proliferator-activated receptor γ coactivator-1α and nuclear respiratory factor 1 expression in rat visual cortical neurons
-
[162] Yu L, Yang SJ. AMP-activated protein kinase mediates activitydependent regulation of peroxisome proliferator-activated receptor γ coactivator-1α and nuclear respiratory factor 1 expression in rat visual cortical neurons. Neuroscience 2010; 169: 23-38.
-
(2010)
Neuroscience
, vol.169
, pp. 23-38
-
-
Yu, L.1
Yang, S.J.2
-
163
-
-
79960566233
-
AMP-activated protein kinase: A potential player in Alzheimer’s disease
-
[163] Salminen A, Kaarniranta K, Haapasalo A, Soininen H, Hiltunen M. AMP-activated protein kinase: a potential player in Alzheimer’s disease. J Neurochem 2011; 118: 460-74.
-
(2011)
J Neurochem
, vol.118
, pp. 460-474
-
-
Salminen, A.1
Kaarniranta, K.2
Haapasalo, A.3
Soininen, H.4
Hiltunen, M.5
-
164
-
-
79952135798
-
AMPactivated protein kinase (AMPK) is a tau kinase, activated in response to amyloid β-peptide exposure
-
[164] Thornton C, Bright NJ, Sastre M, Muckett PJ, Carling D. AMPactivated protein kinase (AMPK) is a tau kinase, activated in response to amyloid β-peptide exposure. Biochem J 2011; 434: 503-12.
-
(2011)
Biochem J
, vol.434
, pp. 503-512
-
-
Thornton, C.1
Bright, N.J.2
Sastre, M.3
Muckett, P.J.4
Carling, D.5
-
165
-
-
79952135316
-
AMPK is abnormally activated in tangle-and pre-tangle-bearing neurons in Alzheimer’s disease and other tauopathies
-
[165] Vingtdeux V, Davies P, Dickson DW, Marambaud P. AMPK is abnormally activated in tangle-and pre-tangle-bearing neurons in Alzheimer’s disease and other tauopathies. Acta Neuropathol 2011; 121: 337-49.
-
(2011)
Acta Neuropathol
, vol.121
, pp. 337-349
-
-
Vingtdeux, V.1
Davies, P.2
Dickson, D.W.3
Marambaud, P.4
-
166
-
-
84865966647
-
JNK3 perpetuates metabolic stress induced by Aβ peptides
-
[166] Yoon SO, Park DJ, Ryu JC, et al. JNK3 perpetuates metabolic stress induced by Aβ peptides. Neuron 2012; 75: 824-37.
-
(2012)
Neuron
, vol.75
, pp. 824-837
-
-
Yoon, S.O.1
Park, D.J.2
Ryu, J.C.3
-
167
-
-
77950575506
-
AMP-activated protein kinase signaling activation by resveratrol modulates amyloid-beta peptide metabolism
-
[167] Vingtdeux V, Giliberto L, Zhao H, et al. AMP-activated protein kinase signaling activation by resveratrol modulates amyloid-beta peptide metabolism. J Biol Chem 2010; 285:9100-9113.
-
(2010)
J Biol Chem
, vol.285
, pp. 9100-9113
-
-
Vingtdeux, V.1
Giliberto, L.2
Zhao, H.3
-
168
-
-
79251556232
-
Novel synthetic small-molecule activators of AMPK as enhancers of autophagy and amyloid-β peptide degradation
-
[168] Vingtdeux V, Chadakkar P, Zhao H, d’Abramo C, Davies P, Marambaud P. Novel synthetic small-molecule activators of AMPK as enhancers of autophagy and amyloid-β peptide degradation. FASEB J 2011; 25: 219-31.
-
(2011)
FASEB J
, vol.25
, pp. 219-231
-
-
Vingtdeux, V.1
Chadakkar, P.2
Zhao, H.3
D’abramo, C.4
Davies, P.5
Marambaud, P.6
-
169
-
-
72949122084
-
AMP-activated proteine kinase is activated in Parkinson’s disease models mediated by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
-
[169] Choi JS, Park C, Jeong JW. AMP-activated proteine kinase is activated in Parkinson’s disease models mediated by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Biochem Biophys Res Commun 2010; 391: 147-51.
-
(2010)
Biochem Biophys Res Commun
, vol.391
, pp. 147-151
-
-
Choi, J.S.1
Park, C.2
Jeong, J.W.3
-
170
-
-
0020680904
-
Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis
-
[170] Langston JW, Ballard P, Tetrud JW, Irwin I. Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science 1983; 219: 979-80.
-
(1983)
Science
, vol.219
, pp. 979-980
-
-
Langston, J.W.1
Ballard, P.2
Tetrud, J.W.3
Irwin, I.4
-
171
-
-
0141741347
-
Parkinson’s disease: Mechanisms and models
-
[171] Dauer W, Przedborski S. Parkinson’s disease: mechanisms and models. Neuron 2003; 39: 889-909.
-
(2003)
Neuron
, vol.39
, pp. 889-909
-
-
Dauer, W.1
Przedborski, S.2
-
172
-
-
0024848034
-
Abnormalities of the electron transport chain in idiopathic Parkinson’s disease
-
[172] Parker WD Jr, Boyson SJ, Parks JK. Abnormalities of the electron transport chain in idiopathic Parkinson’s disease. Ann Neurol 1989; 26: 719-23.
-
(1989)
Ann Neurol
, vol.26
, pp. 719-723
-
-
Parker, W.D.1
Boyson, S.J.2
Parks, J.K.3
-
173
-
-
0024390719
-
Deficiency in Parkinson’s disease
-
[173] Schapira AHV, Cooper JM, Dexter D, Clark JB, Jenner P, Marsden CD. Mitochondrial complex I deficiency in Parkinson’s disease. Lancet 1989; 8649: 1269.
-
(1989)
Lancet
, vol.8649
, pp. 1269
-
-
Schapira, A.1
Cooper, J.M.2
Dexter, D.3
Clark, J.B.4
Jenner, P.5
Marsden, C.D.6
Mitochondrial Complex, I.7
-
175
-
-
33846460819
-
Mitochondria mass is low in mouse substantia nigra dopamine neurons: Implications for Parkinson’s disease
-
[175] Liang CL, Wang TT, Luby-Phelps K, German DC. Mitochondria mass is low in mouse substantia nigra dopamine neurons: implications for Parkinson’s disease. Exp Neurol 2007; 203: 370-80.
-
(2007)
Exp Neurol
, vol.203
, pp. 370-380
-
-
Liang, C.L.1
Wang, T.T.2
Luby-Phelps, K.3
German, D.C.4
-
176
-
-
64549127790
-
PGC-1α, SIRT1 and AMPK, an energy sensing network that controls energy expenditure
-
[176] Cantó C, Auwerx J. PGC-1α, SIRT1 and AMPK, an energy sensing network that controls energy expenditure. Curr Opin Lipidol 2009; 20: 98-105.
-
(2009)
Curr Opin Lipidol
, vol.20
, pp. 98-105
-
-
Cantó, C.1
Auwerx, J.2
-
177
-
-
34547914840
-
Sirtuins: The “magnificent seven”, function, metabolism and longevity
-
[177] Dali-Youcef N, Lagouge M, Froelich S, Koehl C, Schoojans K, Auwerx J. Sirtuins: the “magnificent seven”, function, metabolism and longevity. Ann Med 2007; 39: 335-45.
-
(2007)
Ann Med
, vol.39
, pp. 335-345
-
-
Dali-Youcef, N.1
Lagouge, M.2
Froelich, S.3
Koehl, C.4
Schoojans, K.5
Auwerx, J.6
-
178
-
-
34249083199
-
Sirtuins in mammals: Insights into their biological function
-
[178] Michan S, Sinclair D. Sirtuins in mammals: insights into their biological function. Biochem J 2007; 404: 1-13.
-
(2007)
Biochem J
, vol.404
, pp. 1-13
-
-
Michan, S.1
Sinclair, D.2
-
179
-
-
72849130743
-
Neuronal SIRT1 regulates endocrine and behavioral responses to calorie restriction
-
[179] Cohen DE, Supinski AM, Bonkowski MS, Domnez G, Guarente LP. Neuronal SIRT1 regulates endocrine and behavioral responses to calorie restriction. Genes Dev 2009; 23: 2812-7.
-
(2009)
Genes Dev
, vol.23
, pp. 2812-2817
-
-
Cohen, D.E.1
Supinski, A.M.2
Bonkowski, M.S.3
Domnez, G.4
Guarente, L.P.5
-
180
-
-
0141814680
-
Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice
-
[180] Cheng HL, Mostoslavsky R, Saito S, et al. Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice. Proc Natl Acad Sci USA 2003; 100: 10794-9.
-
(2003)
Proc Natl Acad Sci USA
, vol.100
, pp. 10794-10799
-
-
Cheng, H.L.1
Mostoslavsky, R.2
Saito, S.3
-
181
-
-
55749095213
-
Histone deacetylase SIRT1 modulates neuronal differentiation by its nuclear translocation
-
[181] Hisahara S, Chiba S, Matsumoto H, et al. Histone deacetylase SIRT1 modulates neuronal differentiation by its nuclear translocation. Proc Natl Acad Sci USA 2008; 105: 15599-604.
-
(2008)
Proc Natl Acad Sci USA
, vol.105
, pp. 15599-15604
-
-
Hisahara, S.1
Chiba, S.2
Matsumoto, H.3
-
182
-
-
77956185062
-
A novel pathway regulates memory and plasticity via SIRT1 and miR-134
-
[182] Gao J, Wang WY, Mao YW, et al. A novel pathway regulates memory and plasticity via SIRT1 and miR-134. Nature 2010; 466: 1105-9.
-
(2010)
Nature
, vol.466
, pp. 1105-1109
-
-
Gao, J.1
Wang, W.Y.2
Mao, Y.W.3
-
183
-
-
77954855825
-
SIRT1 is essential for normal cognitive function and synaptic plasticity
-
[183] Michán S, Li Y, Chou MM, et al. SIRT1 is essential for normal cognitive function and synaptic plasticity. J Neurosci 2010; 30: 9695-07.
-
(2010)
J Neurosci
, vol.30
, pp. 9695-9707
-
-
Michán, S.1
Li, Y.2
Chou, M.M.3
-
184
-
-
4043165678
-
Increased nuclear NAD biosynthesis and SIRt1 activation prevent axonal degeneration
-
[184] Araki T, Sasaki Y, Milbrandt J. Increased nuclear NAD biosynthesis and SIRt1 activation prevent axonal degeneration. Science 2004; 305: 1010-3.
