메뉴 건너뛰기




Volumn 1827, Issue 5, 2013, Pages 578-587

Differential effects of complex II on mitochondrial ROS production and their relation to cardioprotective pre- and postconditioning

Author keywords

Complex II; Ischemic preconditioning; Mitochondria; Pharmacological preconditioning; Reactive oxygen species; Succinate:ubiquinone oxidoreductase

Indexed keywords

ADENOSINE TRIPHOSPHATE SENSITIVE POTASSIUM CHANNEL; ANTIMYCIN A1; MYXOTHIAZOL; OXALOACETIC ACID; REACTIVE OXYGEN METABOLITE; STIGMATELLIN; SUCCINATE DEHYDROGENASE (UBIQUINONE);

EID: 84875710000     PISSN: 00052728     EISSN: 18792650     Source Type: Journal    
DOI: 10.1016/j.bbabio.2013.01.004     Document Type: Review
Times cited : (169)

References (157)
  • 1
    • 0043269302 scopus 로고    scopus 로고
    • Function and structure of complex II of the respiratory chain
    • DOI 10.1146/annurev.biochem.72.121801.161700
    • G. Cecchini Function and structure of complex II of the respiratory chain Annu. Rev. Biochem. 72 2003 77 109 (Pubitemid 36930442)
    • (2003) Annual Review of Biochemistry , vol.72 , pp. 77-109
    • Cecchini, G.1
  • 2
    • 0142150051 scopus 로고    scopus 로고
    • Mitochondrial formation of reactive oxygen species
    • DOI 10.1113/jphysiol.2003.049478
    • J.F. Turrens Mitochondrial formation of reactive oxygen species J. Physiol. 552 2003 335 344 (Pubitemid 37321833)
    • (2003) Journal of Physiology , vol.552 , Issue.2 , pp. 335-344
    • Turrens, J.F.1
  • 3
    • 58249093939 scopus 로고    scopus 로고
    • How mitochondria produce reactive oxygen species
    • M.P. Murphy How mitochondria produce reactive oxygen species Biochem. J. 417 2009 1 13
    • (2009) Biochem. J. , vol.417 , pp. 1-13
    • Murphy, M.P.1
  • 5
    • 77952541558 scopus 로고    scopus 로고
    • The sites and topology of mitochondrial superoxide production
    • M.D. Brand The sites and topology of mitochondrial superoxide production Exp. Gerontol. 45 2010 466 472
    • (2010) Exp. Gerontol. , vol.45 , pp. 466-472
    • Brand, M.D.1
  • 6
    • 84863738048 scopus 로고    scopus 로고
    • Molecular mechanisms of superoxide production by the mitochondrial respiratory chain
    • S. Dröse, and U. Brandt Molecular mechanisms of superoxide production by the mitochondrial respiratory chain Adv. Exp. Med. Biol. 748 2012 145 169
    • (2012) Adv. Exp. Med. Biol. , vol.748 , pp. 145-169
    • Dröse, S.1    Brandt, U.2
  • 7
    • 33750347347 scopus 로고    scopus 로고
    • Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases
    • DOI 10.1038/nature05292, PII NATURE05292
    • M.T. Lin, and M.F. Beal Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases Nature 443 2006 787 795 (Pubitemid 44622683)
    • (2006) Nature , vol.443 , Issue.7113 , pp. 787-795
    • Lin, M.T.1    Beal, M.F.2
  • 8
    • 34547130863 scopus 로고    scopus 로고
    • The role of mitochondria in protection of the heart by preconditioning
    • DOI 10.1016/j.bbabio.2007.05.008, PII S0005272807001132
    • A.P. Halestrap, S.J. Clarke, and I. Khaliulin The role of mitochondria in protection of the heart by preconditioning Biochim. Biophys. Acta 1767 2007 1007 1031 (Pubitemid 47101788)
    • (2007) Biochimica et Biophysica Acta - Bioenergetics , vol.1767 , Issue.8 , pp. 1007-1031
    • Halestrap, A.P.1    Clarke, S.J.2    Khaliulin, I.3
  • 9
    • 34548746306 scopus 로고    scopus 로고
    • Mechanisms of disease: Myocardial reperfusion injury
    • D.M. Yellon, and D.J. Hausenloy Mechanisms of disease: myocardial reperfusion injury N. Engl. J. Med. 357 2007 1121 1135
    • (2007) N. Engl. J. Med. , vol.357 , pp. 1121-1135
    • Yellon, D.M.1    Hausenloy, D.J.2
  • 11
    • 33847059997 scopus 로고    scopus 로고
    • The mitochondrial energy transduction system and the aging process
    • A. Navarro, and A. Boveris The mitochondrial energy transduction system and the aging process Am. J. Physiol. 292 2007 C670 C686
    • (2007) Am. J. Physiol. , vol.292
    • Navarro, A.1    Boveris, A.2
  • 14
    • 84867422702 scopus 로고    scopus 로고
    • Structural basis for malfunction in complex II
    • T.M. Iverson, E. Maklashina, and G. Cecchini Structural basis for malfunction in complex II J. Biol. Chem. 287 2012 35430 35438
    • (2012) J. Biol. Chem. , vol.287 , pp. 35430-35438
    • Iverson, T.M.1    Maklashina, E.2    Cecchini, G.3
  • 15
    • 67349133591 scopus 로고    scopus 로고
    • Ambivalent effects of diazoxide on mitochondrial ROS production at respiratory chain complexes i and III
    • S. Dröse, P.J. Hanley, and U. Brandt Ambivalent effects of diazoxide on mitochondrial ROS production at respiratory chain complexes I and III Biochim. Biophys. Acta 1790 2009 558 565
    • (2009) Biochim. Biophys. Acta , vol.1790 , pp. 558-565
    • Dröse, S.1    Hanley, P.J.2    Brandt, U.3
  • 16
    • 79955029789 scopus 로고    scopus 로고
    • A common mechanism links differently acting complex II inhibitors to cardioprotection: Modulation of mitochondrial reactive oxygen species production
    • S. Dröse, L. Bleier, and U. Brandt A common mechanism links differently acting complex II inhibitors to cardioprotection: modulation of mitochondrial reactive oxygen species production Mol. Pharmacol. 79 2011 814 822
    • (2011) Mol. Pharmacol. , vol.79 , pp. 814-822
    • Dröse, S.1    Bleier, L.2    Brandt, U.3
  • 17
    • 0015363173 scopus 로고
    • The cellular production of hydrogen-peroxide
    • A. Boveris, N. Oshino, and B. Chance The cellular production of hydrogen-peroxide Biochem. J. 128 1972 617 630
    • (1972) Biochem. J. , vol.128 , pp. 617-630
