-
1
-
-
0043269302
-
Function and structure of complex II of the respiratory chain
-
DOI 10.1146/annurev.biochem.72.121801.161700
-
G. Cecchini Function and structure of complex II of the respiratory chain Annu. Rev. Biochem. 72 2003 77 109 (Pubitemid 36930442)
-
(2003)
Annual Review of Biochemistry
, vol.72
, pp. 77-109
-
-
Cecchini, G.1
-
2
-
-
0142150051
-
Mitochondrial formation of reactive oxygen species
-
DOI 10.1113/jphysiol.2003.049478
-
J.F. Turrens Mitochondrial formation of reactive oxygen species J. Physiol. 552 2003 335 344 (Pubitemid 37321833)
-
(2003)
Journal of Physiology
, vol.552
, Issue.2
, pp. 335-344
-
-
Turrens, J.F.1
-
3
-
-
58249093939
-
How mitochondria produce reactive oxygen species
-
M.P. Murphy How mitochondria produce reactive oxygen species Biochem. J. 417 2009 1 13
-
(2009)
Biochem. J.
, vol.417
, pp. 1-13
-
-
Murphy, M.P.1
-
5
-
-
77952541558
-
The sites and topology of mitochondrial superoxide production
-
M.D. Brand The sites and topology of mitochondrial superoxide production Exp. Gerontol. 45 2010 466 472
-
(2010)
Exp. Gerontol.
, vol.45
, pp. 466-472
-
-
Brand, M.D.1
-
6
-
-
84863738048
-
Molecular mechanisms of superoxide production by the mitochondrial respiratory chain
-
S. Dröse, and U. Brandt Molecular mechanisms of superoxide production by the mitochondrial respiratory chain Adv. Exp. Med. Biol. 748 2012 145 169
-
(2012)
Adv. Exp. Med. Biol.
, vol.748
, pp. 145-169
-
-
Dröse, S.1
Brandt, U.2
-
7
-
-
33750347347
-
Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases
-
DOI 10.1038/nature05292, PII NATURE05292
-
M.T. Lin, and M.F. Beal Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases Nature 443 2006 787 795 (Pubitemid 44622683)
-
(2006)
Nature
, vol.443
, Issue.7113
, pp. 787-795
-
-
Lin, M.T.1
Beal, M.F.2
-
8
-
-
34547130863
-
The role of mitochondria in protection of the heart by preconditioning
-
DOI 10.1016/j.bbabio.2007.05.008, PII S0005272807001132
-
A.P. Halestrap, S.J. Clarke, and I. Khaliulin The role of mitochondria in protection of the heart by preconditioning Biochim. Biophys. Acta 1767 2007 1007 1031 (Pubitemid 47101788)
-
(2007)
Biochimica et Biophysica Acta - Bioenergetics
, vol.1767
, Issue.8
, pp. 1007-1031
-
-
Halestrap, A.P.1
Clarke, S.J.2
Khaliulin, I.3
-
9
-
-
34548746306
-
Mechanisms of disease: Myocardial reperfusion injury
-
D.M. Yellon, and D.J. Hausenloy Mechanisms of disease: myocardial reperfusion injury N. Engl. J. Med. 357 2007 1121 1135
-
(2007)
N. Engl. J. Med.
, vol.357
, pp. 1121-1135
-
-
Yellon, D.M.1
Hausenloy, D.J.2
-
10
-
-
34447316414
-
Trends in oxidative aging theories
-
DOI 10.1016/j.freeradbiomed.2007.03.034, PII S0891584907002481
-
F.L. Muller, M.S. Lustgarten, Y. Jang, A. Richardson, and H. Van Remmen Trends in oxidative aging theories Free Radic. Biol. Med. 43 2007 477 503 (Pubitemid 47058228)
-
(2007)
Free Radical Biology and Medicine
, vol.43
, Issue.4
, pp. 477-503
-
-
Muller, F.L.1
Lustgarten, M.S.2
Jang, Y.3
Richardson, A.4
Van Remmen, H.5
-
11
-
-
33847059997
-
The mitochondrial energy transduction system and the aging process
-
A. Navarro, and A. Boveris The mitochondrial energy transduction system and the aging process Am. J. Physiol. 292 2007 C670 C686
-
(2007)
Am. J. Physiol.
, vol.292
-
-
Navarro, A.1
Boveris, A.2
-
12
-
-
0348150715
-
Architecture of succinate dehydrogenase and reactive oxygen species generation
-
DOI 10.1126/science.1079605
-
V. Yankovskaya, R. Horsefield, S. Tornroth, C. Luna-Chavez, C. Leger, B. Byrne, G. Cecchini, and S. Iwata Architecture of succinate dehydrogenase and reactive oxygen species generation Science 299 2003 700 704 (Pubitemid 36159483)
-
(2003)
Science
, vol.299
, Issue.5607
, pp. 700-704
-
-
Yankovskaya, V.1
Horsefield, R.2
Tornroth, S.3
Luna-Chavez, C.4
Miyoshi, H.5
Leger, C.6
Byrne, B.7
Cecchini, G.8
Iwata, S.9
-
14
-
-
84867422702
-
Structural basis for malfunction in complex II
-
T.M. Iverson, E. Maklashina, and G. Cecchini Structural basis for malfunction in complex II J. Biol. Chem. 287 2012 35430 35438
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 35430-35438
-
-
Iverson, T.M.1
Maklashina, E.2
Cecchini, G.3
-
15
-
-
67349133591
-
Ambivalent effects of diazoxide on mitochondrial ROS production at respiratory chain complexes i and III
-
S. Dröse, P.J. Hanley, and U. Brandt Ambivalent effects of diazoxide on mitochondrial ROS production at respiratory chain complexes I and III Biochim. Biophys. Acta 1790 2009 558 565
-
(2009)
Biochim. Biophys. Acta
, vol.1790
, pp. 558-565
-
-
Dröse, S.1
Hanley, P.J.2
Brandt, U.3
-
16
-
-
79955029789
-
A common mechanism links differently acting complex II inhibitors to cardioprotection: Modulation of mitochondrial reactive oxygen species production
-
S. Dröse, L. Bleier, and U. Brandt A common mechanism links differently acting complex II inhibitors to cardioprotection: modulation of mitochondrial reactive oxygen species production Mol. Pharmacol. 79 2011 814 822
-
(2011)
Mol. Pharmacol.
, vol.79
, pp. 814-822
-
-
Dröse, S.1
Bleier, L.2
Brandt, U.3
-
17
-
-
0015363173
-
The cellular production of hydrogen-peroxide
-
A. Boveris, N. Oshino, and B. Chance The cellular production of hydrogen-peroxide Biochem. J. 128 1972 617 630
-
(1972)
Biochem. J.
, vol.128
, pp. 617-630
-
-
Boveris, A.1
Oshino, N.2
Chance, B.3
-
18
-
-
0034740585
-
m-dependent and -independent production of reactive oxygen species by rat brain mitochondria
-
DOI 10.1046/j.1471-4159.2001.00548.x
-
T.V. Votyakova, and I.J. Reynolds ΔΨ-dependent and -independent production of reactive oxygen species by rat brain mitochondria J. Neurochem. 79 2001 266 277 (Pubitemid 32988942)
-
(2001)
Journal of Neurochemistry
, vol.79
, Issue.2
, pp. 266-277
-
-
Votyakova, T.V.1
Reynolds, I.J.2
-
19
-
-
0036319021
-
Generation of reactive oxygen species by the mitochondrial electron transport chain
-
DOI 10.1046/j.0022-3042.2002.00744.x
-
Y. Liu, G. Fiskum, and D. Schubert Generation of reactive oxygen species by the mitochondrial electron transport chain J. Neurochem. 80 2002 780 787 (Pubitemid 34809230)
-
(2002)
Journal of Neurochemistry
, vol.80
, Issue.5
, pp. 780-787
-
-
Liu, Y.1
Fiskum, G.2
Schubert, D.3
-
20
-
-
4043090717
-
Superoxide production by NADH:ubiquinone oxidoreductase (complex I) depends on the pH gradient across the mitochondrial inner membrane
-
DOI 10.1042/BJ20040485
-
A.J. Lambert, and M.D. Brand Superoxide production by NADH:ubiquinone oxidoreductase (complex I) depends on the pH gradient across the mitochondrial inner membrane Biochem. J. 382 2004 511 517 (Pubitemid 39243917)
-
(2004)
Biochemical Journal
, vol.382
, Issue.2
, pp. 511-517
-
-
Lambert, A.J.1
Brand, M.D.2
-
22
-
-
57649233079
-
The role of mitochondria in reactive oxygen species metabolism and signaling
-
A.A. Starkov The role of mitochondria in reactive oxygen species metabolism and signaling Ann. N. Y. Acad. Sci. 1147 2008 37 52
-
(2008)
Ann. N. Y. Acad. Sci.