-
(2004)
Science
, vol.305
, pp. 1010-1013
-
-
Araki, T.1
Sasaki, Y.2
Milbrandt, J.3
-
185
-
-
28844474597
-
SIRT1 protects against microglia-dependent amyloid-beta toxicity through inhibiting NFkappaB signaling
-
[185] Chen J, Zhou Y, Mueller-Steiner S, et al. SIRT1 protects against microglia-dependent amyloid-beta toxicity through inhibiting NFkappaB signaling. J Biol Chem 2005; 280: 40364-74.
-
(2005)
J Biol Chem
, vol.280
, pp. 40364-40374
-
-
Chen, J.1
Zhou, Y.2
Mueller-Steiner, S.3
-
186
-
-
34447308268
-
SIRT1 deacetylase protects against neurodegeneration in models for Alzheimer’s disease and amyotrophic sclerosis
-
[186] Kim D, Nguyen MD, Dobbin MM, et al. SIRT1 deacetylase protects against neurodegeneration in models for Alzheimer’s disease and amyotrophic sclerosis. EMBO J 2007; 26: 3169-79.
-
(2007)
EMBO J
, vol.26
, pp. 3169-3179
-
-
Kim, D.1
Nguyen, M.D.2
Dobbin, M.M.3
-
187
-
-
77955046461
-
SIRT1 suppresses beta-amyloid production by activating the alpha-secretase gene ADAM10
-
[187] Donmez G, Wang D, Cohen DE, Guarente L. SIRT1 suppresses beta-amyloid production by activating the alpha-secretase gene ADAM10. Cell 2010; 142: 320-32.
-
(2010)
Cell
, vol.142
, pp. 320-332
-
-
Donmez, G.1
Wang, D.2
Cohen, D.E.3
Guarente, L.4
-
188
-
-
14544282413
-
Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1
-
[188] Rodgers JT, Lerin C, Haas W, Gysi SP, Spiegelman BM, Puigserver P. Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature 2005; 434: 113-8.
-
(2005)
Nature
, vol.434
, pp. 113-118
-
-
Rodgers, J.T.1
Lerin, C.2
Haas, W.3
Gysi, S.P.4
Spiegelman, B.M.5
Puigserver, P.6
-
189
-
-
34247259630
-
Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1alpha
-
[189] Gerhart-Hines Z, Rodgers JT, Bare O, et al. Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1alpha. EMBO J 2007; 26: 1913-23.
-
(2007)
EMBO J
, vol.26
, pp. 1913-1923
-
-
Gerhart-Hines, Z.1
Rodgers, J.T.2
Bare, O.3
-
190
-
-
67349276169
-
AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity
-
[190] Cantó C, Gerhart-Hines Z, Feige JN, et al. AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 2009; 458: 1056-60.
-
(2009)
Nature
, vol.458
, pp. 1056-1060
-
-
Cantó, C.1
Gerhart-Hines, Z.2
Feige, J.N.3
-
191
-
-
58149202185
-
Phosphorylation regulates SIRT1 function
-
[191] Sasaki T, Maier B, Koclega KD, et al. Phosphorylation regulates SIRT1 function. PLoS One 2008; 3: e4020.
-
(2008)
Plos One
, vol.3
, pp. 4020
-
-
Sasaki, T.1
Maier, B.2
Koclega, K.D.3
-
192
-
-
69949138641
-
CK2 is the regulator of SIRT1 substrate-binding affinity, deacetylase activity and cellular response to DNA damage
-
[192] Kang H, Jung JW, Kim MK, Chung JH. CK2 is the regulator of SIRT1 substrate-binding affinity, deacetylase activity and cellular response to DNA damage. PLoS One 200; 4: e6611.
-
Plos One 200
, vol.4
, pp. 6611
-
-
Kang, H.1
Jung, J.W.2
Kim, M.K.3
Chung, J.H.4
-
193
-
-
77949539030
-
JNK1 phosphorylates SIRT1 and promotes its enzymatic activity
-
[193] Nasrin N, Kaushik VK, Fortier E, et al. JNK1 phosphorylates SIRT1 and promotes its enzymatic activity. PLoS One 2009; 4: e8414.
-
(2009)
Plos One
, vol.4
, pp. 8414
-
-
Nasrin, N.1
Kaushik, V.K.2
Fortier, E.3
-
194
-
-
77951225449
-
DYRRK1A and DYRK3 promote cell survival through phosphorylation and activation of SIRT1
-
[194] Guo X, Williams JG, Schug TT, Li X. DYRRK1A and DYRK3 promote cell survival through phosphorylation and activation of SIRT1. J Biol Chem 2010; 285: 13223-32.
-
(2010)
J Biol Chem
, vol.285
, pp. 13223-13232
-
-
Guo, X.1
Williams, J.G.2
Schug, T.T.3
Li, X.4
-
195
-
-
84866116711
-
The NAD+-dependent protein deacetylase activity of SIRT1 is regulated by its oligomeric status
-
[195] Guo X, Kesimer M, Tolun G, et al. The NAD+-dependent protein deacetylase activity of SIRT1 is regulated by its oligomeric status. Sci Rep 2012; 2: 640.
-
(2012)
Sci Rep
, vol.2
, pp. 640
-
-
Guo, X.1
Kesimer, M.2
Tolun, G.3
-
196
-
-
18144411313
-
SIRT1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1α
-
[196] Nemoto S, Fergusson MM, Finkel T. SIRT1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1α. J Biol Chem 2005; 280: 16456-60.
-
(2005)
J Biol Chem
, vol.280
, pp. 16456-16460
-
-
Nemoto, S.1
Fergusson, M.M.2
Finkel, T.3
-
198
-
-
43049121395
-
Glucose restriction inhibits skeletal myoblast differentiation by activating SIRT1 through AMPKmediated regulation of Nampt
-
[198] Fulco M, Cen Y, Zhao P, et al. Glucose restriction inhibits skeletal myoblast differentiation by activating SIRT1 through AMPKmediated regulation of Nampt. Dev Cell 2008; 14: 661-73.
-
(2008)
Dev Cell
, vol.14
, pp. 661-673
-
-
Fulco, M.1
Cen, Y.2
Zhao, P.3
-
200
-
-
77249156847
-
Interdependence of AMPK and SIRT1 for metabolic adaptation to fasting and exercise in skeletal muscle
-
[200] Cantó C, Jiang LQ, Deshmukh AS, et al. Interdependence of AMPK and SIRT1 for metabolic adaptation to fasting and exercise in skeletal muscle. Cell Metab 2010; 11: 213-9.
-
(2010)
Cell Metab
, vol.11
, pp. 213-219
-
-
Cantó, C.1
Jiang, L.Q.2
Deshmukh, A.S.3
-
201
-
-
0036181469
-
Domains of high-polarized and low-polarized mitochondria may occur in mouse and human oocytes and early embryos
-
[201] Van Blerkom J, Davies P, Mathwig V, Alexander S. Domains of high-polarized and low-polarized mitochondria may occur in mouse and human oocytes and early embryos. Human Rep 2002; 17: 393-406.
-
(2002)
Human Rep
, vol.17
, pp. 393-406
-
-
Van Blerkom, J.1
Davies, P.2
Mathwig, V.3
Alexander, S.4
-
202
-
-
38649091334
-
A reduction of mitochondrial DNA molecules during embryogenesis explains the rapid segregation of genotypes
-
[202] Cree LM, Samuels DC, de Sousa Lopes SC, et al. A reduction of mitochondrial DNA molecules during embryogenesis explains the rapid segregation of genotypes. Nat Genet 2008; 40: 249-54.
-
(2008)
Nat Genet
, vol.40
, pp. 249-254
-
-
Cree, L.M.1
Samuels, D.C.2
De Sousa Lopes, S.C.3
-
203
-
-
0025826251
-
Mitochondrial maturation during neuronal differentiation in vivo and in vitro
-
[203] Cordeau-Lossouam L, Vayssière JL, Larcher JC, Gros F, Croizat B. Mitochondrial maturation during neuronal differentiation in vivo and in vitro. Biol Cell 1991;1: 57-65.
-
(1991)
Biol Cell
, vol.1
, pp. 57-65
-
-
Cordeau-Lossouam, L.1
Vayssière, J.L.2
Larcher, J.C.3
Gros, F.4
Croizat, B.5
-
204
-
-
0027055816
-
Participation of the mitochondrial genome in the differentiation of neuroblastoma cells
-
[204] Vayssière JL, Cordeau-Lossouam L, Larcher JC, Baseville M, Gros F, Croizat B. Participation of the mitochondrial genome in the differentiation of neuroblastoma cells. In vitro Cell Dev Biol 1992, 28A: 763-72.
-
(1992)
In Vitro Cell Dev Biol
, vol.28
, pp. 763-772
-
-
Vayssière, J.L.1
Cordeau-Lossouam, L.2
Larcher, J.C.3
Baseville, M.4
Gros, F.5
Croizat, B.6
-
205
-
-
0032519872
-
Neuronal basic helix-loop-helix proteins (NEX, NeuroD, NDRF): Spatiotemporal expression and targeted disruption of the Nex gene in transgenic mice
-
[205] Schwab MH, Druffel-Augustin S, Gass P, et al. Neuronal basic helix-loop-helix proteins (NEX, NeuroD, NDRF): spatiotemporal expression and targeted disruption of the Nex gene in transgenic mice. J Neurosci 1998; 18: 1408-18.
-
(1998)
J Neurosci
, vol.18
, pp. 1408-1418
-
-
Schwab, M.H.1
Druffel-Augustin, S.2
Gass, P.3
-
206
-
-
0034657665
-
Neuronal basic helix-loophelix proteins (NEX and BETA/NeuroD) regulate terminal granule cell differentiation in the hippocampus
-
[206] Schwab MH, Bartholomae A, Heimrich B, et al. Neuronal basic helix-loophelix proteins (NEX and BETA/NeuroD) regulate terminal granule cell differentiation in the hippocampus. J Neurosci 2000; 20: 3714-24.
-
(2000)
J Neurosci
, vol.20
, pp. 3714-3724
-
-
Schwab, M.H.1
Bartholomae, A.2
Heimrich, B.3
-
207
-
-
28044442918
-
Pyramidal neurons of upper cortical layers generated by NEX-positive progenitor cells in the subventricular zone
-
[207] Wu SX, Goebbels S, Nakamura K, et al. Pyramidal neurons of upper cortical layers generated by NEX-positive progenitor cells in the subventricular zone. Proc Natl Acad Sci USA 2005; 102: 17172-7.