    • Boveris, A.1    Oshino, N.2    Chance, B.3
  • 18
    • 0034740585 scopus 로고    scopus 로고
    • m-dependent and -independent production of reactive oxygen species by rat brain mitochondria
    • DOI 10.1046/j.1471-4159.2001.00548.x
    • T.V. Votyakova, and I.J. Reynolds ΔΨ-dependent and -independent production of reactive oxygen species by rat brain mitochondria J. Neurochem. 79 2001 266 277 (Pubitemid 32988942)
    • (2001) Journal of Neurochemistry , vol.79 , Issue.2 , pp. 266-277
    • Votyakova, T.V.1    Reynolds, I.J.2
  • 19
    • 0036319021 scopus 로고    scopus 로고
    • Generation of reactive oxygen species by the mitochondrial electron transport chain
    • DOI 10.1046/j.0022-3042.2002.00744.x
    • Y. Liu, G. Fiskum, and D. Schubert Generation of reactive oxygen species by the mitochondrial electron transport chain J. Neurochem. 80 2002 780 787 (Pubitemid 34809230)
    • (2002) Journal of Neurochemistry , vol.80 , Issue.5 , pp. 780-787
    • Liu, Y.1    Fiskum, G.2    Schubert, D.3
  • 20
    • 4043090717 scopus 로고    scopus 로고
    • Superoxide production by NADH:ubiquinone oxidoreductase (complex I) depends on the pH gradient across the mitochondrial inner membrane
    • DOI 10.1042/BJ20040485
    • A.J. Lambert, and M.D. Brand Superoxide production by NADH:ubiquinone oxidoreductase (complex I) depends on the pH gradient across the mitochondrial inner membrane Biochem. J. 382 2004 511 517 (Pubitemid 39243917)
    • (2004) Biochemical Journal , vol.382 , Issue.2 , pp. 511-517
    • Lambert, A.J.1    Brand, M.D.2
  • 21
  • 22
    • 57649233079 scopus 로고    scopus 로고
    • The role of mitochondria in reactive oxygen species metabolism and signaling
    • A.A. Starkov The role of mitochondria in reactive oxygen species metabolism and signaling Ann. N. Y. Acad. Sci. 1147 2008 37 52
    • (2008) Ann. N. Y. Acad. Sci. , vol.1147 , pp. 37-52
    • Starkov, A.A.1
  • 23
    • 38749087624 scopus 로고    scopus 로고
    • High rates of superoxide production in skeletal-muscle mitochondria respiring on both complex I- and complex II-linked substrates
    • DOI 10.1042/BJ20071162
    • F.L. Muller, Y.H. Liu, M.A. Abdul-Ghani, M.S. Lustgarten, A. Bhattacharya, Y.C. Jang, and H. Van Remmen High rates of superoxide production in skeletal-muscle mitochondria respiring on both complex I- and complex II-linked substrates Biochem. J. 409 2008 491 499 (Pubitemid 351184967)
    • (2008) Biochemical Journal , vol.409 , Issue.2 , pp. 491-499
    • Muller, F.L.1    Liu, Y.2    Abdul-Ghani, M.A.3    Lustgarten, M.S.4    Bhattacharya, A.5    Jang, Y.C.6    Van Remmen, H.7
  • 24
    • 79961008706 scopus 로고    scopus 로고
    • Evidence for two sites of superoxide production by mitochondrial NADH-ubiquinone oxidoreductase (complex I)
    • J.R. Treberg, C.L. Quinlan, and M.D. Brand Evidence for two sites of superoxide production by mitochondrial NADH-ubiquinone oxidoreductase (complex I) J. Biol. Chem. 286 2011 27103 27110
    • (2011) J. Biol. Chem. , vol.286 , pp. 27103-27110
    • Treberg, J.R.1    Quinlan, C.L.2    Brand, M.D.3
  • 26
    • 0017074295 scopus 로고
    • 566, and their relationship to ubiquinone and the iron-sulfur centers S-1 (+ N-2) and S-3
    • 566, and their relationship to ubiquinone and the iron-sulfur centers S-1 (+ N-2) and S-3 Arch. Biochem. Biophys. 174 1976 143 157
    • (1976) Arch. Biochem. Biophys. , vol.174 , pp. 143-157
    • Erecinska, M.1    Wilson, D.F.2
  • 27
    • 0018385858 scopus 로고
    • Diminished inhibition of mitochondrial electron transfer from succinate to cytochrome c by thenoyltrifluoroacetone induced by antimycin
    • B.L. Trumpower, and Z. Simmons Diminished inhibition of mitochondrial electron transfer from succinate to cytochrome c by thenoyltrifluoroacetone induced by antimycin J. Biol. Chem. 254 1979 4608 4616 (Pubitemid 9203490)
    • (1979) Journal of Biological Chemistry , vol.254 , Issue.11 , pp. 4608-4616
    • Trumpower, B.L.1    Simmons, Z.2
  • 30
    • 77949652724 scopus 로고    scopus 로고
    • ATP channel and decoupling of mitochondrial complex II and III contribute to the suppression of myocardial reperfusion hyperoxygenation
    • ATP channel and decoupling of mitochondrial complex II and III contribute to the suppression of myocardial reperfusion hyperoxygenation Mol. Cell. Biochem. 337 2010 25 38
    • (2010) Mol. Cell. Biochem. , vol.337 , pp. 25-38
    • Liu, B.1    Zhu, X.H.2    Chen, C.L.3    Hu, K.L.4    Swartz, H.M.5    Chen, Y.R.6    He, G.L.7
  • 33
    • 80052419584 scopus 로고    scopus 로고
    • The mechanism of superoxide production by the antimycin-inhibited mitochondrial Q-cycle
    • C.L. Quinlan, A.A. Gerencser, J.R. Treberg, and M.D. Brand The mechanism of superoxide production by the antimycin-inhibited mitochondrial Q-cycle J. Biol. Chem. 286 2011 31361 31372
    • (2011) J. Biol. Chem. , vol.286 , pp. 31361-31372
    • Quinlan, C.L.1    Gerencser, A.A.2    Treberg, J.R.3    Brand, M.D.4
  • 34
    • 70349904508 scopus 로고    scopus 로고
    • 2 release at mitochondrial complex I: Negative modulation by malate, positive by cyanide
    • 2 release at mitochondrial complex I: negative modulation by malate, positive by cyanide J. Bioenerg. Biomembr. 41 2009 387 393
    • (2009) J. Bioenerg. Biomembr. , vol.41 , pp. 387-393
    • Zoccarato, F.1    Cavallini, L.2    Alexandre, A.3
  • 36
    • 84860389709 scopus 로고    scopus 로고
    • Inhibitors of succinate: Quinone reductase/complex II regulate production of mitochondrial reactive oxygen species and protect normal cells from ischemic damage but induce specific cancer cell death