, vol.1147
, pp. 37-52
-
-
Starkov, A.A.1
-
23
-
-
38749087624
-
High rates of superoxide production in skeletal-muscle mitochondria respiring on both complex I- and complex II-linked substrates
-
DOI 10.1042/BJ20071162
-
F.L. Muller, Y.H. Liu, M.A. Abdul-Ghani, M.S. Lustgarten, A. Bhattacharya, Y.C. Jang, and H. Van Remmen High rates of superoxide production in skeletal-muscle mitochondria respiring on both complex I- and complex II-linked substrates Biochem. J. 409 2008 491 499 (Pubitemid 351184967)
-
(2008)
Biochemical Journal
, vol.409
, Issue.2
, pp. 491-499
-
-
Muller, F.L.1
Liu, Y.2
Abdul-Ghani, M.A.3
Lustgarten, M.S.4
Bhattacharya, A.5
Jang, Y.C.6
Van Remmen, H.7
-
24
-
-
79961008706
-
Evidence for two sites of superoxide production by mitochondrial NADH-ubiquinone oxidoreductase (complex I)
-
J.R. Treberg, C.L. Quinlan, and M.D. Brand Evidence for two sites of superoxide production by mitochondrial NADH-ubiquinone oxidoreductase (complex I) J. Biol. Chem. 286 2011 27103 27110
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 27103-27110
-
-
Treberg, J.R.1
Quinlan, C.L.2
Brand, M.D.3
-
26
-
-
0017074295
-
566, and their relationship to ubiquinone and the iron-sulfur centers S-1 (+ N-2) and S-3
-
566, and their relationship to ubiquinone and the iron-sulfur centers S-1 (+ N-2) and S-3 Arch. Biochem. Biophys. 174 1976 143 157
-
(1976)
Arch. Biochem. Biophys.
, vol.174
, pp. 143-157
-
-
Erecinska, M.1
Wilson, D.F.2
-
27
-
-
0018385858
-
Diminished inhibition of mitochondrial electron transfer from succinate to cytochrome c by thenoyltrifluoroacetone induced by antimycin
-
B.L. Trumpower, and Z. Simmons Diminished inhibition of mitochondrial electron transfer from succinate to cytochrome c by thenoyltrifluoroacetone induced by antimycin J. Biol. Chem. 254 1979 4608 4616 (Pubitemid 9203490)
-
(1979)
Journal of Biological Chemistry
, vol.254
, Issue.11
, pp. 4608-4616
-
-
Trumpower, B.L.1
Simmons, Z.2
-
31
-
-
77953810225
-
Complex III-dependent superoxide production of brain mitochondria contributes to seizure-related ROS formation
-
D. Malinska, B. Kulawiak, A.P. Kudin, R. Kovacs, C. Huchzermeyer, O. Kann, A. Szewczyk, and W.S. Kunz Complex III-dependent superoxide production of brain mitochondria contributes to seizure-related ROS formation Biochim. Biophys. Acta 1797 2010 1163 1170
-
(2010)
Biochim. Biophys. Acta
, vol.1797
, pp. 1163-1170
-
-
Malinska, D.1
Kulawiak, B.2
Kudin, A.P.3
Kovacs, R.4
Huchzermeyer, C.5
Kann, O.6
Szewczyk, A.7
Kunz, W.S.8
-
33
-
-
80052419584
-
The mechanism of superoxide production by the antimycin-inhibited mitochondrial Q-cycle
-
C.L. Quinlan, A.A. Gerencser, J.R. Treberg, and M.D. Brand The mechanism of superoxide production by the antimycin-inhibited mitochondrial Q-cycle J. Biol. Chem. 286 2011 31361 31372
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 31361-31372
-
-
Quinlan, C.L.1
Gerencser, A.A.2
Treberg, J.R.3
Brand, M.D.4
-
34
-
-
70349904508
-
2 release at mitochondrial complex I: Negative modulation by malate, positive by cyanide
-
2 release at mitochondrial complex I: negative modulation by malate, positive by cyanide J. Bioenerg. Biomembr. 41 2009 387 393
-
(2009)
J. Bioenerg. Biomembr.
, vol.41
, pp. 387-393
-
-
Zoccarato, F.1
Cavallini, L.2
Alexandre, A.3
-
36
-
-
84860389709
-
Inhibitors of succinate: Quinone reductase/complex II regulate production of mitochondrial reactive oxygen species and protect normal cells from ischemic damage but induce specific cancer cell death
-
S.J. Ralph, R. Moreno-Sanchez, J. Neuzil, and S. Rodriguez-Enriquez Inhibitors of succinate: quinone reductase/complex II regulate production of mitochondrial reactive oxygen species and protect normal cells from ischemic damage but induce specific cancer cell death Pharm. Res. 28 2011 2695 2730
-
(2011)
Pharm. Res.
, vol.28
, pp. 2695-2730
-
-
Ralph, S.J.1
Moreno-Sanchez, R.2
Neuzil, J.3
Rodriguez-Enriquez, S.4
-
37
-
-
84864540083
-
Mitochondrial complex II can generate reactive oxygen species at high rates in both the forward and reverse reactions
-
C.L. Quinlan, A.L. Orr, I.V. Perevoshchikova, J.R. Treberg, B.A. Ackrell, and M.D. Brand Mitochondrial complex II can generate reactive oxygen species at high rates in both the forward and reverse reactions J. Biol. Chem. 287 2012 27255 27264
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 27255-27264
-
-
Quinlan, C.L.1
Orr, A.L.2
Perevoshchikova, I.V.3
Treberg, J.R.4
Ackrell, B.A.5
Brand, M.D.6
-
38
-
-
1142297598
-
New concepts in reactive oxygen species and cardiovascular reperfusion physiology
-
DOI 10.1016/j.cardiores.2003.10.025
-
L.B. Becker New concepts in reactive oxygen species and cardiovascular reperfusion physiology Cardiovasc. Res. 61 2004 461 470 (Pubitemid 38210152)
-
(2004)
Cardiovascular Research
, vol.61
, Issue.3
, pp. 461-470
-
-
Becker, L.B.1
-
39
-
-
20644462354
-
ATP channels and an overview of alternative mechanisms
-
DOI 10.1016/j.yjmcc.2005.04.002, PII S0022282805001264
-
ATP channels and an overview of alternative mechanisms J. Mol. Cell. Cardiol. 39 2005 17 50 (Pubitemid 40836043)
-
(2005)
Journal of Molecular and Cellular Cardiology
, vol.39
, Issue.1
, pp. 17-50
-
-
Hanley, P.J.1
Daut, J.2
-
41
-
-
0036088772
-
Potassium channel openers protect cardiac mitochondria by attenuating oxidant stress at reoxygenation
-
C. Ozcan, M. Bienengraeber, P.P. Dzeja, and A. Terzic Potassium channel openers protect cardiac mitochondria by attenuating oxidant stress at reoxygenation Am. J. Physiol. 282 2002 H531 H539
-
(2002)
Am. J. Physiol.
, vol.282
-
-
Ozcan, C.1
Bienengraeber, M.2
Dzeja, P.P.3
Terzic, A.4
-
42
-
-
37349022807
-
Effective pharmacotherapy against oxidative injury: Alternative utility of an ATP-sensitive potassium channel opener
-
DOI 10.1097/FJC.0b013e31812378df, PII 0000534420071000000009
-
C. Ozcan, A. Terzic, and M. Bienengraeber Effective pharmacotherapy against oxidative injury: alternative utility of an ATP-sensitive potassium channel opener J. Cardiovasc. Pharmacol. 50 2007 411 418 (Pubitemid 350303819)
-
(2007)
Journal of Cardiovascular Pharmacology
, vol.50
, Issue.4
, pp. 411-418
-
-
Ozcan, C.1
Terzic, A.2
Bienengraeber, M.3
-
43
-
-
44949247416
-
Effect of diazoxide on flavoprotein oxidation and reactive oxygen species generation during ischemia-reperfusion: A study on Langendorff-perfused rat hearts using optic fibers
-
P. Pasdois, B. Beauvoit, L. Tariosse, B. Vinassa, S. Bonoron-Adele, and P. Dos Santos Effect of diazoxide on flavoprotein oxidation and reactive oxygen species generation during ischemia-reperfusion: a study on Langendorff-perfused rat hearts using optic fibers Am. J. Physiol. 294 2008 H2088 H2097
-
(2008)
Am. J. Physiol.
, vol.294
-
-
Pasdois, P.1
Beauvoit, B.2
Tariosse, L.3
Vinassa, B.4
Bonoron-Adele, S.5
Dos Santos, P.6
-
44
-
-
62249098383
-
The complex II inhibitor atpenin A5 protects against cardiac ischemia-reperfusion injury via activation of mitochondrial K-ATP channels
-
A.P. Wojtovich, and P.S. Brookes The complex II inhibitor atpenin A5 protects against cardiac ischemia-reperfusion injury via activation of mitochondrial K-ATP channels Basic Res. Cardiol. 104 2009 121 129
-
(2009)
Basic Res. Cardiol.
, vol.104
, pp. 121-129
-
-
Wojtovich, A.P.1
Brookes, P.S.2
-
45
-
-
0038230469
-
Supercomplexes in the respiratory chains of yeast and mammalian mitochondria
-
H. Schägger, and K. Pfeiffer Supercomplexes in the respiratory chains of yeast and mammalian mitochondria EMBO J. 19 2000 1777 1783 (Pubitemid 30204389)
-
(2000)
EMBO Journal
, vol.19
, Issue.8
, pp. 1777-1783
-
-
Schagger, H.1
Pfeiffer, K.2
-
46
-
-
0037056045
-
Respiratory chain supercomplexes of mitochondria and bacteria
-
DOI 10.1016/S0005-2728(02)00271-2, PII S0005272802002712
-
H. Schägger Respiratory chain supercomplexes of mitochondria and bacteria Biochim. Biophys. Acta 1555 2002 154 159 (Pubitemid 35246021)
-
(2002)
Biochimica et Biophysica Acta - Bioenergetics
, vol.1555
, Issue.1-3
, pp. 154-159
-
-
Schagger, H.1
-
47
-
-
84863754137
-
Supramolecular organisation of the mitochondrial respiratory chain: A new challenge for the mechanism and control of oxidative phosphorylation
-
G. Lenaz, and M.L. Genova Supramolecular organisation of the mitochondrial respiratory chain: a new challenge for the mechanism and control of oxidative phosphorylation Adv. Exp. Med. Biol. 748 2012 107 144
-
(2012)
Adv. Exp. Med. Biol.