-
(2005)
Proc Natl Acad Sci USA
, vol.102
, pp. 17172-17177
-
-
Wu, S.X.1
Goebbels, S.2
Nakamura, K.3
-
208
-
-
0037080366
-
Constitutive overexpression of the basic helix-loop-helix Nex/MATH-2 transcription factor promotes neuronal differentiation of PC12 cells and neurite regeneration
-
[208] Uittenbogaard M, Chiaramello A. Constitutive overexpression of the basic helix-loop-helix Nex/MATH-2 transcription factor promotes neuronal differentiation of PC12 cells and neurite regeneration. J Neurosci Res 2002; 67: 235-45.
-
(2002)
J Neurosci Res
, vol.67
, pp. 235-245
-
-
Uittenbogaard, M.1
Chiaramello, A.2
-
209
-
-
10644257319
-
Expression profiling upon Nex1/MATH-2-mediated neuritogenesis in PC12 cells and its implication in regeneration
-
[209] Uittenbogaard M, Chiaramello A. Expression profiling upon Nex1/MATH-2-mediated neuritogenesis in PC12 cells and its implication in regeneration. J Neurochem 2004; 91: 1332-43.
-
(2004)
J Neurochem
, vol.91
, pp. 1332-1343
-
-
Uittenbogaard, M.1
Chiaramello, A.2
-
210
-
-
73949151487
-
NeuroD6 genomic signature bridging neuronal differentiation to survival via the molecular chaperone network
-
[210] Uittenbogaard M, Baxter KK, Chiaramello A. NeuroD6 genomic signature bridging neuronal differentiation to survival via the molecular chaperone network. J Neurosci 2010a; 88: 33-54.
-
(2010)
J Neurosci
, vol.88
, pp. 33-54
-
-
Uittenbogaard, M.1
Baxter, K.K.2
Chiaramello, A.3
-
211
-
-
84864819110
-
The neurogenic basic helix-loop-helix transcription factor NeuroD6 enhances mitochondrial biogenesis and bioenergetics to confer tolerance of neuronal PC12-NeuroD6 cells to the mitochondrial stressor rotenone
-
[211] Baxter KK, Uittenbogaard M, Chiaramello A. The neurogenic basic helix-loop-helix transcription factor NeuroD6 enhances mitochondrial biogenesis and bioenergetics to confer tolerance of neuronal PC12-NeuroD6 cells to the mitochondrial stressor rotenone. Exp Cell Res 2012; 318: 2200-14.
-
(2012)
Exp Cell Res
, vol.318
, pp. 2200-2214
-
-
Baxter, K.K.1
Uittenbogaard, M.2
Chiaramello, A.3
-
212
-
-
0023905661
-
The establishment of polarity by hippocampal neurons in culture
-
[212] Dotti CG, Sullivan CA, Banker GA. The establishment of polarity by hippocampal neurons in culture. J Neurosci 1988; 8: 1454-68.
-
(1988)
J Neurosci
, vol.8
, pp. 1454-1468
-
-
Dotti, C.G.1
Sullivan, C.A.2
Banker, G.A.3
-
213
-
-
84870052893
-
The neurogenic basic helix-loop-helix transcription factor NeuroD6 confers tolerance to oxidative stress by triggering an antioxidant response and sustaining the mitochondrial biomass
-
[213] Uittenbogaard M, Baxter KK, Chiaramello A. The neurogenic basic helix-loop-helix transcription factor NeuroD6 confers tolerance to oxidative stress by triggering an antioxidant response and sustaining the mitochondrial biomass. ASN Neuro 2010b; 2: e00034.
-
(2010)
ASN Neuro
, vol.2
-
-
Uittenbogaard, M.1
Baxter, K.K.2
Chiaramello, A.3
-
214
-
-
58349112352
-
Mitochondrial remodeling in differentiating neuroblasts
-
[214] Voccoli V, Colombaioni L. Mitochondrial remodeling in differentiating neuroblasts. Brain Res 2009; 152: 15-29.
-
(2009)
Brain Res
, vol.152
, pp. 15-29
-
-
Voccoli, V.1
Colombaioni, L.2
-
215
-
-
70349592516
-
The relationship between pluripotency and mitochondrial DNA proliferation during early embryo development and embryonic stem cell differentiation
-
[215] Facucho-Oliveira JM, St John JC. The relationship between pluripotency and mitochondrial DNA proliferation during early embryo development and embryonic stem cell differentiation. Stem Cell Rev Rep 2009; 5: 140-58.
-
(2009)
Stem Cell Rev Rep
, vol.5
, pp. 140-158
-
-
Facucho-Oliveira, J.M.1
St John, J.C.2
-
216
-
-
0034028901
-
Quantitative expression of Oct-3/4 defines differentiation or self-renewal of ES cells
-
[216] Niwa H, Miyazaki J, Smith AG. Quantitative expression of Oct-3/4 defines differentiation or self-renewal of ES cells. Nat Genet 2000; 24: 372-6.
-
(2000)
Nat Genet
, vol.24
, pp. 372-376
-
-
Niwa, H.1
Miyazaki, J.2
Smith, A.G.3
-
217
-
-
0038143611
-
Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells
-
[217] Chambers I, Colby D, Robertson M, et al. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 2003; 113: 643-55.
-
(2003)
Cell
, vol.113
, pp. 643-655
-
-
Chambers, I.1
Colby, D.2
Robertson, M.3
-
218
-
-
27744563079
-
The expression of mitochondrial DNA transcription factors during early cardiomyocyte in vitro differentiation from human embryonic stem cells
-
[218] St John JC, Ramalho-Santos J, Gray HL, et al. The expression of mitochondrial DNA transcription factors during early cardiomyocyte in vitro differentiation from human embryonic stem cells. Cloning Stem Cells 2005; 7: 141-53.
-
(2005)
Cloning Stem Cells
, vol.7
, pp. 141-153
-
-
St John, J.C.1
Ramalho-Santos, J.2
Gray, H.L.3
-
219
-
-
37249083079
-
Mitochondrial DNA replication during differentiation of murine embryonic stem cells
-
[219] Facucho-Oliveira JM, Alderson J, Spikings EC, Egginton S, St John JC. Mitochondrial DNA replication during differentiation of murine embryonic stem cells. J Cell Sci 2007; 120: 4025-34.
-
(2007)
J Cell Sci
, vol.120
, pp. 4025-4034
-
-
Facucho-Oliveira, J.M.1
Alderson, J.2
Spikings, E.C.3
Egginton, S.4
St John, J.C.5
-
220
-
-
34547115028
-
A dominant-negative form of mouse SOX2 induces trophectoderm differentiation and progressive polyploidy in mouse embryonic stem cells
-
[220] Li J, Pan G, Cui K, Liu Y, Xu S, Pei D. A dominant-negative form of mouse SOX2 induces trophectoderm differentiation and progressive polyploidy in mouse embryonic stem cells. J Biol Chem 2007; 282: 19481-92.
-
(2007)
J Biol Chem
, vol.282
, pp. 19481-19492
-
-
Li, J.1
Pan, G.2
Cui, K.3
Liu, Y.4
Xu, S.5
Pei, D.6
-
221
-
-
33846501510
-
Mitochondrial oxidative metabolism is required for the cardiac differentiation of stem cells
-
[221] Chung S, Dzeja PP, Faustino RS, Perrez-Terzic C, Behfar A, Terzic A. Mitochondrial oxidative metabolism is required for the cardiac differentiation of stem cells. Nat Clin Pract Cardiov Med 2007; 4: S60-7.
-
(2007)
Nat Clin Pract Cardiov Med
, vol.4
, pp. 7-60
-
-
Chung, S.1
Dzeja, P.P.2
Faustino, R.S.3
Perrez-Terzic, C.4
Behfar, A.5
Terzic, A.6
-
222
-
-
33846420629
-
A high glycolytic flux supports the proliferative potential of murine embryonic stem cells
-
[222] Kondoh H, Lleonart ME, Nakashima Y, et al. A high glycolytic flux supports the proliferative potential of murine embryonic stem cells. Antioxid Redox Signal 2007; 9: 293-9.
-
(2007)
Antioxid Redox Signal
, vol.9
, pp. 293-299
-
-
Kondoh, H.1
Lleonart, M.E.2
Nakashima, Y.3
-
223
-
-
67651119928
-
Mitochondria: Determinants of stem cell fate?
-
[223] Parket GC, Acsadi G, Brenner CA. Mitochondria: Determinants of stem cell fate? Stem Cells Dev 2009; 18: 803-6.
-
(2009)
Stem Cells Dev
, vol.18
, pp. 803-806
-
-
Parket, G.C.1
Acsadi, G.2
Brenner, C.A.3
-
224
-
-
0030601129
-
Retinoic acid promotes neural and represses mesodermal gene expression in mouse embryonic stem cells in culture
-
[224] Bain G, Ray WJ, Yao M, Gottlieb DI. Retinoic acid promotes neural and represses mesodermal gene expression in mouse embryonic stem cells in culture. Biochem Biophys Res Comm 1996; 223: 691-4.
-
(1996)
Biochem Biophys Res Comm
, vol.223
, pp. 691-694
-
-
Bain, G.1
Ray, W.J.2
Yao, M.3
Gottlieb, D.I.4
-
225
-
-
0031409876
-
Retinoic acid mediates Pax6 expression during in vitro differentiation of embryonic stem cells
-
[225] Gajovic S, St-Onge L, Yokota Y, Gruss P. Retinoic acid mediates Pax6 expression during in vitro differentiation of embryonic stem cells. Differentiation 1997; 62: 187-92.
-
(1997)
Differentiation
, vol.62
, pp. 187-192
-
-
Gajovic, S.1
St-Onge, L.2
Yokota, Y.3
Gruss, P.4
-
226
-
-
4344601961
-
Differentiation of mouse embryonic stem cells into a defined neuronal lineage
-
[226] Bibel M, Richter J, Schrenk K, et al. Differentiation of mouse embryonic stem cells into a defined neuronal lineage. Nat Neurosci 2004; 7: 1003-9.
-
(2004)
Nat Neurosci
, vol.7
, pp. 1003-1009
-
-
Bibel, M.1
Richter, J.2
Schrenk, K.3
-
227
-
-
40349091595
-
Expression profiles of Wnt genes during neural differentiation of mouse embryonic stem cells
-
[227] Nordin N, Li M, Mason JO. Expression profiles of Wnt genes during neural differentiation of mouse embryonic stem cells. Cloning Stem Cells 2008; 10: 37-48.
-
(2008)
Cloning Stem Cells
, vol.10
, pp. 37-48
-
-
Nordin, N.1
Li, M.2
Mason, J.O.3
-
229
-
-
79951963668
-
Roles of mitochondria in human disease
-
[229] Duchen MR, Szabadkai G. Roles of mitochondria in human disease. Essays Biochem 2010; 47: 115-37.