    • S.J. Ralph, R. Moreno-Sanchez, J. Neuzil, and S. Rodriguez-Enriquez Inhibitors of succinate: quinone reductase/complex II regulate production of mitochondrial reactive oxygen species and protect normal cells from ischemic damage but induce specific cancer cell death Pharm. Res. 28 2011 2695 2730
    • (2011) Pharm. Res. , vol.28 , pp. 2695-2730
    • Ralph, S.J.1    Moreno-Sanchez, R.2    Neuzil, J.3    Rodriguez-Enriquez, S.4
  • 37
    • 84864540083 scopus 로고    scopus 로고
    • Mitochondrial complex II can generate reactive oxygen species at high rates in both the forward and reverse reactions
    • C.L. Quinlan, A.L. Orr, I.V. Perevoshchikova, J.R. Treberg, B.A. Ackrell, and M.D. Brand Mitochondrial complex II can generate reactive oxygen species at high rates in both the forward and reverse reactions J. Biol. Chem. 287 2012 27255 27264
    • (2012) J. Biol. Chem. , vol.287 , pp. 27255-27264
    • Quinlan, C.L.1    Orr, A.L.2    Perevoshchikova, I.V.3    Treberg, J.R.4    Ackrell, B.A.5    Brand, M.D.6
  • 38
    • 1142297598 scopus 로고    scopus 로고
    • New concepts in reactive oxygen species and cardiovascular reperfusion physiology
    • DOI 10.1016/j.cardiores.2003.10.025
    • L.B. Becker New concepts in reactive oxygen species and cardiovascular reperfusion physiology Cardiovasc. Res. 61 2004 461 470 (Pubitemid 38210152)
    • (2004) Cardiovascular Research , vol.61 , Issue.3 , pp. 461-470
    • Becker, L.B.1
  • 39
    • 20644462354 scopus 로고    scopus 로고
    • ATP channels and an overview of alternative mechanisms
    • DOI 10.1016/j.yjmcc.2005.04.002, PII S0022282805001264
    • ATP channels and an overview of alternative mechanisms J. Mol. Cell. Cardiol. 39 2005 17 50 (Pubitemid 40836043)
    • (2005) Journal of Molecular and Cellular Cardiology , vol.39 , Issue.1 , pp. 17-50
    • Hanley, P.J.1    Daut, J.2
  • 41
    • 0036088772 scopus 로고    scopus 로고
    • Potassium channel openers protect cardiac mitochondria by attenuating oxidant stress at reoxygenation
    • C. Ozcan, M. Bienengraeber, P.P. Dzeja, and A. Terzic Potassium channel openers protect cardiac mitochondria by attenuating oxidant stress at reoxygenation Am. J. Physiol. 282 2002 H531 H539
    • (2002) Am. J. Physiol. , vol.282
    • Ozcan, C.1    Bienengraeber, M.2    Dzeja, P.P.3    Terzic, A.4
  • 42
    • 37349022807 scopus 로고    scopus 로고
    • Effective pharmacotherapy against oxidative injury: Alternative utility of an ATP-sensitive potassium channel opener
    • DOI 10.1097/FJC.0b013e31812378df, PII 0000534420071000000009
    • C. Ozcan, A. Terzic, and M. Bienengraeber Effective pharmacotherapy against oxidative injury: alternative utility of an ATP-sensitive potassium channel opener J. Cardiovasc. Pharmacol. 50 2007 411 418 (Pubitemid 350303819)
    • (2007) Journal of Cardiovascular Pharmacology , vol.50 , Issue.4 , pp. 411-418
    • Ozcan, C.1    Terzic, A.2    Bienengraeber, M.3
  • 43
    • 44949247416 scopus 로고    scopus 로고
    • Effect of diazoxide on flavoprotein oxidation and reactive oxygen species generation during ischemia-reperfusion: A study on Langendorff-perfused rat hearts using optic fibers
    • P. Pasdois, B. Beauvoit, L. Tariosse, B. Vinassa, S. Bonoron-Adele, and P. Dos Santos Effect of diazoxide on flavoprotein oxidation and reactive oxygen species generation during ischemia-reperfusion: a study on Langendorff-perfused rat hearts using optic fibers Am. J. Physiol. 294 2008 H2088 H2097
    • (2008) Am. J. Physiol. , vol.294
    • Pasdois, P.1    Beauvoit, B.2    Tariosse, L.3    Vinassa, B.4    Bonoron-Adele, S.5    Dos Santos, P.6
  • 44
    • 62249098383 scopus 로고    scopus 로고
    • The complex II inhibitor atpenin A5 protects against cardiac ischemia-reperfusion injury via activation of mitochondrial K-ATP channels
    • A.P. Wojtovich, and P.S. Brookes The complex II inhibitor atpenin A5 protects against cardiac ischemia-reperfusion injury via activation of mitochondrial K-ATP channels Basic Res. Cardiol. 104 2009 121 129
    • (2009) Basic Res. Cardiol. , vol.104 , pp. 121-129
    • Wojtovich, A.P.1    Brookes, P.S.2
  • 45
    • 0038230469 scopus 로고    scopus 로고
    • Supercomplexes in the respiratory chains of yeast and mammalian mitochondria
    • H. Schägger, and K. Pfeiffer Supercomplexes in the respiratory chains of yeast and mammalian mitochondria EMBO J. 19 2000 1777 1783 (Pubitemid 30204389)
    • (2000) EMBO Journal , vol.19 , Issue.8 , pp. 1777-1783
    • Schagger, H.1    Pfeiffer, K.2
  • 46
    • 0037056045 scopus 로고    scopus 로고
    • Respiratory chain supercomplexes of mitochondria and bacteria
    • DOI 10.1016/S0005-2728(02)00271-2, PII S0005272802002712
    • H. Schägger Respiratory chain supercomplexes of mitochondria and bacteria Biochim. Biophys. Acta 1555 2002 154 159 (Pubitemid 35246021)
    • (2002) Biochimica et Biophysica Acta - Bioenergetics , vol.1555 , Issue.1-3 , pp. 154-159
    • Schagger, H.1
  • 47
    • 84863754137 scopus 로고    scopus 로고
    • Supramolecular organisation of the mitochondrial respiratory chain: A new challenge for the mechanism and control of oxidative phosphorylation
    • G. Lenaz, and M.L. Genova Supramolecular organisation of the mitochondrial respiratory chain: a new challenge for the mechanism and control of oxidative phosphorylation Adv. Exp. Med. Biol. 748 2012 107 144
    • (2012) Adv. Exp. Med. Biol. , vol.748 , pp. 107-144
    • Lenaz, G.1    Genova, M.L.2
  • 50
    • 0343052744 scopus 로고    scopus 로고
    • Succinate: Quinone oxidoreductases. Variations on a conserved theme