, vol.748
, pp. 107-144
-
-
Lenaz, G.1
Genova, M.L.2
-
48
-
-
55949098781
-
Respiratory active mitochondrial supercomplexes
-
R. Acin-Perez, P. Fernandez-Silva, M.L. Peleato, A. Perez-Martos, and J.A. Enriquez Respiratory active mitochondrial supercomplexes Mol. Cell 32 2008 529 539
-
(2008)
Mol. Cell
, vol.32
, pp. 529-539
-
-
Acin-Perez, R.1
Fernandez-Silva, P.2
Peleato, M.L.3
Perez-Martos, A.4
Enriquez, J.A.5
-
49
-
-
84867101923
-
Complexome profiling identifies TMEM126B as a component of the mitochondrial complex i assembly complex
-
H. Heide, L. Bleier, M. Steger, J. Ackermann, S. Dröse, B. Schwamb, M. Zornig, A.S. Reichert, I. Koch, I. Wittig, and U. Brandt Complexome profiling identifies TMEM126B as a component of the mitochondrial complex I assembly complex Cell Metab. 16 2012 538 549
-
(2012)
Cell Metab.
, vol.16
, pp. 538-549
-
-
Heide, H.1
Bleier, L.2
Steger, M.3
Ackermann, J.4
Dröse, S.5
Schwamb, B.6
Zornig, M.7
Reichert, A.S.8
Koch, I.9
Wittig, I.10
Brandt, U.11
-
50
-
-
0343052744
-
Succinate: Quinone oxidoreductases. Variations on a conserved theme
-
DOI 10.1016/S0005-2728(97)00019-4, PII S0005272897000194
-
C. Hagerhall Succinate:quinone oxidoreductases - variations on a conserved theme Biochim. Biophys. Acta 1320 1997 107 141 (Pubitemid 27248508)
-
(1997)
Biochimica et Biophysica Acta - Bioenergetics
, vol.1320
, Issue.2
, pp. 107-141
-
-
Hagerhall, C.1
-
51
-
-
78149465602
-
The quinone-binding and catalytic site of complex II
-
E. Maklashina, and G. Cecchini The quinone-binding and catalytic site of complex II Biochim. Biophys. Acta 1797 2010 1877 1882
-
(2010)
Biochim. Biophys. Acta
, vol.1797
, pp. 1877-1882
-
-
Maklashina, E.1
Cecchini, G.2
-
52
-
-
84875711829
-
Catalytic mechanisms of complex II enzymes: A structural perspective
-
(this issue)
-
T.M. Iverson Catalytic mechanisms of complex II enzymes: A structural perspective Biochim. Biophys. Acta 1827 2013 648 657 (this issue)
-
(2013)
Biochim. Biophys. Acta
, vol.1827
, pp. 648-657
-
-
Iverson, T.M.1
-
53
-
-
33646343221
-
Structural and computational analysis of the quinone-binding site of complex II (succinate-ubiquinone oxidoreductase)
-
R. Horsefield, V. Yankovskaya, G. Sexton, W. Whittingham, K. Shiomi, S. Omura, B. Byrne, G. Cecchini, and S. Iwata Structural and computational analysis of the quinone-binding site of complex II (succinate-ubiquinone oxidoreductase) J. Biol. Chem. 281 2006 7309 7316
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 7309-7316
-
-
Horsefield, R.1
Yankovskaya, V.2
Sexton, G.3
Whittingham, W.4
Shiomi, K.5
Omura, S.6
Byrne, B.7
Cecchini, G.8
Iwata, S.9
-
54
-
-
70350400733
-
Structure of Escherichia coli succinate:quinone oxidoreductase with an occupied and empty quinone-binding site
-
J. Ruprecht, V. Yankovskaya, E. Maklashina, S. Iwata, and G. Cecchini Structure of Escherichia coli succinate:quinone oxidoreductase with an occupied and empty quinone-binding site J. Biol. Chem. 284 2009 29836 29846
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 29836-29846
-
-
Ruprecht, J.1
Yankovskaya, V.2
Maklashina, E.3
Iwata, S.4
Cecchini, G.5
-
55
-
-
21244503033
-
Crystal structure of mitochondrial respiratory membrane protein Complex II
-
DOI 10.1016/j.cell.2005.05.025, PII S0092867405005040
-
F. Sun, X. Huo, Y.J. Zhai, A.J. Wang, J.X. Xu, D. Su, M. Bartlam, and Z.H. Rao Crystal structure of mitochondrial respiratory membrane protein complex II Cell 121 2005 1043 1057 (Pubitemid 40884395)
-
(2005)
Cell
, vol.121
, Issue.7
, pp. 1043-1057
-
-
Sun, F.1
Huo, X.2
Zhai, Y.3
Wang, A.4
Xu, J.5
Su, D.6
Bartlam, M.7
Rao, Z.8
-
56
-
-
33646846683
-
3-Nitropropionic acid is a suicide inhibitor of mitochondrial respiration that, upon oxidation by complex II, forms a covalent adduct with a catalytic base arginine in the active site of the enzyme
-
DOI 10.1074/jbc.M511270200
-
L.S. Huang, G. Sun, D. Cobessi, A.C. Wang, J.T. Shen, E.Y. Tung, V.E. Anderson, and E.A. Berry 3-Nitropropionic acid is a suicide inhibitor of mitochondrial respiration that, upon oxidation by complex II, forms a covalent adduct with a catalytic base arginine in the active site of the enzyme J. Biol. Chem. 281 2006 5965 5972 (Pubitemid 43847697)
-
(2006)
Journal of Biological Chemistry
, vol.281
, Issue.9
, pp. 5965-5972
-
-
Huang, L.-S.1
Sun, G.2
Cobessi, D.3
Wang, A.C.4
Shen, J.T.5
Tung, E.Y.6
Anderson, V.E.7
Berry, E.A.8
-
57
-
-
0033580880
-
Structure of the Escherichia coli fumarate reductase respiratory complex
-
DOI 10.1126/science.284.5422.1961
-
T.M. Iverson, C. Luna-Chavez, G. Cecchini, and D.C. Rees Structure of the Escherichia coli fumarate reductase respiratory complex Science 284 1999 1961 1966 (Pubitemid 29309437)
-
(1999)
Science
, vol.284
, Issue.5422
, pp. 1961-1966
-
-
Iverson, T.M.1
Luna-Chavez, C.2
Cecchini, G.3
Rees, D.C.4
-
58
-
-
0010049951
-
Structure of fumarate reductase from Wolinella succinogenes at 2.2 A resolution
-
C.R. Lancaster, A. Kröger, M. Auer, and H. Michel Structure of fumarate reductase from Wolinella succinogenes at 2.2 A resolution Nature 402 1999 377 385 (Pubitemid 129544818)
-
(1999)
Nature
, vol.402
, Issue.6760
, pp. 377-385
-
-
Lancaster, C.R.D.1
Kroger, A.2
Auer, M.3
Michel, H.4
-
59
-
-
0031766842
-
Anaerobic expression of Escherichia coli succinate dehydrogenase: Functional replacement of fumarate reductase in the respiratory chain during anaerobic growth
-
E. Maklashina, D.K. Berthold, and G. Cecchini Anaerobic expression of Escherichia coli succinate dehydrogenase: functional replacement of fumarate reductase in the respiratory chain during anaerobic growth J. Bacteriol. 180 1998 5989 5996 (Pubitemid 28514218)
-
(1998)
Journal of Bacteriology
, vol.180
, Issue.22
, pp. 5989-5996
-
-
Maklashina, E.1
Berthold, D.A.2
Cecchini, G.3
-
60
-
-
33748750538
-
Differences in protonation of ubiquinone and menaquinone in fumarate reductase from Escherichia coli
-
DOI 10.1074/jbc.M602938200
-
E. Maklashina, P. Hellwig, R.A. Rothery, V. Kotlyar, Y. Sher, J.H. Weiner, and G. Cecchini Differences in protonation of ubiquinone and menaquinone in fumarate reductase from Escherichia coli J. Biol. Chem. 281 2006 26655 26664 (Pubitemid 44401874)
-
(2006)
Journal of Biological Chemistry
, vol.281
, Issue.36
, pp. 26655-26664
-
-
Maklashina, E.1
Hellwig, P.2
Rothery, R.A.3
Kotlyar, V.4
Sher, Y.5
Weiner, J.H.6
Cecchini, G.7
-
61
-
-
0019876977
-
Thermodynamic and electron-paramagnetic resonance characterization of flavin in succinate-dehydrogenase
-
T. Ohnishi, T.E. King, J.C. Salerno, H. Blum, J.R. Bowyer, and T. Maida Thermodynamic and electron-paramagnetic resonance characterization of flavin in succinate-dehydrogenase J. Biol. Chem. 256 1981 5577 5582
-
(1981)
J. Biol. Chem.
, vol.256
, pp. 5577-5582
-
-
Ohnishi, T.1
King, T.E.2
Salerno, J.C.3
Blum, H.4
Bowyer, J.R.5
Maida, T.6
-
62
-
-
33744960410
-
Fumarate reductase and succinate oxidase activity of Escherichia coli complex II homologs are perturbed differently by mutation of the flavin binding domain
-
DOI 10.1074/jbc.M512544200
-
E. Maklashina, T.M. Iverson, Y. Sher, V. Kotlyar, J. Andrell, O. Mirza, J.M. Hudson, F.A. Armstrong, R.A. Rothery, J.H. Weiner, and G. Cecchini Fumarate reductase and succinate oxidase activity of Escherichia coli complex II homologs are perturbed differently by mutation of the flavin binding domain J. Biol. Chem. 281 2006 11357 11365 (Pubitemid 43855560)
-
(2006)
Journal of Biological Chemistry
, vol.281
, Issue.16
, pp. 11357-11365
-
-
Maklashina, E.1
Iverson, T.M.2
Sher, Y.3
Kotlyar, V.4
Andre, J.5
Mirza, O.6
Hudson, J.M.7
Armstrong, F.A.8
Rothery, R.A.9
Weiner, J.H.10
Cecchini, G.11
-
63
-
-
0019326469
-
Studies on the stabilized ubisemiquinone species in the succinate-cytochrome c-reductase segment of the intact mitochondrial-membrane system
-
J.C. Salerno, and T. Ohnishi Studies on the stabilized ubisemiquinone species in the succinate-cytochrome c-reductase segment of the intact mitochondrial-membrane system Biochem. J. 192 1980 769 781
-
(1980)
Biochem. J.