-
(2010)
Essays Biochem
, vol.47
, pp. 115-137
-
-
Duchen, M.R.1
Szabadkai, G.2
-
231
-
-
0024242545
-
Mitochondrial DNA mutation associated with Leber’s hereditary optic neuropathy
-
[231] Wallace DC, Singh G, Lott MT, et al. Mitochondrial DNA mutation associated with Leber’s hereditary optic neuropathy. Science 1988a; 242: 1427-30.
-
(1988)
Science
, vol.242
, pp. 1427-1430
-
-
Wallace, D.C.1
Singh, G.2
Lott, M.T.3
-
232
-
-
0024163051
-
Familial mitochondrial encephalopathy (MERRF): Genetic, pathophysiological, and biochemical characterization of a mitochondrial DNA disease
-
[232] Wallace DC, Zheng X, Lott MT, et al. Familial mitochondrial encephalopathy (MERRF): genetic, pathophysiological, and biochemical characterization of a mitochondrial DNA disease. Cell 1988b; 55: 601-10.
-
(1988)
Cell
, vol.55
, pp. 601-610
-
-
Wallace, D.C.1
Zheng, X.2
Lott, M.T.3
-
233
-
-
0033525773
-
Mitochondrial diseases in man and mouse
-
[233] Wallace DC. Mitochondrial diseases in man and mouse. Science 1999; 283: 1482-8.
-
(1999)
Science
, vol.283
, pp. 1482-1488
-
-
Wallace, D.C.1
-
234
-
-
0032833421
-
Mitochondrial DNA variation in human evolution and disease
-
[234] Wallace DC, Brown MD, Lott MT. Mitochondrial DNA variation in human evolution and disease. Gene 1999; 238: 211-30.
-
(1999)
Gene
, vol.238
, pp. 211-230
-
-
Wallace, D.C.1
Brown, M.D.2
Lott, M.T.3
-
235
-
-
0025267548
-
A new mitochondrial disease associated with mitochondrial DNA heteroplasmy
-
[235] Holt IJ, Harding AE, Petty RK, Morgan-Hughes JA. A new mitochondrial disease associated with mitochondrial DNA heteroplasmy. Am J Hum Genet 1990; 46: 428-33.
-
(1990)
Am J Hum Genet
, vol.46
, pp. 428-433
-
-
Holt, I.J.1
Harding, A.E.2
Petty, R.K.3
Morgan-Hughes, J.A.4
-
236
-
-
0028574053
-
Mitochondrial DNA sequence variation inhuman evolution and disease
-
[236] Wallace DC. Mitochondrial DNA sequence variation inhuman evolution and disease. Proc Natl Acad Sci USA 1994; 91: 8739-46.
-
(1994)
Proc Natl Acad Sci USA
, vol.91
, pp. 8739-8746
-
-
Wallace, D.C.1
-
238
-
-
0028140454
-
Distribution of wild type and common deletion forms of mtDNA in normal and respiration-deficient muscle fibers from patients with mitochondrial myopathy
-
[238] Sciacco M, Bonilla E, Schon EA, DiMauro S, Moraes CT. Distribution of wild type and common deletion forms of mtDNA in normal and respiration-deficient muscle fibers from patients with mitochondrial myopathy. Hum Mol Genet 1994; 3: 13-9.
-
(1994)
Hum Mol Genet
, vol.3
, pp. 13-19
-
-
Sciacco, M.1
Bonilla, E.2
Schon, E.A.3
Dimauro, S.4
Moraes, C.T.5
-
239
-
-
0029587469
-
Molecular genetic aspects of human mitochondrial disorders
-
[239] Larsson NG, Clayton DA. Molecular genetic aspects of human mitochondrial disorders. Annu Rev Genet 1995; 29: 151-78.
-
(1995)
Annu Rev Genet
, vol.29
, pp. 151-178
-
-
Larsson, N.G.1
Clayton, D.A.2
-
241
-
-
79959305691
-
Przedborski. Mitochondria: The next (neurode) generation
-
[241] Schon EA, Przedborski. Mitochondria: the next (neurode) generation. Neuron 2011; 70: 1033-53.
-
(2011)
Neuron
, vol.70
, pp. 1033-1053
-
-
Schon, E.A.1
-
242
-
-
48249156188
-
Mitochondrial disorders in the nervous system
-
[242] DiMauro S, Schon EA. Mitochondrial disorders in the nervous system. Annu Rev Neurosci 2008; 31: 91-123.
-
(2008)
Annu Rev Neurosci
, vol.31
, pp. 91-123
-
-
Dimauro, S.1
Schon, E.A.2
-
243
-
-
33745410626
-
Mitochondrial disease
-
[243] Schapira AH. Mitochondrial disease. Lancet 2006; 368: 70-82.
-
(2006)
Lancet
, vol.368
, pp. 70-82
-
-
Schapira, A.H.1
-
244
-
-
79953311631
-
Inherited mitochondrial neuropathies
-
[244] Finsterer J. Inherited mitochondrial neuropathies. J Neurol Sci 2011; 304: 9-16.
-
(2011)
J Neurol Sci
, vol.304
, pp. 9-16
-
-
Finsterer, J.1
-
245
-
-
0025666322
-
A mutation in the tRNA(Leu)(UUR) gene associated with the MELAS subgroup of mitochondrial encephalopathies
-
[245] Goto Y, Nonaka I, Horai S. A mutation in the tRNA(Leu)(UUR) gene associated with the MELAS subgroup of mitochondrial encephalopathies. Nature 1990; 348: 651-3.
-
(1990)
Nature
, vol.348
, pp. 651-653
-
-
Goto, Y.1
Nonaka, I.2
Horai, S.3
-
246
-
-
0025534162
-
A point mutation in the mitochondrial tRNA(Leu)(UUR) gene in MELAS (mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes)
-
[246] Kobayashi Y, Momoi MY, Tominaga K, et al. A point mutation in the mitochondrial tRNA(Leu)(UUR) gene in MELAS (mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes). Biochem Biophys Res Commun 1990; 173: 816-22.
-
(1990)
Biochem Biophys Res Commun
, vol.173
, pp. 816-822
-
-
Kobayashi, Y.1
Momoi, M.Y.2
Tominaga, K.3
-
247
-
-
0026752276
-
The mitochondrial tRNA(Leu)(UUR) mutation in MELAS: A model for pathogenesis
-
[247] Schon EA, Koga Y, Davidson M, Moraes CT, King MP. The mitochondrial tRNA(Leu)(UUR) mutation in MELAS: a model for pathogenesis. Biochem Biophys Acta 1992; 1101: 206-9.
-
(1992)
Biochem Biophys Acta
, vol.1101
, pp. 206-209
-
-
Schon, E.A.1
Koga, Y.2
Davidson, M.3
Moraes, C.T.4
King, M.P.5
-
248
-
-
0025992003
-
Respirationdeficient cells are caused by a single point mutation in the mitochondrial tRNLeu (UUR) gene in mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS)
-
[248] Kobayashi Y, Momoi MY, Tominaga K, et al. Respirationdeficient cells are caused by a single point mutation in the mitochondrial tRNLeu (UUR) gene in mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS). Am J Hum Genet 1991; 49: 590-9.
-
(1991)
Am J Hum Genet
, vol.49
, pp. 590-599
-
-
Kobayashi, Y.1
Momoi, M.Y.2
Tominaga, K.3
-
249
-
-
0028107258
-
Mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS): Current concepts
-
[249] Hirano M, Pavlakis SG. Mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS): current concepts. J Child Neurol 1994; 9: 4-13.
-
(1994)
J Child Neurol
, vol.9
, pp. 4-13
-
-
Hirano, M.1
Pavlakis, S.G.2
-
250
-
-
54949142139
-
Mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes: Basic concepts, clinical phenol type, and therapeutic management of MELAS syndrome
-
[250] Sproule DM, Kaufmann P. Mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes: basic concepts, clinical phenol type, and therapeutic management of MELAS syndrome. Ann NY Acad Sci 2008; 1142: 133-58.
-
(2008)
Ann NY Acad Sci
, vol.1142
, pp. 133-158
-
-
Sproule, D.M.1
Kaufmann, P.2
-
251
-
-
71849116489
-
The mitochondrial brain: From mitochondrial genome to neurodegeneration
-
[251] Turnbull HE, Lax NZ, Diodato D, Ansorge O, Turnbull DM. The mitochondrial brain: From mitochondrial genome to neurodegeneration. Biochem Byophys Acta 2010; 1802: 111-21.
-
(2010)
Biochem Byophys Acta
, vol.1802
, pp. 111-121
-
-
Turnbull, H.E.1
Lax, N.Z.2
Diodato, D.3
Ansorge, O.4
Turnbull, D.M.5
-
252
-
-
0025368281
-
Myoclonic epilepsy and ragger-red fiber disease (MERRF) is associate with a mitochondrial DNA tRNA(Lys) mutation
-
[252] Shoffner JM, Lott MT, Lezza AM, Seibel P, Ballinger SW, Wallace DC. Myoclonic epilepsy and ragger-red fiber disease (MERRF) is associate with a mitochondrial DNA tRNA(Lys) mutation. Cell 1990; 61:931-7.
-
(1990)
Cell
, vol.61
, pp. 931-937
-
-
Shoffner, J.M.1
Lott, M.T.2
Lezza, A.M.3
Seibel, P.4
Ballinger, S.W.5
Wallace, D.C.6
-
253
-
-
0031005697
-
Mitochondrial dysfunction with myoclonus epilepsy and ragged-red fibers point mutation in nerve, muscle, and adipose tissue of a patient with multiple symmetric lipomatosis
-
[253] Naumann M, Kiefer R, Toyka KV, Sommer C, Seibel P, Reichmann H. Mitochondrial dysfunction with myoclonus epilepsy and ragged-red fibers point mutation in nerve, muscle, and adipose tissue of a patient with multiple symmetric lipomatosis. Muscle Nerve 1997; 20: 833-9.
-
(1997)
Muscle Nerve
, vol.20
, pp. 833-839
-
-
Naumann, M.1
Kiefer, R.2
Toyka, K.V.3
Sommer, C.4
Seibel, P.5
Reichmann, H.6
-
255
-
-
0030791665
-
Molecular pathology of MELAS and MERRF. The relationship between mutation load and clinical phenotypes
-
[255] Chinnery PF, Howell N, Lightowlers RN, Turnbull DM. Molecular pathology of MELAS and MERRF. The relationship between mutation load and clinical phenotypes. Brain 1997; 120: 1713-21.