    • DOI 10.1016/S0005-2728(97)00019-4, PII S0005272897000194
    • C. Hagerhall Succinate:quinone oxidoreductases - variations on a conserved theme Biochim. Biophys. Acta 1320 1997 107 141 (Pubitemid 27248508)
    • (1997) Biochimica et Biophysica Acta - Bioenergetics , vol.1320 , Issue.2 , pp. 107-141
    • Hagerhall, C.1
  • 51
    • 78149465602 scopus 로고    scopus 로고
    • The quinone-binding and catalytic site of complex II
    • E. Maklashina, and G. Cecchini The quinone-binding and catalytic site of complex II Biochim. Biophys. Acta 1797 2010 1877 1882
    • (2010) Biochim. Biophys. Acta , vol.1797 , pp. 1877-1882
    • Maklashina, E.1    Cecchini, G.2
  • 52
    • 84875711829 scopus 로고    scopus 로고
    • Catalytic mechanisms of complex II enzymes: A structural perspective
    • (this issue)
    • T.M. Iverson Catalytic mechanisms of complex II enzymes: A structural perspective Biochim. Biophys. Acta 1827 2013 648 657 (this issue)
    • (2013) Biochim. Biophys. Acta , vol.1827 , pp. 648-657
    • Iverson, T.M.1
  • 54
    • 70350400733 scopus 로고    scopus 로고
    • Structure of Escherichia coli succinate:quinone oxidoreductase with an occupied and empty quinone-binding site
    • J. Ruprecht, V. Yankovskaya, E. Maklashina, S. Iwata, and G. Cecchini Structure of Escherichia coli succinate:quinone oxidoreductase with an occupied and empty quinone-binding site J. Biol. Chem. 284 2009 29836 29846
    • (2009) J. Biol. Chem. , vol.284 , pp. 29836-29846
    • Ruprecht, J.1    Yankovskaya, V.2    Maklashina, E.3    Iwata, S.4    Cecchini, G.5
  • 55
    • 21244503033 scopus 로고    scopus 로고
    • Crystal structure of mitochondrial respiratory membrane protein Complex II
    • DOI 10.1016/j.cell.2005.05.025, PII S0092867405005040
    • F. Sun, X. Huo, Y.J. Zhai, A.J. Wang, J.X. Xu, D. Su, M. Bartlam, and Z.H. Rao Crystal structure of mitochondrial respiratory membrane protein complex II Cell 121 2005 1043 1057 (Pubitemid 40884395)
    • (2005) Cell , vol.121 , Issue.7 , pp. 1043-1057
    • Sun, F.1    Huo, X.2    Zhai, Y.3    Wang, A.4    Xu, J.5    Su, D.6    Bartlam, M.7    Rao, Z.8
  • 56
    • 33646846683 scopus 로고    scopus 로고
    • 3-Nitropropionic acid is a suicide inhibitor of mitochondrial respiration that, upon oxidation by complex II, forms a covalent adduct with a catalytic base arginine in the active site of the enzyme
    • DOI 10.1074/jbc.M511270200
    • L.S. Huang, G. Sun, D. Cobessi, A.C. Wang, J.T. Shen, E.Y. Tung, V.E. Anderson, and E.A. Berry 3-Nitropropionic acid is a suicide inhibitor of mitochondrial respiration that, upon oxidation by complex II, forms a covalent adduct with a catalytic base arginine in the active site of the enzyme J. Biol. Chem. 281 2006 5965 5972 (Pubitemid 43847697)
    • (2006) Journal of Biological Chemistry , vol.281 , Issue.9 , pp. 5965-5972
    • Huang, L.-S.1    Sun, G.2    Cobessi, D.3    Wang, A.C.4    Shen, J.T.5    Tung, E.Y.6    Anderson, V.E.7    Berry, E.A.8
  • 57
    • 0033580880 scopus 로고    scopus 로고
    • Structure of the Escherichia coli fumarate reductase respiratory complex
    • DOI 10.1126/science.284.5422.1961
    • T.M. Iverson, C. Luna-Chavez, G. Cecchini, and D.C. Rees Structure of the Escherichia coli fumarate reductase respiratory complex Science 284 1999 1961 1966 (Pubitemid 29309437)
    • (1999) Science , vol.284 , Issue.5422 , pp. 1961-1966
    • Iverson, T.M.1    Luna-Chavez, C.2    Cecchini, G.3    Rees, D.C.4
  • 58
    • 0010049951 scopus 로고    scopus 로고
    • Structure of fumarate reductase from Wolinella succinogenes at 2.2 A resolution
    • C.R. Lancaster, A. Kröger, M. Auer, and H. Michel Structure of fumarate reductase from Wolinella succinogenes at 2.2 A resolution Nature 402 1999 377 385 (Pubitemid 129544818)
    • (1999) Nature , vol.402 , Issue.6760 , pp. 377-385
    • Lancaster, C.R.D.1    Kroger, A.2    Auer, M.3    Michel, H.4
  • 59
    • 0031766842 scopus 로고    scopus 로고
    • Anaerobic expression of Escherichia coli succinate dehydrogenase: Functional replacement of fumarate reductase in the respiratory chain during anaerobic growth
    • E. Maklashina, D.K. Berthold, and G. Cecchini Anaerobic expression of Escherichia coli succinate dehydrogenase: functional replacement of fumarate reductase in the respiratory chain during anaerobic growth J. Bacteriol. 180 1998 5989 5996 (Pubitemid 28514218)
    • (1998) Journal of Bacteriology , vol.180 , Issue.22 , pp. 5989-5996
    • Maklashina, E.1    Berthold, D.A.2    Cecchini, G.3
  • 61
    • 0019876977 scopus 로고
    • Thermodynamic and electron-paramagnetic resonance characterization of flavin in succinate-dehydrogenase
    • T. Ohnishi, T.E. King, J.C. Salerno, H. Blum, J.R. Bowyer, and T. Maida Thermodynamic and electron-paramagnetic resonance characterization of flavin in succinate-dehydrogenase J. Biol. Chem. 256 1981 5577 5582
    • (1981) J. Biol. Chem. , vol.256 , pp. 5577-5582
    • Ohnishi, T.1    King, T.E.2    Salerno, J.C.3    Blum, H.4    Bowyer, J.R.5    Maida, T.6
  • 63
    • 0019326469 scopus 로고
    • Studies on the stabilized ubisemiquinone species in the succinate-cytochrome c-reductase segment of the intact mitochondrial-membrane system
    • J.C. Salerno, and T. Ohnishi Studies on the stabilized ubisemiquinone species in the succinate-cytochrome c-reductase segment of the intact mitochondrial-membrane system Biochem. J. 192 1980 769 781
    • (1980) Biochem. J. , vol.192 , pp. 769-781
    • Salerno, J.C.1    Ohnishi, T.2
  • 64
    • 33845952352 scopus 로고    scopus 로고