, vol.192
, pp. 769-781
-
-
Salerno, J.C.1
Ohnishi, T.2
-
64
-
-
33845952352
-
The quinone binding site in Escherichia coli succinate dehydrogenase is required for electron transfer to the heme b
-
DOI 10.1074/jbc.M607476200
-
Q.M. Tran, R.A. Rothery, E. Maklashina, G. Cecchini, and J.H. Weiner The quinone binding site in Escherichia coli succinate dehydrogenase is required for electron transfer to the heme b J. Biol. Chem. 281 2006 32310 32317 (Pubitemid 46036785)
-
(2006)
Journal of Biological Chemistry
, vol.281
, Issue.43
, pp. 32310-32317
-
-
Tran, Q.M.1
Rothery, R.A.2
Maklashina, E.3
Cecchini, G.4
Weiner, J.H.5
-
65
-
-
0015214354
-
Control of succinate dehydrogenase in mitochondria
-
M. Gutman, E.B. Kearney, and T.P. Singer Control of succinate dehydrogenase in mitochondria Biochemistry 10 1971 4763 4770
-
(1971)
Biochemistry
, vol.10
, pp. 4763-4770
-
-
Gutman, M.1
Kearney, E.B.2
Singer, T.P.3
-
67
-
-
0016165075
-
Studies on succinate-dehydrogenase. 24. Role of oxalacetate in regulation of mammalian succinate-dehydrogenase
-
B.A.C. Ackrell, E.B. Kearney, and M. Mayr Studies on succinate- dehydrogenase. 24. Role of oxalacetate in regulation of mammalian succinate-dehydrogenase J. Biol. Chem. 249 1974 2021 2027
-
(1974)
J. Biol. Chem.
, vol.249
, pp. 2021-2027
-
-
Ackrell, B.A.C.1
Kearney, E.B.2
Mayr, M.3
-
69
-
-
0014512144
-
Inhibition by 2,4-dinitriphenol of removal of oxaloacetate formed by oxidation of succinate by rat-liver and -heart mitochondria
-
A.B. Oestreicher, S.G. Van den Bergh, and E.C. Slater Inhibition by 2,4-dinitriphenol of removal of oxaloacetate formed by oxidation of succinate by rat-liver and -heart mitochondria Biochim. Biophys. Acta 180 1969 45 55
-
(1969)
Biochim. Biophys. Acta
, vol.180
, pp. 45-55
-
-
Oestreicher, A.B.1
Van Den Bergh, S.G.2
Slater, E.C.3
-
72
-
-
0022598348
-
Ischemia and the aging brain. Studies on glucose and energy metabolism in rat cerebral cortex
-
DOI 10.1016/0197-4580(86)90022-9
-
S. Hoyer, and C. Krier Ischemia and the aging brain - studies on glucose and energy-metabolism in rat cerebral-cortex Neurobiol. Aging 7 1986 23 29 (Pubitemid 16153126)
-
(1986)
Neurobiology of Aging
, vol.7
, Issue.1
, pp. 23-29
-
-
Hoyer, S.1
Krier, C.2
-
73
-
-
0036289426
-
Succinate in dystrophic white matter: A proton magnetic resonance spectroscopy finding characteristic for complex II deficiency
-
DOI 10.1002/ana.10232
-
K. Brockmann, A. Bjornstad, P. Dechent, C.G. Korenke, J. Smeitink, J.M.F. Trijbels, S. Athanassopoulos, R. Villagran, O.H. Skjeldal, E. Wilichowski, J. Frahm, and F. Hanefeld Succinate in dystrophic white matter: a proton magnetic resonance spectroscopy finding characteristic for complex II deficiency Ann. Neurol. 52 2002 38 46 (Pubitemid 34693741)
-
(2002)
Annals of Neurology
, vol.52
, Issue.1
, pp. 38-46
-
-
Brockmann, K.1
Bjornstad, A.2
Dechent, P.3
Korenke, C.G.4
Smeitink, J.5
Trijbels, J.M.F.6
Athanassopoulos, S.7
Villagran, R.8
Skjeldal, O.H.9
Wilichowski, E.10
Frahm, J.11
Hanefeld, F.12
-
74
-
-
0016302480
-
Influence of complete ischemia on glycolytic metabolites, citric-acid cycle intermediates, and associated amino-acids in rat cerebral-cortex
-
J. Folbergrova, B. Ljunggren, K. Norberg, and B.K. Siesjo Influence of complete ischemia on glycolytic metabolites, citric-acid cycle intermediates, and associated amino-acids in rat cerebral-cortex Brain Res. 80 1974 265 279
-
(1974)
Brain Res.
, vol.80
, pp. 265-279
-
-
Folbergrova, J.1
Ljunggren, B.2
Norberg, K.3
Siesjo, B.K.4
-
75
-
-
0018664824
-
Influence of some biological pyrimidines on the succinate cycle during and after cerebral ischemia
-
DOI 10.1016/0006-2952(79)90024-8
-
G. Benzi, E. Arrigoni, F. Marzatico, and R.F. Villa Influence of some biological pyrimidines on the succinate cycle during and after cerebral-ischemia Biochem. Pharmacol. 28 1979 2545 2550 (Pubitemid 10229266)
-
(1979)
Biochemical Pharmacology
, vol.28
, Issue.17
, pp. 2545-2550
-
-
Benzi, G.1
Arrigoni, E.2
Marzatico, F.3
Villa, R.F.4
-
76
-
-
0023718383
-
Pathways of succinate formation and their contribution to improvement of cardiac-function in the hypoxic rat-heart
-
R.J. Wiesner, P. Rosen, and M.K. Grieshaber Pathways of succinate formation and their contribution to improvement of cardiac-function in the hypoxic rat-heart Biochem. Med. Metab. Biol. 40 1988 19 34
-
(1988)
Biochem. Med. Metab. Biol.
, vol.40
, pp. 19-34
-
-
Wiesner, R.J.1
Rosen, P.2
Grieshaber, M.K.3
-
77
-
-
0024594297
-
Glutamate degradation in the ischemic dog heart: Contribution to anaerobic energy production
-
DOI 10.1016/0022-2828(89)91492-2
-
R.J. Wiesner, A. Deussen, M. Borst, J. Schrader, and M.K. Grieshaber Glutamate degradation in the ischemic dog heart - contribution to anaerobic energy-production J. Mol. Cell. Cardiol. 21 1989 49 59 (Pubitemid 19078692)
-
(1989)
Journal of Molecular and Cellular Cardiology
, vol.21
, Issue.1
, pp. 49-59
-
-
Wiesner, R.J.1
Deussen, A.2
Borst, M.3
Schrader, J.4
Grieshaber, M.K.5
-
78
-
-
0034646270
-
Mitochondrial dysfunction during hypoxia/reoxygenation and its correction by anaerobic metabolism of citric acid cycle intermediates
-
DOI 10.1073/pnas.97.6.2826
-
J.M. Weinberg, M.A. Venkatachalam, N.F. Roeser, and I. Nissim Mitochondrial dysfunction during hypoxia/reoxygenation and its correction by anaerobic metabolism of citric acid cycle intermediates Proc. Natl. Acad. Sci. U. S. A. 97 2000 2826 2831 (Pubitemid 30159256)
-
(2000)
Proceedings of the National Academy of Sciences of the United States of America
, vol.97
, Issue.6
, pp. 2826-2831
-
-
Weinberg, J.M.1
Venkatachalam, M.A.2
Roeser, N.F.3
Nissim, I.4
-
79
-
-
0023549336
-
Evidence for succinate production by reduction of fumarate during hypoxia in isolated adult rat heart cells
-
C. Hohl, R. Oestreich, P. Rosen, R. Wiesner, and M. Grieshaber Evidence for succinate production by reduction of fumarate during hypoxia in isolated adult-rat heart-cells Arch. Biochem. Biophys. 259 1987 527 535 (Pubitemid 18022769)
-
(1987)
Archives of Biochemistry and Biophysics
, vol.259
, Issue.2
, pp. 527-535
-
-
Hohl, C.1
Oestreich, R.2
Rosen, P.3
Wiesner, R.4
Grieshaber, M.5
-
80
-
-
0343983913
-
3-Nitropropionate, the toxic substance of Indigofera, is a suicide inactivator of succinate dehydrogenase
-
DOI 10.1073/pnas.74.9.3767
-
T.A. Alston, L. Mela, and H.J. Bright 3-Nitropropionate, toxic substance of Indigofera, is a suicide inactivator of succinate-dehydrogenase Proc. Natl. Acad. Sci. U. S. A. 74 1977 3767 3771 (Pubitemid 8189964)
-
(1977)
Proceedings of the National Academy of Sciences of the United States of America
, vol.74
, Issue.9
, pp. 3767-3771
-
-
Alston, T.A.1
Mela, L.2
Bright, H.J.3
-
81
-
-
0017080275
-
Carboxins - Powerful selective inhibitors of succinate oxidation in animal-tissues
-
P.C. Mowery, B.A.C. Ackrell, T.P. Singer, G.A. White, and G.D. Thorn Carboxins - powerful selective inhibitors of succinate oxidation in animal-tissues Biochem. Biophys. Res. Commun. 71 1976 354 361
-
(1976)
Biochem. Biophys. Res. Commun.