-
(1997)
Brain
, vol.120
, pp. 1713-1721
-
-
Chinnery, P.F.1
Howell, N.2
Lightowlers, R.N.3
Turnbull, D.M.4
-
256
-
-
0036372802
-
Clinical features and genetics of myoclonic epilepsy with ragged red fibers
-
[256] DiMauro S, Hirano M, Kaufman P, et al. Clinical features and genetics of myoclonic epilepsy with ragged red fibers. Adv Neurol 2002; 89: 217-29.
-
(2002)
Adv Neurol
, vol.89
, pp. 217-229
-
-
Dimauro, S.1
Hirano, M.2
Kaufman, P.3
-
257
-
-
21144446106
-
PGC-1alpha deficiency causes multi-system energy metabolic derangements: Muscle dysfunction, abnormal weight control and hepatic steatosis
-
[257] Leone TC, Lehman JJ, Finck BN, et al. PGC-1alpha deficiency causes multi-system energy metabolic derangements: muscle dysfunction, abnormal weight control and hepatic steatosis. PLoS Biol 2005; 3: e101.
-
(2005)
Plos Biol
, vol.3
, pp. 101
-
-
Leone, T.C.1
Lehman, J.J.2
Finck, B.N.3
-
258
-
-
78649819597
-
Neuronal inactivation of peroxisome proliferator-activated receptor gamma coactivator 1alpha (PGC-1alpha) protects mice from diet-induced obesity and leads to degenerative lesions
-
[258] Ma D, Li S, Lucas EK, Cowell RM, Lin JD. Neuronal inactivation of peroxisome proliferator-activated receptor gamma coactivator 1alpha (PGC-1alpha) protects mice from diet-induced obesity and leads to degenerative lesions. J Biol Chem 2010; 285: 39087-95.
-
(2010)
J Biol Chem
, vol.285
, pp. 39087-39095
-
-
Ma, D.1
Li, S.2
Lucas, E.K.3
Cowell, R.M.4
Lin, J.D.5
-
259
-
-
0030919567
-
Oxidative damage and metabolic dysfunction in Huntington’s disease: Selective vulnerability of the basal ganglia
-
[259] Browne SE, Bowling AC, MacGarvey U, et al. Oxidative damage and metabolic dysfunction in Huntington’s disease: selective vulnerability of the basal ganglia. Annu Neurol 1997; 41: 646-53.
-
(1997)
Annu Neurol
, vol.41
, pp. 646-653
-
-
Browne, S.E.1
Bowling, A.C.2
Macgarvey, U.3
-
260
-
-
0029875381
-
Mitochondrial defect in Huntington’s disease caudate nucleus
-
[260] Gu M, Gash MT, Mann VM, Javoy-Agid F, Cooper JM, Schapir AH. Mitochondrial defect in Huntington’s disease caudate nucleus. Annu Neurol 1996; 39: 385-9.
-
(1996)
Annu Neurol
, vol.39
, pp. 385-389
-
-
Gu, M.1
Gash, M.T.2
Mann, V.M.3
Javoy-Agid, F.4
Cooper, J.M.5
Schapir, A.H.6
-
261
-
-
26444441008
-
HD CAG repeat implicates a dominant property of huntingtin in mitochondrial energy metabolism
-
[261] Seong IS, Ivanova E, Lee JM, et al. HD CAG repeat implicates a dominant property of huntingtin in mitochondrial energy metabolism. Hum Mol Genet 2005; 14: 2871-80.
-
(2005)
Hum Mol Genet
, vol.14
, pp. 2871-2880
-
-
Seong, I.S.1
Ivanova, E.2
Lee, J.M.3
-
262
-
-
33749042331
-
Transcriptional repression by PGC-1alpha by mutant huntingtin leads to mitochondrial dysfunction and neurodegeneration
-
[262] Cui L, Jeong H, Borovecki F, Parkhurst CN, Tanese N, Krainc D. Transcriptional repression by PGC-1alpha by mutant huntingtin leads to mitochondrial dysfunction and neurodegeneration. Cell 2006; 127: 59-69.
-
(2006)
Cell
, vol.127
, pp. 59-69
-
-
Cui, L.1
Jeong, H.2
Borovecki, F.3
Parkhurst, C.N.4
Tanese, N.5
Krainc, D.6
-
263
-
-
33750437278
-
Thermoregulatory and metabolic defects in Huntington’s disease transgenic mice implicate PGC-1alpha in Huntington’s disease neurodegeneration
-
[263] Weydt P, Pineda VV, Torrence AE, et al. Thermoregulatory and metabolic defects in Huntington’s disease transgenic mice implicate PGC-1alpha in Huntington’s disease neurodegeneration. Cell Metab 2006; 4: 349-62.
-
(2006)
Cell Metab
, vol.4
, pp. 349-362
-
-
Weydt, P.1
Pineda, V.V.2
Torrence, A.E.3
-
264
-
-
67650061723
-
Impaired PGC-1alpha function in muscle in Huntington’s disease
-
[264] Chaturvedi RK, Adhihetty P, Shukla S, et al. Impaired PGC-1alpha function in muscle in Huntington’s disease. Hum Mol Genet 2009; 18: 3048-65.
-
(2009)
Hum Mol Genet
, vol.18
, pp. 3048-3065
-
-
Chaturvedi, R.K.1
Adhihetty, P.2
Shukla, S.3
-
265
-
-
58649094617
-
The gene coding for PGC-1alpha modifies age at onset in Huntington’s disease
-
[265] Weydt P, Soyal SM, Gellera C, et al. The gene coding for PGC-1alpha modifies age at onset in Huntington’s disease. Mol Neurodegener 2009; 4, 3.
-
(2009)
Mol Neurodegener
, vol.4
, pp. 3
-
-
Weydt, P.1
Soyal, S.M.2
Gellera, C.3
-
266
-
-
79959986144
-
Peroxisome-proliferatoractivated receptor gamma coactivator 1 {alpha} contributes to dysmyelination in experimental models of Huntington’s disease
-
[266] Xiang Z, Valenza M, Cui L, et al. Peroxisome-proliferatoractivated receptor gamma coactivator 1 {alpha} contributes to dysmyelination in experimental models of Huntington’s disease. J Neurosci 2011; 31: 9544-53.
-
(2011)
J Neurosci
, vol.31
, pp. 9544-9553
-
-
Xiang, Z.1
Valenza, M.2
Cui, L.3
-
267
-
-
77958072667
-
PGC-1alpha, a potential therapeutic target for early intervention in Parkinson’s disease
-
Zheng B, Liao Z, Locascio JJ, et al. PGC-1alpha, a potential therapeutic target for early intervention in Parkinson’s disease. Sci Transl Med 2010; 2, 52-73.
-
(2010)
Sci Transl Med
, vol.2
, pp. 52-73
-
-
Zheng, B.1
Liao, Z.2
Locascio, J.J.3
-
268
-
-
79952303794
-
PARIS (ZNF746) repression of PGC-1α contributes to neurodegeneration in Parkinson’s disease
-
[268] Shin JH, Ko HS, Kang H, et al. PARIS (ZNF746) repression of PGC-1α contributes to neurodegeneration in Parkinson’s disease. Cell 2011; 144: 689-702.
-
(2011)
Cell
, vol.144
, pp. 689-702
-
-
Shin, J.H.1
Ko, H.S.2
Kang, H.3
-
269
-
-
0036899102
-
KRAB zinc finger proteins: An analysis of the molecular mechanisms governing their increase in numbers and complexity during evolution
-
[269] Looman C, Abrink M, Mark C, Hellman L. KRAB zinc finger proteins: an analysis of the molecular mechanisms governing their increase in numbers and complexity during evolution. Mol Biol Evol 2002; 19: 2118-30.
-
(2002)
Mol Biol Evol
, vol.19
, pp. 2118-2130
-
-
Looman, C.1
Abrink, M.2
Mark, C.3
Hellman, L.4
-
270
-
-
33746089859
-
Mitochondrial abnormalities and oxidative imbalance in Alzheimer disease
-
[270] Zhu X, Perry G, Moreira PL, et al. Mitochondrial abnormalities and oxidative imbalance in Alzheimer disease. J Alzheimers Dis 2006; 9: 147-53.
-
(2006)
J Alzheimers Dis
, vol.9
, pp. 147-153
-
-
Zhu, X.1
Perry, G.2
Moreira, P.L.3
-
271
-
-
0035341254
-
Mitochondrial abnormalities in Alzheimer’s disease
-
[271] Hirai K, Aliev G, Nunomura A, et al. Mitochondrial abnormalities in Alzheimer’s disease. J Neurosci 2001; 21: 3017-23.
-
(2001)
J Neurosci
, vol.21
, pp. 3017-3023
-
-
Hirai, K.1
Aliev, G.2
Nunomura, A.3
-
272
-
-
58049218922
-
Amyloid-beta overproduction causes abnormal mitochondrial dynamics via differential modulation of mitochondrial fission/fusion proteins
-
[272] Wang X, Su B, Siedlack SL, et al. Amyloid-beta overproduction causes abnormal mitochondrial dynamics via differential modulation of mitochondrial fission/fusion proteins. Proc Natl Acad Sci USA 2008; 105: 19318-23.
-
(2008)
Proc Natl Acad Sci USA
, vol.105
, pp. 19318-19323
-
-
Wang, X.1
Su, B.2
Siedlack, S.L.3
-
273
-
-
62449166389
-
PGC-1alpha expression decreases in the Alzheimer disease brain as a function of dementia
-
[273] Qin W, Haroutunian V, Katsel P, et al. PGC-1alpha expression decreases in the Alzheimer disease brain as a function of dementia. Arch Neurol 2009; 66: 352-61.
-
(2009)
Arch Neurol
, vol.66
, pp. 352-361
-
-
Qin, W.1
Haroutunian, V.2
Katsel, P.3
-
274
-
-
84855687153
-
Impaired mitochondrial biogenesis contributes to mitochondrial dysfunction in Alzheimer’s disease
-
[274] Sheng B, Wang X, Su B, et al. Impaired mitochondrial biogenesis contributes to mitochondrial dysfunction in Alzheimer’s disease. J Neurochem 2011; 120: 419-29.
-
(2011)
J Neurochem
, vol.120
, pp. 419-429
-
-
Sheng, B.1
Wang, X.2
Su, B.3
-
275
-
-
0035855905
-
CREB regulates hepatic gluconeogenesis through the coactivator PGC-1
-
[275] Herzig S, Long F, Jhala US, et al. CREB regulates hepatic gluconeogenesis through the coactivator PGC-1. Nature 2001; 413: 179-83.
-
(2001)
Nature
, vol.413
, pp. 179-183
-
-
Herzig, S.1
Long, F.2
Jhala, U.S.3
-
276
-
-
0033541589
-
Impaired phosphorylation of cyclic AMP response element binding protein in the hippocampus of dementia of the Alzheimer type
-
[276] Yamamoto-Sasaki M, Ozawa H, Saito T, Rosler M, Riederer P. Impaired phosphorylation of cyclic AMP response element binding protein in the hippocampus of dementia of the Alzheimer type. Brain Res 1999; 824: 300-3.