    • The quinone binding site in Escherichia coli succinate dehydrogenase is required for electron transfer to the heme b
    • DOI 10.1074/jbc.M607476200
    • Q.M. Tran, R.A. Rothery, E. Maklashina, G. Cecchini, and J.H. Weiner The quinone binding site in Escherichia coli succinate dehydrogenase is required for electron transfer to the heme b J. Biol. Chem. 281 2006 32310 32317 (Pubitemid 46036785)
    • (2006) Journal of Biological Chemistry , vol.281 , Issue.43 , pp. 32310-32317
    • Tran, Q.M.1    Rothery, R.A.2    Maklashina, E.3    Cecchini, G.4    Weiner, J.H.5
  • 65
    • 0015214354 scopus 로고
    • Control of succinate dehydrogenase in mitochondria
    • M. Gutman, E.B. Kearney, and T.P. Singer Control of succinate dehydrogenase in mitochondria Biochemistry 10 1971 4763 4770
    • (1971) Biochemistry , vol.10 , pp. 4763-4770
    • Gutman, M.1    Kearney, E.B.2    Singer, T.P.3
  • 66
    • 0015511326 scopus 로고
    • Tightly bound oxalacetate and activation of succinated dehydrogenase
    • E.B. Kearney, B.A.C. Ackrell, and M. Mayr Tightly bound oxalacetate and activation of succinated dehydrogenase Biochem. Biophys. Res. Commun. 49 1972 1115 1121
    • (1972) Biochem. Biophys. Res. Commun. , vol.49 , pp. 1115-1121
    • Kearney, E.B.1    Ackrell, B.A.C.2    Mayr, M.3
  • 67
    • 0016165075 scopus 로고
    • Studies on succinate-dehydrogenase. 24. Role of oxalacetate in regulation of mammalian succinate-dehydrogenase
    • B.A.C. Ackrell, E.B. Kearney, and M. Mayr Studies on succinate- dehydrogenase. 24. Role of oxalacetate in regulation of mammalian succinate-dehydrogenase J. Biol. Chem. 249 1974 2021 2027
    • (1974) J. Biol. Chem. , vol.249 , pp. 2021-2027
    • Ackrell, B.A.C.1    Kearney, E.B.2    Mayr, M.3
  • 68
    • 0023676091 scopus 로고
    • Oxidation of malate by the mitochondrial succinate-ubiquinone reductase
    • Y.O. Belikova, A.B. Kotlyar, and A.D. Vinogradov Oxidation of malate by the mitochondrial succinate-ubiquinone reductase Biochim. Biophys. Acta 936 1988 1 9
    • (1988) Biochim. Biophys. Acta , vol.936 , pp. 1-9
    • Belikova, Y.O.1    Kotlyar, A.B.2    Vinogradov, A.D.3
  • 69
    • 0014512144 scopus 로고
    • Inhibition by 2,4-dinitriphenol of removal of oxaloacetate formed by oxidation of succinate by rat-liver and -heart mitochondria
    • A.B. Oestreicher, S.G. Van den Bergh, and E.C. Slater Inhibition by 2,4-dinitriphenol of removal of oxaloacetate formed by oxidation of succinate by rat-liver and -heart mitochondria Biochim. Biophys. Acta 180 1969 45 55
    • (1969) Biochim. Biophys. Acta , vol.180 , pp. 45-55
    • Oestreicher, A.B.1    Van Den Bergh, S.G.2    Slater, E.C.3
  • 72
    • 0022598348 scopus 로고
    • Ischemia and the aging brain. Studies on glucose and energy metabolism in rat cerebral cortex
    • DOI 10.1016/0197-4580(86)90022-9
    • S. Hoyer, and C. Krier Ischemia and the aging brain - studies on glucose and energy-metabolism in rat cerebral-cortex Neurobiol. Aging 7 1986 23 29 (Pubitemid 16153126)
    • (1986) Neurobiology of Aging , vol.7 , Issue.1 , pp. 23-29
    • Hoyer, S.1    Krier, C.2
  • 74
    • 0016302480 scopus 로고
    • Influence of complete ischemia on glycolytic metabolites, citric-acid cycle intermediates, and associated amino-acids in rat cerebral-cortex
    • J. Folbergrova, B. Ljunggren, K. Norberg, and B.K. Siesjo Influence of complete ischemia on glycolytic metabolites, citric-acid cycle intermediates, and associated amino-acids in rat cerebral-cortex Brain Res. 80 1974 265 279
    • (1974) Brain Res. , vol.80 , pp. 265-279
    • Folbergrova, J.1    Ljunggren, B.2    Norberg, K.3    Siesjo, B.K.4
  • 75
    • 0018664824 scopus 로고
    • Influence of some biological pyrimidines on the succinate cycle during and after cerebral ischemia
    • DOI 10.1016/0006-2952(79)90024-8
    • G. Benzi, E. Arrigoni, F. Marzatico, and R.F. Villa Influence of some biological pyrimidines on the succinate cycle during and after cerebral-ischemia Biochem. Pharmacol. 28 1979 2545 2550 (Pubitemid 10229266)
    • (1979) Biochemical Pharmacology , vol.28 , Issue.17 , pp. 2545-2550
    • Benzi, G.1    Arrigoni, E.2    Marzatico, F.3    Villa, R.F.4
  • 76
    • 0023718383 scopus 로고
    • Pathways of succinate formation and their contribution to improvement of cardiac-function in the hypoxic rat-heart
    • R.J. Wiesner, P. Rosen, and M.K. Grieshaber Pathways of succinate formation and their contribution to improvement of cardiac-function in the hypoxic rat-heart Biochem. Med. Metab. Biol. 40 1988 19 34
    • (1988) Biochem. Med. Metab. Biol. , vol.40 , pp. 19-34
    • Wiesner, R.J.1    Rosen, P.2    Grieshaber, M.K.3
  • 79
    • 0023549336 scopus 로고
    • Evidence for succinate production by reduction of fumarate during hypoxia in isolated adult rat heart cells
    • C. Hohl, R. Oestreich, P. Rosen, R. Wiesner, and M. Grieshaber Evidence for succinate production by reduction of fumarate during hypoxia in isolated adult-rat heart-cells Arch. Biochem. Biophys. 259 1987 527 535 (Pubitemid 18022769)
    • (1987) Archives of Biochemistry and Biophysics , vol.259 , Issue.2 , pp. 527-535
    • Hohl, C.1    Oestreich, R.2    Rosen, P.3    Wiesner, R.4    Grieshaber, M.5
  • 84
    • 76649092615 scopus 로고    scopus 로고
    • Synthetic atpenin analogs: Potent mitochondrial inhibitors of mammalian and fungal succinate-ubiquinone oxidoreductase
    • T.P. Selby, K.A. Hughes, J.J. Rauh, and W.S. Hanna Synthetic atpenin analogs: potent mitochondrial inhibitors of mammalian and fungal succinate-ubiquinone oxidoreductase Bioorg. Med. Chem. Lett. 20 2010 1665 1668