, vol.71
, pp. 354-361
-
-
Mowery, P.C.1
Ackrell, B.A.C.2
Singer, T.P.3
White, G.A.4
Thorn, G.D.5
-
82
-
-
0019444926
-
Studies on succinate dehydrogenase. 37. Reaction site of carboxanilides and of thenoyltrifluoroacetone in complex-II
-
R.R. Ramsay, B.A.C. Ackrell, C.J. Coles, T.P. Singer, G.A. White, and G.D. Thorn Studies on succinate dehydrogenase. 37. Reaction site of carboxanilides and of thenoyltrifluoroacetone in complex-II Proc. Natl. Acad. Sci. U. S. A. 78 1981 825 828
-
(1981)
Proc. Natl. Acad. Sci. U. S. A.
, vol.78
, pp. 825-828
-
-
Ramsay, R.R.1
Ackrell, B.A.C.2
Coles, C.J.3
Singer, T.P.4
White, G.A.5
Thorn, G.D.6
-
83
-
-
0037457881
-
Atpenins, potent and specific inhibitors of mitochondrial complex II (succinate-ubiquinone oxidoreductase)
-
DOI 10.1073/pnas.0237315100
-
H. Miyadera, K. Shiomi, H. Ui, Y. Yamaguchi, R. Masuma, H. Tomoda, H. Miyoshi, A. Osanai, K. Kita, and S. Omura Atpenins, potent and specific inhibitors of mitochondrial complex II (succinate-ubiquinone oxidoreductase) Proc. Natl. Acad. Sci. U. S. A. 100 2003 473 477 (Pubitemid 36126075)
-
(2003)
Proceedings of the National Academy of Sciences of the United States of America
, vol.100
, Issue.2
, pp. 473-477
-
-
Miyadera, H.1
Shiomi, K.2
Ui, H.3
Yamaguchi, Y.4
Masuma, R.5
Tomoda, H.6
Miyoshi, H.7
Osanai, A.8
Kita, K.9
Omura, S.10
-
84
-
-
76649092615
-
Synthetic atpenin analogs: Potent mitochondrial inhibitors of mammalian and fungal succinate-ubiquinone oxidoreductase
-
T.P. Selby, K.A. Hughes, J.J. Rauh, and W.S. Hanna Synthetic atpenin analogs: potent mitochondrial inhibitors of mammalian and fungal succinate-ubiquinone oxidoreductase Bioorg. Med. Chem. Lett. 20 2010 1665 1668
-
(2010)
Bioorg. Med. Chem. Lett.
, vol.20
, pp. 1665-1668
-
-
Selby, T.P.1
Hughes, K.A.2
Rauh, J.J.3
Hanna, W.S.4
-
85
-
-
47549092354
-
α-Tocopheryl succinate induces apoptosis by targeting ubiquinone-binding sites in mitochondrial respiratory complex II
-
DOI 10.1038/onc.2008.69, PII ONC200869
-
L.F. Dong, P. Low, J.C. Dyason, X.F. Wang, L. Prochazka, P.K. Witting, R. Freeman, E. Swettenham, K. Valis, J. Liu, R. Zobalova, J. Turanek, D.R. Spitz, F.E. Domann, I.E. Scheffler, S.J. Ralph, and J. Neuzil α-tocopheryl succinate induces apoptosis by targeting ubiquinone-binding sites in mitochondrial respiratory complex II Oncogene 27 2008 4324 4335 (Pubitemid 352010000)
-
(2008)
Oncogene
, vol.27
, Issue.31
, pp. 4324-4335
-
-
Dong, L.-F.1
Low, P.2
Dyason, J.C.3
Wang, X.-F.4
Prochazka, L.5
Witting, P.K.6
Freeman, R.7
Swettenham, E.8
Valis, K.9
Liu, J.10
Zobalova, R.11
Turanek, J.12
Spitz, D.R.13
Domann, F.E.14
Scheffler, I.E.15
Ralph, S.J.16
Neuzil, J.17
-
86
-
-
79952786984
-
Mitochondrial targeting of vitamin e succinate enhances its pro-apoptotic and anti-cancer activity via mitochondrial complex II
-
L.F. Dong, V.J.A. Jameson, D. Tilly, J. Cerny, E. Mahdavian, A. Marin-Hernandez, L. Hernandez-Esquivel, S. Rodriguez-Enriquez, J. Stursa, P.K. Witting, B. Stantic, J. Rohlena, J. Truksa, K. Kluckova, J.C. Dyason, M. Ledvina, B.A. Salvatore, R. Moreno-Sanchez, M.J. Coster, S.J. Ralph, R.A.J. Smith, and J. Neuzil Mitochondrial targeting of vitamin E succinate enhances its pro-apoptotic and anti-cancer activity via mitochondrial complex II J. Biol. Chem. 286 2011 3717 3728
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 3717-3728
-
-
Dong, L.F.1
Jameson, V.J.A.2
Tilly, D.3
Cerny, J.4
Mahdavian, E.5
Marin-Hernandez, A.6
Hernandez-Esquivel, L.7
Rodriguez-Enriquez, S.8
Stursa, J.9
Witting, P.K.10
Stantic, B.11
Rohlena, J.12
Truksa, J.13
Kluckova, K.14
Dyason, J.C.15
Ledvina, M.16
Salvatore, B.A.17
Moreno-Sanchez, R.18
Coster, M.J.19
Ralph, S.J.20
Smith, R.A.J.21
Neuzil, J.22
more..
-
87
-
-
79955629946
-
Mitochondrial targeting of α-tocopheryl succinate enhances its pro-apoptotic efficacy: A new paradigm for effective cancer therapy
-
L.F. Dong, V.J.A. Jameson, D. Tilly, L. Prochazka, J. Rohlena, K. Valis, J. Truksa, R. Zobalova, E. Mandavian, K. Kluckova, M. Stantic, J. Stursa, R. Freeman, P.K. Witting, E. Norberg, J. Goodwin, B.A. Salvatore, J. Novotna, J. Turanek, M. Ledvina, P. Hozak, B. Zhivotovsky, M.J. Coster, S.J. Ralph, R.A.J. Smith, and J. Neuzil Mitochondrial targeting of α-tocopheryl succinate enhances its pro-apoptotic efficacy: a new paradigm for effective cancer therapy Free Radic. Biol. Med. 50 2011 1546 1555
-
(2011)
Free Radic. Biol. Med.
, vol.50
, pp. 1546-1555
-
-
Dong, L.F.1
Jameson, V.J.A.2
Tilly, D.3
Prochazka, L.4
Rohlena, J.5
Valis, K.6
Truksa, J.7
Zobalova, R.8
Mandavian, E.9
Kluckova, K.10
Stantic, M.11
Stursa, J.12
Freeman, R.13
Witting, P.K.14
Norberg, E.15
Goodwin, J.16
Salvatore, B.A.17
Novotna, J.18
Turanek, J.19
Ledvina, M.20
Hozak, P.21
Zhivotovsky, B.22
Coster, M.J.23
Ralph, S.J.24
Smith, R.A.J.25
Neuzil, J.26
more..