-
(1999)
Brain Res
, vol.824
, pp. 300-303
-
-
Yamamoto-Sasaki, M.1
Ozawa, H.2
Saito, T.3
Rosler, M.4
Riederer, P.5
-
277
-
-
79959895924
-
Therapy for mitochondrial disorders: Little proof, high research activity, some promise
-
[277] Suomalainen A. Therapy for mitochondrial disorders: Little proof, high research activity, some promise. Sem Fetal Neonatal Med 2011; 16: 236-40.
-
(2011)
Sem Fetal Neonatal Med
, vol.16
, pp. 236-240
-
-
Suomalainen, A.1
-
278
-
-
77953668597
-
Making the most of what you’ve got: Optimizing residual OXPHOS function in mitochondrial diseases
-
[278] Moraes CT. Making the most of what you’ve got: optimizing residual OXPHOS function in mitochondrial diseases. EMBO Mol Med 2009; 1: 357-9.
-
(2009)
EMBO Mol Med
, vol.1
, pp. 357-359
-
-
Moraes, C.T.1
-
279
-
-
34447338862
-
PGC-1α/β upregulation is associated with improved oxidative phosphorylation in cells harboring nonsense mtDNA mutations
-
[279] Srivastava S, Barrett JN, Moraes CT. PGC-1α/β upregulation is associated with improved oxidative phosphorylation in cells harboring nonsense mtDNA mutations. Hum Mol Genet 2007; 16: 993-1005.
-
(2007)
Hum Mol Genet
, vol.16
, pp. 993-1005
-
-
Srivastava, S.1
Barrett, J.N.2
Moraes, C.T.3
-
280
-
-
65449133905
-
PGC-1α/β induced expression partially compensates for respiratory chain defects in cells from patients with mitochondrial disorders
-
[280] Srivastava S, Diaz F, Iommarini L, Aure K, Lombes A, Moraes CT. PGC-1α/β induced expression partially compensates for respiratory chain defects in cells from patients with mitochondrial disorders. Hum Mol Genet 2009; 18: 1805-12.
-
(2009)
Hum Mol Genet
, vol.18
, pp. 1805-1812
-
-
Srivastava, S.1
Diaz, F.2
Iommarini, L.3
Aure, K.4
Lombes, A.5
Moraes, C.T.6
-
281
-
-
66349120223
-
Endurance exercise is protective for mice with mitochondrial myopathy
-
[281] Wenz T, Diaz F, Hernandez D, Moraes CT. Endurance exercise is protective for mice with mitochondrial myopathy. J Appl Physiol 2009; 106: 1712-9.
-
(2009)
J Appl Physiol
, vol.106
, pp. 1712-1719
-
-
Wenz, T.1
Diaz, F.2
Hernandez, D.3
Moraes, C.T.4
-
282
-
-
9644294246
-
Implications of exercise training in mtDNA defects-use it or lose it?
-
[282] Taivassalo T, Haller RG. Implications of exercise training in mtDNA defects-use it or lose it? Biochem Biophys Acta 2004; 1659: 221-31.
-
(2004)
Biochem Biophys Acta
, vol.1659
, pp. 221-231
-
-
Taivassalo, T.1
Haller, R.G.2
-
283
-
-
28844479420
-
Exercise and training in mitochondrial myopathies
-
[283] Taivassalo T, Haller RG. Exercise and training in mitochondrial myopathies. Med Sci Sports Exerc 2005; 37: 2094-101.
-
(2005)
Med Sci Sports Exerc
, vol.37
, pp. 2094-2101
-
-
Taivassalo, T.1
Haller, R.G.2
-
284
-
-
56349140990
-
Mouse models of oxidative phosphorylation defects: Powerful tools to study the pathobiology of mitochondrial diseases
-
[284] Torraco A, Diaz F, Vempati UD, Moraes CT. Mouse models of oxidative phosphorylation defects: Powerful tools to study the pathobiology of mitochondrial diseases. Biochem Biophys Acta 2009; 1793: 171-80.
-
(2009)
Biochem Biophys Acta
, vol.1793
, pp. 171-180
-
-
Torraco, A.1
Diaz, F.2
Vempati, U.D.3
Moraes, C.T.4
-
285
-
-
59649115646
-
Mouse models of mitochondrial DNA defects and their relevance for human disease
-
[285] Tyynismaa H, Suomalainen A. Mouse models of mitochondrial DNA defects and their relevance for human disease. EMBO Reports 2009; 10: 137-43.
-
(2009)
EMBO Reports
, vol.10
, pp. 137-143
-
-
Tyynismaa, H.1
Suomalainen, A.2
-
286
-
-
24944447977
-
Mice lacking COX10 in skeletal muscle recapitulate the phenotype of progressive mitochondrial myopathies associated with cytochrome c oxidase deficiency
-
[286] Diaz F, Thomas CK, Garcia S, Hernandez D, Moraes CT. Mice lacking COX10 in skeletal muscle recapitulate the phenotype of progressive mitochondrial myopathies associated with cytochrome c oxidase deficiency. Hum Mol Genet 2005; 14: 2737-48.
-
(2005)
Hum Mol Genet
, vol.14
, pp. 2737-2748
-
-
Diaz, F.1
Thomas, C.K.2
Garcia, S.3
Hernandez, D.4
Moraes, C.T.5
-
287
-
-
0018819202
-
Fatal infantile mitochondrial myopathy and renal dysfunction due to cytochrome c oxidase deficiency
-
[287] DiMauro S, Mendell JR, Sahenk Z, et al. Fatal infantile mitochondrial myopathy and renal dysfunction due to cytochrome c oxidase deficiency. Neurology 1980; 30: 795-804.
-
(1980)
Neurology
, vol.30
, pp. 795-804
-
-
Dimauro, S.1
Mendell, J.R.2
Sahenk, Z.3
-
288
-
-
0020502324
-
Fatal infantile mitochondrial myopathy due to cytochrome c oxidase deficiency
-
[288] Minchom, PE, Dormer RL, Hughes IA, et al. Fatal infantile mitochondrial myopathy due to cytochrome c oxidase deficiency. J. Neurol. Sci. 1983; 60: 453-63.
-
(1983)
J. Neurol. Sci
, vol.60
, pp. 453-463
-
-
Minchom, P.E.1
Dormer, R.L.2
Hughes, I.A.3
-
289
-
-
0035831217
-
Involvement of mitochondrial ferredoxin and Cox15p in hydroxylation of heme O
-
[289] Barros MH, Carlson CG, Glerum DM, Tzagoloff A. Involvement of mitochondrial ferredoxin and Cox15p in hydroxylation of heme O. FEBS Lett 2001; 492: 133-38.
-
(2001)
FEBS Lett
, vol.492
, pp. 133-138
-
-
Barros, M.H.1
Carlson, C.G.2
Glerum, D.M.3
Tzagoloff, A.4
-
290
-
-
0037221950
-
Mutations in COX15 produce a defect in the mitochondrial heme biosynthetic pathway, causing early-onset fatal hypertrophic cardiomyopathy
-
[290] Antonicka H, Mattman A, Carlson CG, et al. Mutations in COX15 produce a defect in the mitochondrial heme biosynthetic pathway, causing early-onset fatal hypertrophic cardiomyopathy. Am J Hum Genet 2003; 72: 101-14.
-
(2003)
Am J Hum Genet
, vol.72
, pp. 101-114
-
-
Antonicka, H.1
Mattman, A.2
Carlson, C.G.3
-
291
-
-
29544449035
-
Biogenesis of cytochrome c oxidase
-
[291] Khalimonchuck O, Rödel G. Biogenesis of cytochrome c oxidase. Mitochondrion 2005; 5: 363-88.
-
(2005)
Mitochondrion
, vol.5
, pp. 363-388
-
-
Khalimonchuck, O.1
Rödel, G.2
-
292
-
-
79959314684
-
In vivo correction of COX deficiency by activation of the AMPK/PGC-1α
-
[292] Viscomi C, Bottani E, Civiletto G, et al. In vivo correction of COX deficiency by activation of the AMPK/PGC-1α. Cell Metab 2011; 14: 80-90.
-
(2011)
Cell Metab
, vol.14
, pp. 80-90
-
-
Viscomi, C.1
Bottani, E.2
Civiletto, G.3
-
293
-
-
33847304164
-
Increased longevity and refractoriness to Ca(2+)-dependent neurodegeneration in Surf1 knockout mice
-
[293] Dell’Agnello C, Leo S, Agostino A, et al. Increased longevity and refractoriness to Ca(2+)-dependent neurodegeneration in Surf1 knockout mice. Hum Mol Genet 2007; 16: 4310-444.
-
(2007)
Hum Mol Genet
, vol.16
, pp. 4310-4444
-
-
Dell’agnello, C.1
Leo, S.2
Agostino, A.3
-
294
-
-
77449139468
-
PGC-1α activation as a therapeutic approach in mitochondrial disease
-
[294] Wenz T. PGC-1α activation as a therapeutic approach in mitochondrial disease. IUBMB Life 2009; 6: 1051-62.
-
(2009)
IUBMB Life
, vol.6
, pp. 1051-1062
-
-
Wenz, T.1
-
296
-
-
26844431513
-
Dual and pan-peroxisome proliferator-activated receptors (PPAR) co-agonism: The bezafibrate lessons
-
[296] Tenenbaum A, Motro M, Fisman EZ. Dual and pan-peroxisome proliferator-activated receptors (PPAR) co-agonism: the bezafibrate lessons. Cardiovasc. Diabetol 2005; 4: 14.
-
(2005)
Cardiovasc. Diabetol
, vol.4
, pp. 14
-
-
Tenenbaum, A.1
Motro, M.2
Fisman, E.Z.3
-
297
-
-
28944446431
-
The many faces of PPARgamma
-
[297] Lehrke M, Lazar M. The many faces of PPARgamma. Cell 2005; 123: 993-9.
-
(2005)
Cell
, vol.123
, pp. 993-999
-
-
Lehrke, M.1
Lazar, M.2
-
299
-
-
33745266146
-
Efficacy of rosiglitazone in a genetically defined population with mild-to-moderate Alzheimer’s disease
-
[299] Risner M, Saunders AM, Altman JF, et al. Efficacy of rosiglitazone in a genetically defined population with mild-to-moderate Alzheimer’s disease. Pharmacogenomics J 2006; 6: 246-54.