    • (2010) Bioorg. Med. Chem. Lett. , vol.20 , pp. 1665-1668
    • Selby, T.P.1    Hughes, K.A.2    Rauh, J.J.3    Hanna, W.S.4
  • 89
    • 75349111140 scopus 로고    scopus 로고
    • Regulation of succinate dehydrogenase activity by SIRT3 in mammalian mitochondria
    • H. Cimen, M.J. Han, Y.J. Yang, Q. Tong, H. Koc, and E.C. Koc Regulation of succinate dehydrogenase activity by SIRT3 in mammalian mitochondria Biochemistry 49 2010 304 311
    • (2010) Biochemistry , vol.49 , pp. 304-311
    • Cimen, H.1    Han, M.J.2    Yang, Y.J.3    Tong, Q.4    Koc, H.5    Koc, E.C.6
  • 91
    • 33745628757 scopus 로고    scopus 로고
    • Generation of superoxide by the mitochondrial Complex I
    • DOI 10.1016/j.bbabio.2006.03.013, PII S0005272806000685
    • V.G. Grivennikova, and A.D. Vinogradov Generation of superoxide by the mitochondrial complex I Biochim. Biophys. Acta 1757 2006 553 561 (Pubitemid 43993849)
    • (2006) Biochimica et Biophysica Acta - Bioenergetics , vol.1757 , Issue.5-6 , pp. 553-561
    • Grivennikova, V.G.1    Vinogradov, A.D.2
  • 92
    • 79955977892 scopus 로고    scopus 로고
    • Superoxide is produced by the reduced flavin in mitochondrial complex i
    • K.R. Pryde, and J. Hirst Superoxide is produced by the reduced flavin in mitochondrial complex I J. Biol. Chem. 286 2011 18056 18065
    • (2011) J. Biol. Chem. , vol.286 , pp. 18056-18065
    • Pryde, K.R.1    Hirst, J.2
  • 93
    • 0141815741 scopus 로고    scopus 로고
    • Production of reactive oxygen species by mitochondria: Central role of complex III
    • DOI 10.1074/jbc.M304854200
    • Q. Chen, E.J. Vazquez, S. Moghaddas, C.L. Hoppel, and E.J. Lesnefsky Production of reactive oxygen species by mitochondria: central role of complex III J. Biol. Chem. 278 2003 36027 36031 (Pubitemid 37139922)
    • (2003) Journal of Biological Chemistry , vol.278 , Issue.38 , pp. 36027-36031
    • Chen, Q.1    Vazquez, E.J.2    Moghaddas, S.3    Hoppel, C.L.4    Lesnefsky, E.J.5
  • 94
    • 0036805853 scopus 로고    scopus 로고
    • Cytopathies involving mitochondrial complex II
    • DOI 10.1016/S0098-2997(02)00012-2, PII S0098299702000122
    • B.A. Ackrell Cytopathies involving mitochondrial complex II Mol. Aspects Med. 23 2002 369 384 (Pubitemid 35286652)
    • (2002) Molecular Aspects of Medicine , vol.23 , Issue.5 , pp. 369-384
    • Ackrell, B.A.C.1
  • 98
    • 0032514466 scopus 로고    scopus 로고
    • A mutation in succinate dehydrogenase cytochrome b causes oxidative stress and ageing in nematodes
    • DOI 10.1038/29331
    • N. Ishii, M. Fujii, P.S. Hartman, M. Tsuda, K. Yasuda, N. Senoo-Matsuda, S. Yanase, D. Ayusawa, and K. Suzuki A mutation in succinate dehydrogenase cytochrome b causes oxidative stress and ageing in nematodes Nature 394 1998 694 697 (Pubitemid 28389798)
    • (1998) Nature , vol.394 , Issue.6694 , pp. 694-697
    • Ishii, N.1    Fujii, M.2    Hartman, P.S.3    Tsuda, M.4    Yasuda, K.5    Senoo-Matsuda, N.6    Yanase, S.7    Ayusawa, D.8    Suzuki, K.9
  • 99
    • 0035834789 scopus 로고    scopus 로고
    • A defect in the cytochrome b large subunit in complex II causes both superoxide anion overproduction and abnormal energy metabolism in Caenorhabditis elegans
    • N. Senoo-Matsuda, K. Yasuda, M. Tsuda, T. Ohkubo, S. Yoshimura, H. Nakazawa, P.S. Hartman, and N. Ishii A defect in the cytochrome b large subunit in complex II causes both superoxide anion overproduction and abnormal energy metabolism in Caenorhabditis elegans J. Biol. Chem. 276 2001 41553 41558
    • (2001) J. Biol. Chem. , vol.276 , pp. 41553-41558
    • Senoo-Matsuda, N.1    Yasuda, K.2    Tsuda, M.3    Ohkubo, T.4    Yoshimura, S.5    Nakazawa, H.6    Hartman, P.S.7    Ishii, N.8
  • 100
    • 76049086567 scopus 로고    scopus 로고
    • Contribution of the FAD and quinone binding sites to the production of reactive oxygen species from Ascaris suum mitochondrial complex II
    • M.P. Paranagama, K. Sakamoto, H. Amino, M. Awano, H. Miyoshi, and K. Kita Contribution of the FAD and quinone binding sites to the production of reactive oxygen species from Ascaris suum mitochondrial complex II Mitochondrion 10 2010 158 165
    • (2010) Mitochondrion , vol.10 , pp. 158-165
    • Paranagama, M.P.1    Sakamoto, K.2    Amino, H.3    Awano, M.4    Miyoshi, H.5    Kita, K.6
  • 101
    • 0037044847 scopus 로고    scopus 로고
    • Mechanism of superoxide and hydrogen peroxide formation by fumarate reductase, succinate dehydrogenase, and aspartate oxidase
    • DOI 10.1074/jbc.M204958200
    • K.R. Messner, and J.A. Imlay Mechanism of superoxide and hydrogen peroxide formation by fumarate reductase, succinate dehydrogenase, and aspartate oxidase J. Biol. Chem. 277 2002 42563 42571 (Pubitemid 35285624)
    • (2002) Journal of Biological Chemistry , vol.277 , Issue.45 , pp. 42563-42571
    • Messner, K.R.1    Imlay, J.A.2
  • 104
    • 0346850862 scopus 로고    scopus 로고
    • The Ubiquinone-binding Site of the Saccharomyces cerevisiae Succinate-Ubiquinone Oxidoreductase Is a Source of Superoxide
    • DOI 10.1074/jbc.M306312200
    • J. Guo, and B.D. Lemire The ubiquinone-binding site of the Saccharomyces cerevisiae succinate-ubiquinone oxidoreductase is a source of superoxide J. Biol. Chem. 278 2003 47629 47635 (Pubitemid 37523207)
    • (2003) Journal of Biological Chemistry , vol.278 , Issue.48 , pp. 47629-47635
    • Guo, J.1    Lemire, B.D.2
  • 105
    • 34848866025 scopus 로고    scopus 로고
    • Ubiquinone-binding site mutations in the Saccharomyces cerevisiae succinate dehydrogenase generate superoxide and lead to the accumulation of succinate