-
88
-
-
84875740213
-
-
Biochim. Biophys Acta 10.1016/j.bbabio.2012.10.015
-
K. Kluckova, A. Bezawork-Geleta, J. Rohlena, L. Dong, and J. Neuzil Mitochondrial complex II, a novel target for anti-cancer agents 2012 Biochim. Biophys Acta 10.1016/j.bbabio.2012.10.015
-
(2012)
Mitochondrial Complex II, A Novel Target for Anti-cancer Agents
-
-
Kluckova, K.1
Bezawork-Geleta, A.2
Rohlena, J.3
Dong, L.4
Neuzil, J.5
-
89
-
-
75349111140
-
Regulation of succinate dehydrogenase activity by SIRT3 in mammalian mitochondria
-
H. Cimen, M.J. Han, Y.J. Yang, Q. Tong, H. Koc, and E.C. Koc Regulation of succinate dehydrogenase activity by SIRT3 in mammalian mitochondria Biochemistry 49 2010 304 311
-
(2010)
Biochemistry
, vol.49
, pp. 304-311
-
-
Cimen, H.1
Han, M.J.2
Yang, Y.J.3
Tong, Q.4
Koc, H.5
Koc, E.C.6
-
90
-
-
80051716282
-
Succinate dehydrogenase is a direct target of sirtuin 3 deacetylase activity
-
L.W.S. Finley, W. Haas, V. Desquiret-Dumas, D.C. Wallace, V. Procaccio, S.P. Gygi, and M.C. Haigis Succinate dehydrogenase is a direct target of sirtuin 3 deacetylase activity PLoS One 6 2011
-
(2011)
PLoS One
, vol.6
-
-
Finley, L.W.S.1
Haas, W.2
Desquiret-Dumas, V.3
Wallace, D.C.4
Procaccio, V.5
Gygi, S.P.6
Haigis, M.C.7
-
91
-
-
33745628757
-
Generation of superoxide by the mitochondrial Complex I
-
DOI 10.1016/j.bbabio.2006.03.013, PII S0005272806000685
-
V.G. Grivennikova, and A.D. Vinogradov Generation of superoxide by the mitochondrial complex I Biochim. Biophys. Acta 1757 2006 553 561 (Pubitemid 43993849)
-
(2006)
Biochimica et Biophysica Acta - Bioenergetics
, vol.1757
, Issue.5-6
, pp. 553-561
-
-
Grivennikova, V.G.1
Vinogradov, A.D.2
-
92
-
-
79955977892
-
Superoxide is produced by the reduced flavin in mitochondrial complex i
-
K.R. Pryde, and J. Hirst Superoxide is produced by the reduced flavin in mitochondrial complex I J. Biol. Chem. 286 2011 18056 18065
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 18056-18065
-
-
Pryde, K.R.1
Hirst, J.2
-
93
-
-
0141815741
-
Production of reactive oxygen species by mitochondria: Central role of complex III
-
DOI 10.1074/jbc.M304854200
-
Q. Chen, E.J. Vazquez, S. Moghaddas, C.L. Hoppel, and E.J. Lesnefsky Production of reactive oxygen species by mitochondria: central role of complex III J. Biol. Chem. 278 2003 36027 36031 (Pubitemid 37139922)
-
(2003)
Journal of Biological Chemistry
, vol.278
, Issue.38
, pp. 36027-36031
-
-
Chen, Q.1
Vazquez, E.J.2
Moghaddas, S.3
Hoppel, C.L.4
Lesnefsky, E.J.5
-
94
-
-
0036805853
-
Cytopathies involving mitochondrial complex II
-
DOI 10.1016/S0098-2997(02)00012-2, PII S0098299702000122
-
B.A. Ackrell Cytopathies involving mitochondrial complex II Mol. Aspects Med. 23 2002 369 384 (Pubitemid 35286652)
-
(2002)
Molecular Aspects of Medicine
, vol.23
, Issue.5
, pp. 369-384
-
-
Ackrell, B.A.C.1
-
95
-
-
78650018619
-
Mitochondrial reactive oxygen species generation by the SDHC V69E mutation causes low birth weight and neonatal growth retardation
-
T. Ishii, M. Miyazawa, A. Onodera, K. Yasuda, N. Kawabe, M. Kirinashizawa, S. Yoshimura, N. Maruyama, P.S. Hartman, and N. Ishii Mitochondrial reactive oxygen species generation by the SDHC V69E mutation causes low birth weight and neonatal growth retardation Mitochondrion 11 2011 155 165
-
(2011)
Mitochondrion
, vol.11
, pp. 155-165
-
-
Ishii, T.1
Miyazawa, M.2
Onodera, A.3
Yasuda, K.4
Kawabe, N.5
Kirinashizawa, M.6
Yoshimura, S.7
Maruyama, N.8
Hartman, P.S.9
Ishii, N.10
-
97
-
-
84875698479
-
-
Biochim. Biophys Acta 10.1016/j.bbabio.2012.10.016
-
T. Ishii, M. Miyazawa, H. Onouchi, K. Yasuda, P.S. Hartman, and N. Ishii Model animals for the study of oxidative stress from complex II 2012 Biochim. Biophys Acta 10.1016/j.bbabio.2012.10.016
-
(2012)
Model Animals for the Study of Oxidative Stress from Complex II
-
-
Ishii, T.1
Miyazawa, M.2
Onouchi, H.3
Yasuda, K.4
Hartman, P.S.5
Ishii, N.6
-
98
-
-
0032514466
-
A mutation in succinate dehydrogenase cytochrome b causes oxidative stress and ageing in nematodes
-
DOI 10.1038/29331
-
N. Ishii, M. Fujii, P.S. Hartman, M. Tsuda, K. Yasuda, N. Senoo-Matsuda, S. Yanase, D. Ayusawa, and K. Suzuki A mutation in succinate dehydrogenase cytochrome b causes oxidative stress and ageing in nematodes Nature 394 1998 694 697 (Pubitemid 28389798)
-
(1998)
Nature
, vol.394
, Issue.6694
, pp. 694-697
-
-
Ishii, N.1
Fujii, M.2
Hartman, P.S.3
Tsuda, M.4
Yasuda, K.5
Senoo-Matsuda, N.6
Yanase, S.7
Ayusawa, D.8
Suzuki, K.9
-
99
-
-
0035834789
-
A defect in the cytochrome b large subunit in complex II causes both superoxide anion overproduction and abnormal energy metabolism in Caenorhabditis elegans
-
N. Senoo-Matsuda, K. Yasuda, M. Tsuda, T. Ohkubo, S. Yoshimura, H. Nakazawa, P.S. Hartman, and N. Ishii A defect in the cytochrome b large subunit in complex II causes both superoxide anion overproduction and abnormal energy metabolism in Caenorhabditis elegans J. Biol. Chem. 276 2001 41553 41558
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 41553-41558
-
-
Senoo-Matsuda, N.1
Yasuda, K.2
Tsuda, M.3
Ohkubo, T.4
Yoshimura, S.5
Nakazawa, H.6
Hartman, P.S.7
Ishii, N.8
-
100
-
-
76049086567
-
Contribution of the FAD and quinone binding sites to the production of reactive oxygen species from Ascaris suum mitochondrial complex II
-
M.P. Paranagama, K. Sakamoto, H. Amino, M. Awano, H. Miyoshi, and K. Kita Contribution of the FAD and quinone binding sites to the production of reactive oxygen species from Ascaris suum mitochondrial complex II Mitochondrion 10 2010 158 165
-
(2010)
Mitochondrion
, vol.10
, pp. 158-165
-
-
Paranagama, M.P.1
Sakamoto, K.2
Amino, H.3
Awano, M.4
Miyoshi, H.5
Kita, K.6
-
101
-
-
0037044847
-
Mechanism of superoxide and hydrogen peroxide formation by fumarate reductase, succinate dehydrogenase, and aspartate oxidase
-
DOI 10.1074/jbc.M204958200
-
K.R. Messner, and J.A. Imlay Mechanism of superoxide and hydrogen peroxide formation by fumarate reductase, succinate dehydrogenase, and aspartate oxidase J. Biol. Chem. 277 2002 42563 42571 (Pubitemid 35285624)
-
(2002)
Journal of Biological Chemistry
, vol.277
, Issue.45
, pp. 42563-42571
-
-
Messner, K.R.1
Imlay, J.A.2
-
102
-
-
36749062495
-
Escherichia coli succinate dehydrogenase variant lacking the heme b
-
DOI 10.1073/pnas.0707732104
-
Q.M. Tran, R.A. Rothery, E. Maklashina, G. Cecchini, and J.H. Weiner Escherichia coli succinate dehydrogenase variant lacking the heme b Proc. Natl. Acad. Sci. U. S. A. 104 2007 18007 18012 (Pubitemid 350210811)
-
(2007)
Proceedings of the National Academy of Sciences of the United States of America
, vol.104
, Issue.46
, pp. 18007-18012
-
-
Tran, Q.M.1
Rothery, R.A.2
Maklashina, E.3
Cecchini, G.4
Weiner, J.H.5
-
103
-
-
84857665440
-
Out of plane distortions of the heme b of Escherichia coli succinate dehydrogenase
-
Q.M. Tran, C. Fong, R.A. Rothery, E. Maklashina, G. Cecchini, and J.H. Weiner Out of plane distortions of the heme b of Escherichia coli succinate dehydrogenase PLoS One 7 2012
-
(2012)
PLoS One
, vol.7
-
-
Tran, Q.M.1
Fong, C.2
Rothery, R.A.3
Maklashina, E.4
Cecchini, G.5
Weiner, J.H.6
-
104
-
-
0346850862
-
The Ubiquinone-binding Site of the Saccharomyces cerevisiae Succinate-Ubiquinone Oxidoreductase Is a Source of Superoxide
-
DOI 10.1074/jbc.M306312200
-
J. Guo, and B.D. Lemire The ubiquinone-binding site of the Saccharomyces cerevisiae succinate-ubiquinone oxidoreductase is a source of superoxide J. Biol. Chem. 278 2003 47629 47635 (Pubitemid 37523207)
-
(2003)
Journal of Biological Chemistry
, vol.278
, Issue.48
, pp. 47629-47635
-
-
Guo, J.1
Lemire, B.D.2
-
105
-
-
34848866025
-
Ubiquinone-binding site mutations in the Saccharomyces cerevisiae succinate dehydrogenase generate superoxide and lead to the accumulation of succinate
-
DOI 10.1074/jbc.M700601200
-
S.S.W. Szeto, S.N. Reinke, B.D. Sykes, and B.D. Lemire Ubiquinone-binding site mutations in the Saccharomyces cerevisiae succinate dehydrogenase generate superoxide and lead to the accumulation of succinate J. Biol. Chem. 282 2007 27518 27526 (Pubitemid 47501935)
-
(2007)
Journal of Biological Chemistry
, vol.282
, Issue.37
, pp. 27518-27526
-
-
Szeto, S.S.W.1
Reinke, S.N.2
Sykes, B.D.3
Lemire, B.D.4
-
106
-
-
6344283043