-
(2006)
Pharmacogenomics J
, vol.6
, pp. 246-254
-
-
Risner, M.1
Saunders, A.M.2
Altman, J.F.3
-
300
-
-
50049118173
-
Activation of the PPAR/PGC-1alpha pathway prevents a bioenergetic deficit and effectively improves a mitochondrial myopathy phenotype
-
[300] Wenz T, Diaz F, Spiegelman BM, Moraes CT. Activation of the PPAR/PGC-1alpha pathway prevents a bioenergetic deficit and effectively improves a mitochondrial myopathy phenotype. Cell Metab 2008; 8: 249-56.
-
(2008)
Cell Metab
, vol.8
, pp. 249-256
-
-
Wenz, T.1
Diaz, F.2
Spiegelman, B.M.3
Moraes, C.T.4
-
301
-
-
84856092782
-
Effect of bezafibrate treatment on lateonset mitochondrial myopathy in mice
-
[301] Yatsuga S. Suomalainen A. Effect of bezafibrate treatment on lateonset mitochondrial myopathy in mice. Hum Mol Genet 2012; 21: 526-35.
-
(2012)
Hum Mol Genet
, vol.21
, pp. 526-535
-
-
Yatsuga, S.1
Suomalainen, A.2
-
302
-
-
84863011541
-
Pharmacological activation of mitochondrial biogenesis exerts widespread beneficial effects in a transgenic mouse model of Huntington’s disease
-
[302] Johri A, Calingasan NY, Hennessey TM, et al. Pharmacological activation of mitochondrial biogenesis exerts widespread beneficial effects in a transgenic mouse model of Huntington’s disease. Hum Mol Genet 2012; 21: 1124-37.
-
(2012)
Hum Mol Genet
, vol.21
, pp. 1124-1137
-
-
Johri, A.1
Calingasan, N.Y.2
Hennessey, T.M.3
-
303
-
-
42049114658
-
Activation of peroxisome proliferator-activated receptor pathway stimulates the mitochondrial respiratory chain and can correct deficiencies in patients’ cells lacking its components
-
[303] Bastin J, Aubey F, Rötig A, Munnich A, Djouadi F. Activation of peroxisome proliferator-activated receptor pathway stimulates the mitochondrial respiratory chain and can correct deficiencies in patients’ cells lacking its components. J Clin Endocrinol Metab 2008; 93: 1433-41.
-
(2008)
J Clin Endocrinol Metab
, vol.93
, pp. 1433-1441
-
-
Bastin, J.1
Aubey, F.2
Rötig, A.3
Munnich, A.4
Djouadi, F.5
-
304
-
-
80054931381
-
A metabolic shift induced by a PPAR panagonist markedly reduces the effects of pathogenic mitochondrial tRNA mutations
-
[304] Wenz T, Wang X, Marini M, Moraes CT. A metabolic shift induced by a PPAR panagonist markedly reduces the effects of pathogenic mitochondrial tRNA mutations. J Cell Mol Med 2011; 15: 2317-25.
-
(2011)
J Cell Mol Med
, vol.15
, pp. 2317-2325
-
-
Wenz, T.1
Wang, X.2
Marini, M.3
Moraes, C.T.4
-
305
-
-
85047689953
-
5-aminoimidazole-4-carboxamide ribonucleoside. A specific method for activating AMP-activating protein kinase in intact cell
-
[305] Corton JM, Gillepsie JG, Hawley SA, Hardie DG. 5-aminoimidazole-4-carboxamide ribonucleoside. A specific method for activating AMP-activating protein kinase in intact cell? Eur J Biochem 1995; 229: 558-65.
-
(1995)
Eur J Biochem
, vol.229
, pp. 558-565
-
-
Corton, J.M.1
Gillepsie, J.G.2
Hawley, S.A.3
Hardie, D.G.4
-
306
-
-
0031425839
-
AICA riboside increases AMP-activated protein kinase, fatty acid oxidation, and glucose uptake in rat muscle
-
[306] Merrill, GF. Kurth EJ, Hardie DG, Winder WW. AICA riboside increases AMP-activated protein kinase, fatty acid oxidation, and glucose uptake in rat muscle. Am J Physiol 1997; 273: 1107-12.
-
(1997)
Am J Physiol
, vol.273
, pp. 1107-1112
-
-
Merrill, G.F.1
Kurth, E.J.2
Hardie, D.G.3
Winder, W.W.4
-
307
-
-
80055050942
-
Screening for active small molecules in mitochondrial complex I deficient patient’s fibroblasts, reveal AICAR as the most beneficial compound
-
[307] Golubitzky A, Dan P, Weissman S, Link G, Wikstrom JD, Saada A. Screening for active small molecules in mitochondrial complex I deficient patient’s fibroblasts, reveal AICAR as the most beneficial compound. PLoS One 2011. 6:e26883.
-
(2011)
Plos One
, vol.6
-
-
Golubitzky, A.1
Dan, P.2
Weissman, S.3
Link, G.4
Wikstrom, J.D.5
Saada, A.6
-
308
-
-
0034773404
-
Role of AMK-activated protein kinase in mechanism of metfomin action
-
[308] Zhou G, Myers R, Li Y, et al. Role of AMK-activated protein kinase in mechanism of metfomin action. J Clin Invest 2001; 108: 1167-74.
-
(2001)
J Clin Invest
, vol.108
, pp. 1167-1174
-
-
Zhou, G.1
Myers, R.2
Li, Y.3
-
309
-
-
0034659785
-
Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain
-
[309] Owen MR, Doran E, Halestrap AP. Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. Biochem J 2000; 348: 607-14.
-
(2000)
Biochem J
, vol.348
, pp. 607-614
-
-
Owen, M.R.1
Doran, E.2
Halestrap, A.P.3
-
310
-
-
12144291275
-
Thiazolidinediones, like metformin, inhibit respiratory complex I: A common mechanism contributing to their antidiabetic actions?
-
[310] Brunmair B, Staniek K, Gras F, et al. Thiazolidinediones, like metformin, inhibit respiratory complex I: A common mechanism contributing to their antidiabetic actions? Diabetes 2004; 53: 1052-9.
-
(2004)
Diabetes
, vol.53
, pp. 1052-1059
-
-
Brunmair, B.1
Staniek, K.2
Gras, F.3
-
311
-
-
78650931836
-
Metformin activates AMP kinase through inhibition of AMP deaminase
-
[311] Ouyang J, Parakhia RA, Ochs RS. Metformin activates AMP kinase through inhibition of AMP deaminase. J Biol Chem 2011; 286: 1-11.
-
(2011)
J Biol Chem
, vol.286
, pp. 1-11
-
-
Ouyang, J.1
Parakhia, R.A.2
Ochs, R.S.3
-
312
-
-
0037228016
-
A systematic RNAi screen identifies a critical role for mitochondria in C
-
[312] Lee SS, Lee RY, Fraser AG, Kamath RS, Ahringer J, Ruvkun G. A systematic RNAi screen identifies a critical role for mitochondria in C. ELEGANS. NAT Genet 2003; 33: 40-8.
-
(2003)
ELEGANS. NAT Genet
, vol.33
, pp. 40-48
-
-
Lee, S.S.1
Lee, R.Y.2
Fraser, A.G.3
Kamath, R.S.4
Ahringer, J.5
Ruvkun, G.6
-
313
-
-
70349782312
-
Extension of Drosophila life span by RNAi of the mitochondrial respiratory chain
-
[313] Copeland JM, Cho J, Lo T Jr, et al. Extension of Drosophila life span by RNAi of the mitochondrial respiratory chain. Curr Biol 2009; 19: 1591-8.
-
(2009)
Curr Biol
, vol.19
, pp. 1591-1598
-
-
Copeland, J.M.1
Cho, J.2
Lo, T.3
-
314
-
-
84869051280
-
Mitochondrial disorders as windows into an ancient organelle
-
[314] Vafai SB, Mootha VK. Mitochondrial disorders as windows into an ancient organelle. Nature 2012; 491: 374-83.
-
(2012)
Nature
, vol.491
, pp. 374-383
-
-
Vafai, S.B.1
Mootha, V.K.2
-
315
-
-
84869121812
-
Exploring the therapeutic space around NAD+
-
[315] Houtkooper RH, Auwerx J. Exploring the therapeutic space around NAD+. J Cell Biol 2012; 199: 205-9.
-
(2012)
J Cell Biol
, vol.199
, pp. 205-209
-
-
Houtkooper, R.H.1
Auwerx, J.2
-
316
-
-
70350441907
-
The role of sirtuins in the control of metabolic homeostasis
-
[316] Yu J, Auwerx J. The role of sirtuins in the control of metabolic homeostasis. Annu. N.Y. Acad. Sci 2009; Suppl 1, E10-19.
-
(2009)
Annu. N.Y. Acad. Sci
, Issue.1
, pp. 10-19
-
-
Yu, J.1
Auwerx, J.2
-
317
-
-
84874709843
-
SIRT1 and SIRT2: Emerging targets in neurodegeneration
-
[317] Domnez G, Outeiro TF. SIRT1 and SIRT2: emerging targets in neurodegeneration. EMBO Mol Med 2013; 5: 344-52.
-
(2013)
EMBO Mol Med
, vol.5
, pp. 344-352
-
-
Domnez, G.1
Outeiro, T.F.2
-
318
-
-
0037418339
-
Dietary restriction normalizes glucose metabolism and BDNF levels, slows disease progression, and increases survival in huntingtin mutant mice
-
[318] Duan W, Guo Z, Jiang H, Ware M, Li XJ, Mattson MP. Dietary restriction normalizes glucose metabolism and BDNF levels, slows disease progression, and increases survival in huntingtin mutant mice. Proc Natl Acad Sci USA 2003; 100: 2911-6.
-
(2003)
Proc Natl Acad Sci USA
, vol.100
, pp. 2911-2916
-
-
Duan, W.1
Guo, Z.2
Jiang, H.3
Ware, M.4
Li, X.J.5
Mattson, M.P.6
-
319
-
-
84855563516
-
Sirt1 mediates neuroprotection from mutant huntingtin by activation of TORC1 and CREB transcriptional pathway
-
[319] Cohen DE, Cui L, Supinski A, et al. Sirt1 mediates neuroprotection from mutant huntingtin by activation of TORC1 and CREB transcriptional pathway. Nat Med 2012; 18: 159-65.
-
(2012)
Nat Med
, vol.18
, pp. 159-165
-
-
Cohen, D.E.1
Cui, L.2
Supinski, A.3
-
320
-
-
84855544817
-
Neuroprotective role of Sirt1 in mammalian models of Huntington’s disease through activation of multiple Sirt1 targets
-
[320] Jiang M, Wang J, Fu J, et al. Neuroprotective role of Sirt1 in mammalian models of Huntington’s disease through activation of multiple Sirt1 targets. Nat Med 2012;18: 153-9.