    • DOI 10.1074/jbc.M700601200
    • S.S.W. Szeto, S.N. Reinke, B.D. Sykes, and B.D. Lemire Ubiquinone-binding site mutations in the Saccharomyces cerevisiae succinate dehydrogenase generate superoxide and lead to the accumulation of succinate J. Biol. Chem. 282 2007 27518 27526 (Pubitemid 47501935)
    • (2007) Journal of Biological Chemistry , vol.282 , Issue.37 , pp. 27518-27526
    • Szeto, S.S.W.1    Reinke, S.N.2    Sykes, B.D.3    Lemire, B.D.4
  • 109
    • 0346725036 scopus 로고    scopus 로고
    • Effect of oxygen on activation state of complex I and lack of oxaloacetate inhibition of complex II in Langendorff perfused rat heart
    • DOI 10.1016/S0014-5793(03)01369-3
    • E. Maklashina, A.B. Kotlyar, J.S. Karliner, and G. Cecchini Effect of oxygen on activation state of complex I and lack of oxaloacetate inhibition of complex II in Langendorff perfused rat heart FEBS Lett. 556 2004 64 68 (Pubitemid 38058556)
    • (2004) FEBS Letters , vol.556 , Issue.1-3 , pp. 64-68
    • Maklashina, E.1    Kotlyar, A.B.2    Karliner, J.S.3    Cecchini, G.4
  • 110
    • 84873205191 scopus 로고    scopus 로고
    • Reactive oxygen species are generated by the respiratory complex II: Evidence for lack of contribution of the reverse electron flow in complex i
    • 10.1111/febs12086 (published online as)
    • R. Moreno-Sanchez, L. Hernandez-Esquivel, N.A. Rivero-Segura, A. Marin-Hernandez, J. Neuzil, S.J. Ralph, and S. Rodriguez-Enriquez Reactive oxygen species are generated by the respiratory complex II: evidence for lack of contribution of the reverse electron flow in complex I FEBS J. 2012 10.1111/febs12086 (published online as)
    • (2012) FEBS J
    • Moreno-Sanchez, R.1    Hernandez-Esquivel, L.2    Rivero-Segura, N.A.3    Marin-Hernandez, A.4    Neuzil, J.5    Ralph, S.J.6    Rodriguez-Enriquez, S.7
  • 112
    • 77956250065 scopus 로고    scopus 로고
    • 2 removal in brain mitochondria via the thioredoxin/peroxiredoxin system
    • 2 removal in brain mitochondria via the thioredoxin/peroxiredoxin system J. Biol. Chem. 285 2010 27850 27858
    • (2010) J. Biol. Chem. , vol.285 , pp. 27850-27858
    • Drechsel, D.A.1    Patel, M.2
  • 113
    • 77953565915 scopus 로고    scopus 로고
    • Hydrogen peroxide efflux from muscle mitochondria underestimates matrix superoxide production - A correction using glutathione depletion
    • J.R. Treberg, C.L. Quinlan, and M.D. Brand Hydrogen peroxide efflux from muscle mitochondria underestimates matrix superoxide production - a correction using glutathione depletion FEBS J. 277 2010 2766 2778
    • (2010) FEBS J , vol.277 , pp. 2766-2778
    • Treberg, J.R.1    Quinlan, C.L.2    Brand, M.D.3
  • 114
    • 78650068036 scopus 로고    scopus 로고
    • Regulation of mitochondrial glutathione redox status and protein glutathionylation by respiratory substrates
    • J. Garcia, D. Han, H. Sancheti, L.P. Yap, N. Kaplowitz, and E. Cadenas Regulation of mitochondrial glutathione redox status and protein glutathionylation by respiratory substrates J. Biol. Chem. 285 2010 39646 39654
    • (2010) J. Biol. Chem. , vol.285 , pp. 39646-39654
    • Garcia, J.1    Han, D.2    Sancheti, H.3    Yap, L.P.4    Kaplowitz, N.5    Cadenas, E.6
  • 115
    • 73849144014 scopus 로고    scopus 로고
    • Mitochondrial peroxiredoxin involvement in antioxidant defence and redox signalling
    • A.G. Cox, C.C. Winterbourn, and M.B. Hampton Mitochondrial peroxiredoxin involvement in antioxidant defence and redox signalling Biochem. J. 425 2010 313 325
    • (2010) Biochem. J. , vol.425 , pp. 313-325
    • Cox, A.G.1    Winterbourn, C.C.2    Hampton, M.B.3
  • 117
    • 48449107159 scopus 로고    scopus 로고
    • Thiol chemistry and specificity in redox signaling
    • C.C. Winterbourn, and M.B. Hampton Thiol chemistry and specificity in redox signaling Free Radic. Biol. Med. 45 2008 549 561
    • (2008) Free Radic. Biol. Med. , vol.45 , pp. 549-561
    • Winterbourn, C.C.1    Hampton, M.B.2
  • 118
    • 33745635338 scopus 로고    scopus 로고
    • Mitochondrial NADPH, transhydrogenase and disease
    • DOI 10.1016/j.bbabio.2006.03.010, PII S000527280600065X
    • J. Rydström Mitochondrial NADPH, transhydrogenase and disease Biochim. Biophys. Acta 1757 2006 721 726 (Pubitemid 43993846)
    • (2006) Biochimica et Biophysica Acta - Bioenergetics , vol.1757 , Issue.5-6 , pp. 721-726
    • Rydstrom, J.1
  • 119
    • 0028339522 scopus 로고
    • Proton-translocating transhydrogenase and NAD-linked and NADP-linked isocitrate dehydrogenases operate in a substrate cycle which contributes to fine regulation of the tricarboxylic-acid cycle activity in mitochondria
    • L.A. Sazanov, and J.B. Jackson Proton-translocating transhydrogenase and NAD-linked and NADP-linked isocitrate dehydrogenases operate in a substrate cycle which contributes to fine regulation of the tricarboxylic-acid cycle activity in mitochondria FEBS Lett. 344 1994 109 116
    • (1994) FEBS Lett. , vol.344 , pp. 109-116
    • Sazanov, L.A.1    Jackson, J.B.2
  • 121
    • 37549068090 scopus 로고    scopus 로고
    • +/NADPH in cellular functions and cell death: Regulation and biological consequences
    • +/NADPH in cellular functions and cell death: regulation and biological consequences Antioxid. Redox Signal. 10 2008 179 206
    • (2008) Antioxid. Redox Signal. , vol.10 , pp. 179-206
    • Ying, W.H.1
  • 122
    • 68649090703 scopus 로고    scopus 로고
    • The role of the mitochondrial permeability transition pore in heart disease