-
Role of reactive oxygen species in the induction of apoptosis by α-tocopheryl succinate
-
DOI 10.1002/ijc.20424
-
Y.H. Kang, E. Lee, M.K. Choi, J.L. Ku, S.H. Kim, Y.G. Park, and S.J. Lim Role of reactive oxygen species in the induction of apoptosis by α-tocopheryl succinate Int. J. Cancer 112 2004 385 392 (Pubitemid 39390601)
-
(2004)
International Journal of Cancer
, vol.112
, Issue.3
, pp. 385-392
-
-
Kang, Y.-H.1
Lee, E.2
Choi, M.-K.3
Ku, J.-L.4
Kim, S.H.5
Park, Y.-G.6
Lim, S.-J.7
-
107
-
-
4544359913
-
Mitochondrial α-ketoglutarate dehydrogenase complex generates reactive oxygen species
-
DOI 10.1523/JNEUROSCI.1899-04.2004
-
A.A. Starkov, G. Fiskum, C. Chinopoulos, B.J. Lorenzo, S.E. Browne, M.S. Patel, and M.F. Beal Mitochondrial α-ketoglutarate dehydrogenase complex generates reactive oxygen species J. Neurosci. 24 2004 7779 7788 (Pubitemid 39215681)
-
(2004)
Journal of Neuroscience
, vol.24
, Issue.36
, pp. 7779-7788
-
-
Starkov, A.A.1
Fiskum, G.2
Chinopoulos, C.3
Lorenzo, B.J.4
Browne, S.E.5
Patel, M.S.6
Beal, M.F.7
-
109
-
-
0346725036
-
Effect of oxygen on activation state of complex I and lack of oxaloacetate inhibition of complex II in Langendorff perfused rat heart
-
DOI 10.1016/S0014-5793(03)01369-3
-
E. Maklashina, A.B. Kotlyar, J.S. Karliner, and G. Cecchini Effect of oxygen on activation state of complex I and lack of oxaloacetate inhibition of complex II in Langendorff perfused rat heart FEBS Lett. 556 2004 64 68 (Pubitemid 38058556)
-
(2004)
FEBS Letters
, vol.556
, Issue.1-3
, pp. 64-68
-
-
Maklashina, E.1
Kotlyar, A.B.2
Karliner, J.S.3
Cecchini, G.4
-
110
-
-
84873205191
-
Reactive oxygen species are generated by the respiratory complex II: Evidence for lack of contribution of the reverse electron flow in complex i
-
10.1111/febs12086 (published online as)
-
R. Moreno-Sanchez, L. Hernandez-Esquivel, N.A. Rivero-Segura, A. Marin-Hernandez, J. Neuzil, S.J. Ralph, and S. Rodriguez-Enriquez Reactive oxygen species are generated by the respiratory complex II: evidence for lack of contribution of the reverse electron flow in complex I FEBS J. 2012 10.1111/febs12086 (published online as)
-
(2012)
FEBS J
-
-
Moreno-Sanchez, R.1
Hernandez-Esquivel, L.2
Rivero-Segura, N.A.3
Marin-Hernandez, A.4
Neuzil, J.5
Ralph, S.J.6
Rodriguez-Enriquez, S.7
-
112
-
-
77956250065
-
2 removal in brain mitochondria via the thioredoxin/peroxiredoxin system
-
2 removal in brain mitochondria via the thioredoxin/peroxiredoxin system J. Biol. Chem. 285 2010 27850 27858
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 27850-27858
-
-
Drechsel, D.A.1
Patel, M.2
-
113
-
-
77953565915
-
Hydrogen peroxide efflux from muscle mitochondria underestimates matrix superoxide production - A correction using glutathione depletion
-
J.R. Treberg, C.L. Quinlan, and M.D. Brand Hydrogen peroxide efflux from muscle mitochondria underestimates matrix superoxide production - a correction using glutathione depletion FEBS J. 277 2010 2766 2778
-
(2010)
FEBS J
, vol.277
, pp. 2766-2778
-
-
Treberg, J.R.1
Quinlan, C.L.2
Brand, M.D.3
-
114
-
-
78650068036
-
Regulation of mitochondrial glutathione redox status and protein glutathionylation by respiratory substrates
-
J. Garcia, D. Han, H. Sancheti, L.P. Yap, N. Kaplowitz, and E. Cadenas Regulation of mitochondrial glutathione redox status and protein glutathionylation by respiratory substrates J. Biol. Chem. 285 2010 39646 39654
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 39646-39654
-
-
Garcia, J.1
Han, D.2
Sancheti, H.3
Yap, L.P.4
Kaplowitz, N.5
Cadenas, E.6
-
115
-
-
73849144014
-
Mitochondrial peroxiredoxin involvement in antioxidant defence and redox signalling
-
A.G. Cox, C.C. Winterbourn, and M.B. Hampton Mitochondrial peroxiredoxin involvement in antioxidant defence and redox signalling Biochem. J. 425 2010 313 325
-
(2010)
Biochem. J.
, vol.425
, pp. 313-325
-
-
Cox, A.G.1
Winterbourn, C.C.2
Hampton, M.B.3
-
116
-
-
80053034441
-
2 emission from isolated heart mitochondria
-
2 emission from isolated heart mitochondria J. Biol. Chem. 286 2011 33669 33677
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 33669-33677
-
-
Stanley, B.A.1
Sivakumaran, V.2
Shi, S.3
McDonald, I.4
Lloyd, D.5
Watson, W.H.6
Aon, M.A.7
Paolocci, N.8
-
117
-
-
48449107159
-
Thiol chemistry and specificity in redox signaling
-
C.C. Winterbourn, and M.B. Hampton Thiol chemistry and specificity in redox signaling Free Radic. Biol. Med. 45 2008 549 561
-
(2008)
Free Radic. Biol. Med.
, vol.45
, pp. 549-561
-
-
Winterbourn, C.C.1
Hampton, M.B.2
-
118
-
-
33745635338
-
Mitochondrial NADPH, transhydrogenase and disease
-
DOI 10.1016/j.bbabio.2006.03.010, PII S000527280600065X
-
J. Rydström Mitochondrial NADPH, transhydrogenase and disease Biochim. Biophys. Acta 1757 2006 721 726 (Pubitemid 43993846)
-
(2006)
Biochimica et Biophysica Acta - Bioenergetics
, vol.1757
, Issue.5-6
, pp. 721-726
-
-
Rydstrom, J.1
-
119
-
-
0028339522
-
Proton-translocating transhydrogenase and NAD-linked and NADP-linked isocitrate dehydrogenases operate in a substrate cycle which contributes to fine regulation of the tricarboxylic-acid cycle activity in mitochondria
-
L.A. Sazanov, and J.B. Jackson Proton-translocating transhydrogenase and NAD-linked and NADP-linked isocitrate dehydrogenases operate in a substrate cycle which contributes to fine regulation of the tricarboxylic-acid cycle activity in mitochondria FEBS Lett. 344 1994 109 116
-
(1994)
FEBS Lett.
, vol.344
, pp. 109-116
-
-
Sazanov, L.A.1
Jackson, J.B.2
-
120
-
-
0242456716
-
+-dependent isocitrate dehydrogenase (Journal of Biological Chemistry (2001) 276 (16168-16176))
-
+-dependent isocitrate dehydrogenase J. Biol. Chem. 276 2001 26732 (Pubitemid 37412899)
-
(2001)
Journal of Biological Chemistry
, vol.276
, Issue.28
, pp. 26732
-
-
Jo, S.-H.1
Son, M.-K.2
Koh, H.-J.3
Lee, S.-M.4
Song, I.-H.5
Kim, Y.-O.6
Lee, Y.-S.7
Jeong, K.-S.8
Kim, W.B.9
Park, J.-W.10
Song, B.J.11
Huh, T.-L.12
-
121
-
-
37549068090
-
+/NADPH in cellular functions and cell death: Regulation and biological consequences
-
+/NADPH in cellular functions and cell death: regulation and biological consequences Antioxid. Redox Signal. 10 2008 179 206
-
(2008)
Antioxid. Redox Signal.
, vol.10
, pp. 179-206
-
-
Ying, W.H.1
-
122
-
-
68649090703
-
The role of the mitochondrial permeability transition pore in heart disease
-
A.P. Halestrap, and P. Pasdois The role of the mitochondrial permeability transition pore in heart disease Biochim. Biophys. Acta 1787 2009 1402 1415
-
(2009)
Biochim. Biophys. Acta
, vol.1787
, pp. 1402-1415
-
-
Halestrap, A.P.1
Pasdois, P.2
-
123
-
-
33846335174
-
Modulation of electron transport protects cardiac mitochondria and decreases myocardial injury during ischemia and reperfusion
-
Q. Chen, A.K.S. Camara, D.F. Stowe, C.L. Hoppel, and E.J. Lesnefsky Modulation of electron transport protects cardiac mitochondria and decreases myocardial injury during ischemia and reperfusion Am. J. Physiol. 292 2007 C137 C147
-
(2007)
Am. J. Physiol.
, vol.292
-
-
Chen, Q.1
Camara, A.K.S.2
Stowe, D.F.3
Hoppel, C.L.4
Lesnefsky, E.J.5
-
124
-
-
0141751749
-
Preconditioning the myocardium: From cellular physiology to clinical cardiology
-
D.M. Yellon, and J.M. Downey Preconditioning the myocardium: from cellular physiology to clinical cardiology Phys. Rev. 83 2003 1113 1151 (Pubitemid 37222269)
-
(2003)
Physiological Reviews
, vol.83
, Issue.4
, pp. 1113-1151
-
-
Yellon, D.M.1
Downey, J.M.2
-
126
-
-
49849123118
-
Diazoxide, an inhibitor of succinate oxidation
-
G. Schäfer, C. Wegener, R. Portenhauser, and D. Bojanovski Diazoxide, an inhibitor of succinate oxidation Biochem. Pharmacol. 18 1969 2678 2681
-
(1969)
Biochem. Pharmacol.
, vol.18
, pp. 2678-2681
-
-
Schäfer, G.1
Wegener, C.2
Portenhauser, R.3
Bojanovski, D.4
-
127
-
-
0015070081
-
Inhibition of mitochondrial metabolism by diabetogenic thiadiazine diazoxide. 1. Action on succinate dehydrogenase and TCA-cycle oxidations
-
G. Schäfer, R. Portenhauser, and R. Trolp Inhibition of mitochondrial metabolism by diabetogenic thiadiazine diazoxide. 1. Action on succinate dehydrogenase and TCA-cycle oxidations Biochem. Pharmacol. 20 1971 1271 1280
-
(1971)
Biochem. Pharmacol.