-
(2012)
Nat Med
, vol.18
, pp. 153-159
-
-
Jiang, M.1
Wang, J.2
Fu, J.3
-
321
-
-
84855929223
-
SIRT1 protects against alpha-synuclein aggregation by activating molecular chaperones
-
[321] Domnez G, Arun A, Chung CY, McLean PJ, Lindquist S, Guarente L. SIRT1 protects against alpha-synuclein aggregation by activating molecular chaperones. J Neurosci 2012; 32: 124-32.
-
(2012)
J Neurosci
, vol.32
, pp. 124-132
-
-
Domnez, G.1
Arun, A.2
Chung, C.Y.3
McLean, P.J.4
Lindquist, S.5
Guarente, L.6
-
322
-
-
77955046461
-
SIRT1 suppresses beta-amyloid production by activating the alpha-secretase gene ADAM10
-
[322] Domnez G, Wang D, Cohen DE, Guarente L. SIRT1 suppresses beta-amyloid production by activating the alpha-secretase gene ADAM10. Cell 2010; 142: 320-32.
-
(2010)
Cell
, vol.142
, pp. 320-332
-
-
Domnez, G.1
Wang, D.2
Cohen, D.E.3
Guarente, L.4
-
323
-
-
0141719702
-
Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan
-
[323] Howitz KT, Bitterman KJ, Cohen HY, et al. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 2003; 425: 191-6.
-
(2003)
Nature
, vol.425
, pp. 191-196
-
-
Howitz, K.T.1
Bitterman, K.J.2
Cohen, H.Y.3
-
324
-
-
36749087548
-
Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes
-
[324] Milne JC, Lambert PD, Schenk S, et al. Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature 2007; 450: 712-6.
-
(2007)
Nature
, vol.450
, pp. 712-716
-
-
Milne, J.C.1
Lambert, P.D.2
Schenk, S.3
-
325
-
-
54849425547
-
Specific SIRT1 activation mimics low energy levels and protects against diet-induced metabolic disorders by enhancing fat oxidation
-
[325] Feige JN, Lagouge M, Cantó C, et al. Specific SIRT1 activation mimics low energy levels and protects against diet-induced metabolic disorders by enhancing fat oxidation. Cell Metab 2006; 8: 347-58.
-
(2006)
Cell Metab
, vol.8
, pp. 347-358
-
-
Feige, J.N.1
Lagouge, M.2
Cantó, C.3
-
326
-
-
42449100009
-
Isoflavones promote mitochondrial biogenesis
-
[326] Rasbach KA, Schnellmann RG. Isoflavones promote mitochondrial biogenesis. J Pharmacol Exp Ther 2008; 325: 536-43.
-
(2008)
J Pharmacol Exp Ther
, vol.325
, pp. 536-543
-
-
Rasbach, K.A.1
Schnellmann, R.G.2
-
327
-
-
77951049870
-
SRT1720 induces mitochondrial biogenesis and rescues mitochondrial function after oxidant injury in renal proximal tubule cells
-
[327] Funk JA, Odejinmi S, Schnellmann RG. SRT1720 induces mitochondrial biogenesis and rescues mitochondrial function after oxidant injury in renal proximal tubule cells. J Pharm Exp Ther 2010; 333: 593-601.
-
(2010)
J Pharm Exp Ther
, vol.333
, pp. 593-601
-
-
Funk, J.A.1
Odejinmi, S.2
Schnellmann, R.G.3
-
328
-
-
54849425547
-
Specific SIRT1 activation mimics low energy levels and protects against diet-induced metabolic disorders by enhancing fat oxidation
-
[328] Feige JN, Lagouge M, Cantó C, et al. Specific SIRT1 activation mimics low energy levels and protects against diet-induced metabolic disorders by enhancing fat oxidation. Cell Metab 2008; 8: 347-58.
-
(2008)
Cell Metab
, vol.8
, pp. 347-358
-
-
Feige, J.N.1
Lagouge, M.2
Cantó, C.3
-
329
-
-
77950246109
-
SRT1720, SRT2183, SRT1460, and resveratrol are not direct activators of SIRT1
-
[329] Pacholec M, Bleasdale JE, Chrunyk B, et al. SRT1720, SRT2183, SRT1460, and resveratrol are not direct activators of SIRT1. J Biol Chem 2010; 285: 8340-51.
-
(2010)
J Biol Chem
, vol.285
, pp. 8340-8351
-
-
Pacholec, M.1
Bleasdale, J.E.2
Chrunyk, B.3
-
330
-
-
20444431507
-
Substrate-specific activation of sirtuins by resveratrol
-
[330] Kaeberlein M, McDonagh T, Heltweg B, et al. Substrate-specific activation of sirtuins by resveratrol. J Biol Chem 2005; 280: 17038-45.
-
(2005)
J Biol Chem
, vol.280
, pp. 17038-17045
-
-
Kaeberlein, M.1
McDonagh, T.2
Heltweg, B.3
-
331
-
-
34249846128
-
Resveratrol stimulates AMP kinase activity in neurons
-
[331] Dasgupta B, Milbrandt J. Resveratrol stimulates AMP kinase activity in neurons. Proc Natl Acad Sci USA 2007; 104: 7217-22.
-
(2007)
Proc Natl Acad Sci USA
, vol.104
, pp. 7217-7222
-
-
Dasgupta, B.1
Milbrandt, J.2
-
332
-
-
33745962138
-
Therapeutic potential of resveratrol: The in vivo evidence
-
[332] Baur JA, Sinclair DA. Therapeutic potential of resveratrol: the in vivo evidence. Nat Rev Drug Discov 2006; 5: 493-506.
-
(2006)
Nat Rev Drug Discov
, vol.5
, pp. 493-506
-
-
Baur, J.A.1
Sinclair, D.A.2
-
333
-
-
77950348878
-
AMP-activated protein kinasedeficient mice are resistant to the metabolic effects of resveratrol
-
[333] Um JH, Park SJ, Kang H, et al. AMP-activated protein kinasedeficient mice are resistant to the metabolic effects of resveratrol. Diabetes 2010; 59: 554-63.
-
(2010)
Diabetes
, vol.59
, pp. 554-563
-
-
Um, J.H.1
Park, S.J.2
Kang, H.3
-
334
-
-
0033065221
-
Effects of resveratrol on the rat brain respiratory chain
-
[334] Zini R, Morin C, Bertelli A, Bertelli AA, Tillement JP. Effects of resveratrol on the rat brain respiratory chain. Drugs Exp Clin Res 1999; 25: 87-97.
-
(1999)
Drugs Exp Clin Res
, vol.25
, pp. 87-97
-
-
Zini, R.1
Morin, C.2
Bertelli, A.3
Bertelli, A.A.4
Tillement, J.P.5
-
335
-
-
83455206803
-
Targeting sirtuin 1 to improve metabolism: All you need is NAD+?
-
[335] Cantó C, Auwerx J. Targeting sirtuin 1 to improve metabolism: all you need is NAD+? Pharm. Rev 2012; 64: 166-87.
-
(2012)
Pharm. Rev
, vol.64
, pp. 166-187
-
-
Cantó, C.1
Auwerx, J.2
-
336
-
-
33845399894
-
Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1α
-
[336] Lagouge M, Argmann C, Gerhart-Hines Z, et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1α. Cell 2006; 127: 1109-22.
-
(2006)
Cell
, vol.127
, pp. 1109-1122
-
-
Lagouge, M.1
Argmann, C.2
Gerhart-Hines, Z.3
-
337
-
-
84874925761
-
Sirtuin 1-mediated effects of exercise and resveratrol on mitochondrial biogenesis
-
[337] Menzies KJ, Singh K, Saleem A, Hood DA. Sirtuin 1-mediated effects of exercise and resveratrol on mitochondrial biogenesis. J. Biol. Chem 2013; 288: 6968-79.
-
(2013)
J. Biol. Chem
, vol.288
, pp. 6968-6979
-
-
Menzies, K.J.1
Singh, K.2
Saleem, A.3
Hood, D.A.4
-
338
-
-
76149140917
-
Regulation of OPA1 processing and mitochondrial fusion by m-AAA protease isoenzymes and OMA1
-
[338] Ehses S, Raschke I, Mancuso G, et al. Regulation of OPA1 processing and mitochondrial fusion by m-AAA protease isoenzymes and OMA1. J Cell Biol 2009; 187: 1023-36.
-
(2009)
J Cell Biol
, vol.187
, pp. 1023-1036
-
-
Ehses, S.1
Raschke, I.2
Mancuso, G.3
-
339
-
-
76149093590
-
Inducible proteolytic inactivation of OPA1 mediated by the OMA1 protease in mammalian cells
-
[339] Head B, Griparic L, Amiri M, Gandre-Babbe S, van der Bliek AM. Inducible proteolytic inactivation of OPA1 mediated by the OMA1 protease in mammalian cells. J Cell Biol 2009; 187: 959-66.
-
(2009)
J Cell Biol
, vol.187
, pp. 959-966
-
-
Head, B.1
Griparic, L.2
Amiri, M.3
Gandre-Babbe, S.4
Van Der Bliek, A.M.5
-
340
-
-
79955623510
-
During autophagy mitochondria elongate, are spared from degradation and sustain cell viability
-
[340] Gomes LC, Di Benedetto G, Scorrano L. During autophagy mitochondria elongate, are spared from degradation and sustain cell viability. Nat Cell Biol 2011; 13: 589-98.
-
(2011)
Nat Cell Biol
, vol.13
, pp. 589-598
-
-
Gomes, L.C.1
Di Benedetto, G.2
Scorrano, L.3
-
341
-
-
84871821848
-
The meaning of mitochondrial movement to a neuron’s life
-
[341] Lovas JR, Wang X. The meaning of mitochondrial movement to a neuron’s life. Biochem Biophys Acta 2013; 1833: 184-94.
-
(2013)
Biochem Biophys Acta
, vol.1833
, pp. 184-194
-
-
Lovas, J.R.1
Wang, X.2
-
342
-
-
0037137704
-
Axonal transport of mitochondria to synapses depends on Milton, a novel Drosophila protein
-
[342] Stowers RS, Megeath LJ, Gorska-Andrzejak J, Meinertzhagen IA, Schwarz TL. Axonal transport of mitochondria to synapses depends on Milton, a novel Drosophila protein. Neuron 2002; 36: 1063-77.
-
(2002)
Neuron
, vol.36
, pp. 1063-1077
-
-
Stowers, R.S.1
Megeath, L.J.2
Gorska-Andrzejak, J.3
Meinertzhagen, I.A.4
Schwarz, T.L.5
|