, vol.20
, pp. 1271-1280
-
-
Schäfer, G.1
Portenhauser, R.2
Trolp, R.3
-
130
-
-
0037377605
-
Targeting nucleotide-requiring enzymes: Implications for diazoxide-induced cardioprotection
-
P.P. Dzeja, P. Bast, C. Ozcan, A. Valverde, E.L. Holmuhamedov, D.G.L. Van Wylen, and A. Terzic Targeting nucleotide-requiring enzymes: implications for diazoxide-induced cardioprotection Am. J. Physiol. 284 2003 H1048 H1056
-
(2003)
Am. J. Physiol.
, vol.284
-
-
Dzeja, P.P.1
Bast, P.2
Ozcan, C.3
Valverde, A.4
Holmuhamedov, E.L.5
Van Wylen, D.G.L.6
Terzic, A.7
-
131
-
-
0035957635
-
Diazoxide-induced cardioprotection requires signaling through a redox-sensitive mechanism
-
R.A. Forbes, C. Steenbergen, and E. Murphy Diazoxide-induced cardioprotection requires signaling through a redox-sensitive mechanism Circ. Res. 88 2001 802 809 (Pubitemid 32429976)
-
(2001)
Circulation Research
, vol.88
, Issue.8
, pp. 802-809
-
-
Forbes, R.A.1
Steenbergen, C.2
Murphy, E.3
-
134
-
-
0032541173
-
Reactive oxygen species released from mitochondria during brief hypoxia induce preconditioning in cardiomyocytes
-
DOI 10.1074/jbc.273.29.18092
-
T.L. Vanden Hoek, L.B. Becker, Z. Shao, C. Li, and P.T. Schumacker Reactive oxygen species released from mitochondria during brief hypoxia induce preconditioning in cardiomyocytes J. Biol. Chem. 273 1998 18092 18098 (Pubitemid 28334725)
-
(1998)
Journal of Biological Chemistry
, vol.273
, Issue.29
, pp. 18092-18098
-
-
Vanden Hoek, T.L.1
Becker, L.B.2
Shao, Z.3
Li, C.4
Schumacker, P.T.5
-
136
-
-
24144493814
-
Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing
-
DOI 10.1016/j.cmet.2005.05.001, PII S1550413105001397
-
R.D. Guzy, B. Hoyos, E. Robin, H. Chen, L.P. Liu, K.D. Mansfield, M.C. Simon, U. Hammerling, and P.T. Schumacker Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing Cell Metab. 1 2005 401 408 (Pubitemid 43960623)
-
(2005)
Cell Metabolism
, vol.1
, Issue.6
, pp. 401-408
-
-
Guzy, R.D.1
Hoyos, B.2
Robin, E.3
Chen, H.4
Liu, L.5
Mansfield, K.D.6
Simon, M.C.7
Hammerling, U.8
Schumacker, P.T.9
-
137
-
-
77956186783
-
Mitochondrial reactive oxygen species regulate cellular signaling and dictate biological outcomes
-
R.B. Hamanaka, and N.S. Chandel Mitochondrial reactive oxygen species regulate cellular signaling and dictate biological outcomes Trends Biochem. Sci. 35 2010 505 513
-
(2010)
Trends Biochem. Sci.
, vol.35
, pp. 505-513
-
-
Hamanaka, R.B.1
Chandel, N.S.2
-
138
-
-
0037432161
-
+ channel opening decreases reactive oxygen species generation
-
DOI 10.1016/S0014-5793(03)00007-3
-
+ channel opening decreases reactive oxygen species generation FEBS Lett. 536 2003 51 55 (Pubitemid 36206405)
-
(2003)
FEBS Letters
, vol.536
, Issue.1-3
, pp. 51-55
-
-
Ferranti, R.1
Da Silva, M.M.2
Kowaltowski, A.J.3
-
139
-
-
31344444853
-
+ channel activity
-
DOI 10.1016/j.freeradbiomed.2005.08.041, PII S0891584905004983
-
+ channel activity Free Radic. Biol. Med. 40 2006 469 479 (Pubitemid 43139682)
-
(2006)
Free Radical Biology and Medicine
, vol.40
, Issue.3
, pp. 469-479
-
-
Facundo, H.T.F.1
Carreira, R.S.2
De Paula, J.G.3
Santos, C.C.X.4
Ferranti, R.5
Laurindo, F.R.M.6
Kowaltowski, A.J.7
-
141
-
-
0030780773
-
+ channels: Possible mechanism of cardioprotection
-
+ channels - possible mechanism of cardioprotection Circ. Res. 81 1997 1072 1082 (Pubitemid 27514958)
-
(1997)
Circulation Research
, vol.81
, Issue.6
, pp. 1072-1082
-
-
Garlid, K.D.1
Paucek, P.2
Yarov-Yarovoy, V.3
Murray, H.N.4
Darbenzio, R.B.5
D'Alonzo, A.J.6
Lodge, N.J.7
Smith, M.A.8
Grover, G.J.9
-
143
-
-
1542343927
-
+ Channels and Their Role in Cardioprotection
-
DOI 10.1161/01.RES.0000117583.66950.43
-
+ channels and their role in cardioprotection Circ. Res. 94 2004 420 432 (Pubitemid 38326277)
-
(2004)
Circulation Research
, vol.94
, Issue.4
, pp. 420-432
-
-
O'Rourke, B.1
-
144
-
-
74549166040
-
+ channels, protectors of the heart
-
+ channels, protectors of the heart J. Physiol. Lond. 588 2010 283 286
-
(2010)
J. Physiol. Lond.
, vol.588
, pp. 283-286
-
-
Yamada, M.1
-
148
-
-
12244295437
-
The effects of ischaemic preconditioning, diazoxide and
-
DOI 10.1113/jphysiol.2002.031484
-
K.H.H. Lim, S.A. Javadov, M. Das, S.J. Clarke, M.S. Suleiman, and A.P. Halestrap The effects of ischaemic preconditioning, diazoxide and 5-hydroxydecanoate on rat heart mitochondrial volume and respiration J. Physiol. Lond. 545 2002 961 974 (Pubitemid 36024433)
-
(2002)
Journal of Physiology
, vol.545
, Issue.3
, pp. 961-974
-
-
Lim, K.H.H.1
Javadov, S.A.2
Das, M.3
Clarke, S.J.4
Suleiman, M.-S.5
Halestrap, A.P.6
-
149
-
-
0037337086
-
β-Oxidation of 5-hydroxydecanoate, a putative blocker of mitochondrial ATP-sensitive potassium channels
-
DOI 10.1113/jphysiol.2002.037044
-
P.J. Hanley, K.V. Gopalan, R.A. Lareau, D.K. Srivastava, M. von Meltzer, and J. Daut ß-oxidation of 5-hydroxydecanoate, a putative blocker of mitochondrial ATP-sensitive potassium channels J. Physiol. Lond. 547 2003 387 393 (Pubitemid 36304972)
-
(2003)
Journal of Physiology
, vol.547
, Issue.2
, pp. 387-393
-
-
Hanley, P.J.1
Gopalan, K.V.2
Lareau, R.A.3
Srivastava, D.K.4
Von Meltzer, M.5
Daut, J.6
-
150
-
-
19944430244
-
5-Hydroxydecanoate is metabolised in mitochondria and creates a rate-limiting bottleneck for beta-oxidation of fatty acids
-
P.J. Hanley, S. Dröse, U. Brandt, R.A. Lareau, A.L. Banerjee, D.K. Srivastava, L.J. Banaszak, J.J. Barycki, P.P. Van Veldhoven, and J. Daut 5-Hydroxydecanoate is metabolised in mitochondria and creates a rate-limiting bottleneck for beta-oxidation of fatty acids J. Physiol. Lond. 562 2005 307 318
-
(2005)
J. Physiol. Lond.
, vol.562
, pp. 307-318
-
-
Hanley, P.J.1
Dröse, S.2
Brandt, U.3
Lareau, R.A.4
Banerjee, A.L.5
Srivastava, D.K.6
Banaszak, L.J.7
Barycki, J.J.8
Van Veldhoven, P.P.9
Daut, J.10
-
152
-
-
2942615283
-
Potassium channel openers are uncoupling protonophores: Implication in cardioprotection
-
DOI 10.1016/j.febslet.2004.05.031, PII S0014579304006490
-
E.L. Holmuhamedov, A. Jahangir, A. Oberlin, A. Komarov, M. Colombini, and A. Terzic Potassium channel openers are uncoupling protonophores: implication in cardioprotection FEBS Lett. 568 2004 167 170 (Pubitemid 38757976)
-
(2004)
FEBS Letters
, vol.568
, Issue.1-3
, pp. 167-170
-
-
Holmuhamedov, E.L.1
Jahangir, A.2
Oberlin, A.3
Komarov, A.4
Colombini, M.5
Terzic, A.6
-
157
-
-
46349106237
-
The endogenous mitochondrial complex II inhibitor malonate regulates mitochondrial ATP-sensitive potassium channels: Implications for ischemic preconditioning
-
A.P. Wojtovich, and P.S. Brookes The endogenous mitochondrial complex II inhibitor malonate regulates mitochondrial ATP-sensitive potassium channels: implications for ischemic preconditioning Biochim. Biophys. Acta 1777 2008 882 889
-
(2008)
Biochim. Biophys. Acta
, vol.1777
, pp. 882-889
-
-
Wojtovich, A.P.1
Brookes, P.S.2
|