    • A.P. Halestrap, and P. Pasdois The role of the mitochondrial permeability transition pore in heart disease Biochim. Biophys. Acta 1787 2009 1402 1415
    • (2009) Biochim. Biophys. Acta , vol.1787 , pp. 1402-1415
    • Halestrap, A.P.1    Pasdois, P.2
  • 123
    • 33846335174 scopus 로고    scopus 로고
    • Modulation of electron transport protects cardiac mitochondria and decreases myocardial injury during ischemia and reperfusion
    • Q. Chen, A.K.S. Camara, D.F. Stowe, C.L. Hoppel, and E.J. Lesnefsky Modulation of electron transport protects cardiac mitochondria and decreases myocardial injury during ischemia and reperfusion Am. J. Physiol. 292 2007 C137 C147
    • (2007) Am. J. Physiol. , vol.292
    • Chen, Q.1    Camara, A.K.S.2    Stowe, D.F.3    Hoppel, C.L.4    Lesnefsky, E.J.5
  • 124
    • 0141751749 scopus 로고    scopus 로고
    • Preconditioning the myocardium: From cellular physiology to clinical cardiology
    • D.M. Yellon, and J.M. Downey Preconditioning the myocardium: from cellular physiology to clinical cardiology Phys. Rev. 83 2003 1113 1151 (Pubitemid 37222269)
    • (2003) Physiological Reviews , vol.83 , Issue.4 , pp. 1113-1151
    • Yellon, D.M.1    Downey, J.M.2
  • 127
    • 0015070081 scopus 로고
    • Inhibition of mitochondrial metabolism by diabetogenic thiadiazine diazoxide. 1. Action on succinate dehydrogenase and TCA-cycle oxidations
    • G. Schäfer, R. Portenhauser, and R. Trolp Inhibition of mitochondrial metabolism by diabetogenic thiadiazine diazoxide. 1. Action on succinate dehydrogenase and TCA-cycle oxidations Biochem. Pharmacol. 20 1971 1271 1280
    • (1971) Biochem. Pharmacol. , vol.20 , pp. 1271-1280
    • Schäfer, G.1    Portenhauser, R.2    Trolp, R.3
  • 128
    • 0036686036 scopus 로고    scopus 로고
    • ATP channel-independent targets of diazoxide and 5-hydroxydecanoate in the heart
    • DOI 10.1113/jphysiol.2002.023960
    • ATP channel-independent targets of diazoxide and 5-hydroxydecanoate in the heart J. Physiol. 542 2002 735 741 (Pubitemid 34947269)
    • (2002) Journal of Physiology , vol.542 , Issue.3 , pp. 735-741
    • Hanley, P.J.1    Mickel, M.2    Loffler, M.3    Brandt, U.4    Daut, J.5
  • 129
    • 33747630469 scopus 로고    scopus 로고
    • ATP channels in mitochondrial cytoprotective signaling
    • DOI 10.1074/jbc.M602570200
    • ATP channels in mitochondrial cytoprotective signaling J. Biol. Chem. 281 2006 23733 23739 (Pubitemid 44274148)
    • (2006) Journal of Biological Chemistry , vol.281 , Issue.33 , pp. 23733-23739
    • Drose, S.1    Brandt, U.2    Hanley, P.J.3
  • 131
    • 0035957635 scopus 로고    scopus 로고
    • Diazoxide-induced cardioprotection requires signaling through a redox-sensitive mechanism
    • R.A. Forbes, C. Steenbergen, and E. Murphy Diazoxide-induced cardioprotection requires signaling through a redox-sensitive mechanism Circ. Res. 88 2001 802 809 (Pubitemid 32429976)
    • (2001) Circulation Research , vol.88 , Issue.8 , pp. 802-809
    • Forbes, R.A.1    Steenbergen, C.2    Murphy, E.3
  • 134
    • 0032541173 scopus 로고    scopus 로고
    • Reactive oxygen species released from mitochondria during brief hypoxia induce preconditioning in cardiomyocytes
    • DOI 10.1074/jbc.273.29.18092
    • T.L. Vanden Hoek, L.B. Becker, Z. Shao, C. Li, and P.T. Schumacker Reactive oxygen species released from mitochondria during brief hypoxia induce preconditioning in cardiomyocytes J. Biol. Chem. 273 1998 18092 18098 (Pubitemid 28334725)
    • (1998) Journal of Biological Chemistry , vol.273 , Issue.29 , pp. 18092-18098
    • Vanden Hoek, T.L.1    Becker, L.B.2    Shao, Z.3    Li, C.4    Schumacker, P.T.5
  • 136
    • 24144493814 scopus 로고    scopus 로고
    • Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing
    • DOI 10.1016/j.cmet.2005.05.001, PII S1550413105001397
    • R.D. Guzy, B. Hoyos, E. Robin, H. Chen, L.P. Liu, K.D. Mansfield, M.C. Simon, U. Hammerling, and P.T. Schumacker Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing Cell Metab. 1 2005 401 408 (Pubitemid 43960623)
    • (2005) Cell Metabolism , vol.1 , Issue.6 , pp. 401-408
    • Guzy, R.D.1    Hoyos, B.2    Robin, E.3    Chen, H.4    Liu, L.5    Mansfield, K.D.6    Simon, M.C.7    Hammerling, U.8    Schumacker, P.T.9
  • 137
    • 77956186783 scopus 로고    scopus 로고
    • Mitochondrial reactive oxygen species regulate cellular signaling and dictate biological outcomes
    • R.B. Hamanaka, and N.S. Chandel Mitochondrial reactive oxygen species regulate cellular signaling and dictate biological outcomes Trends Biochem. Sci. 35 2010 505 513
    • (2010) Trends Biochem. Sci. , vol.35 , pp. 505-513
    • Hamanaka, R.B.1    Chandel, N.S.2
  • 138
    • 0037432161 scopus 로고    scopus 로고
    • + channel opening decreases reactive oxygen species generation
    • DOI 10.1016/S0014-5793(03)00007-3
    • + channel opening decreases reactive oxygen species generation FEBS Lett. 536 2003 51 55 (Pubitemid 36206405)
    • (2003) FEBS Letters , vol.536 , Issue.1-3 , pp. 51-55
    • Ferranti, R.1    Da Silva, M.M.2    Kowaltowski, A.J.3
  • 143
    • 1542343927 scopus 로고    scopus 로고
    • + Channels and Their Role in Cardioprotection
    • DOI 10.1161/01.RES.0000117583.66950.43
    • + channels and their role in cardioprotection Circ. Res. 94 2004 420 432 (Pubitemid 38326277)
    • (2004) Circulation Research , vol.94 , Issue.4 , pp. 420-432
    • O'Rourke, B.1
  • 144
    • 74549166040 scopus 로고    scopus 로고
    • + channels, protectors of the heart
    • + channels, protectors of the heart J. Physiol. Lond. 588 2010 283 286
    • (2010) J. Physiol. Lond. , vol.588 , pp. 283-286
    • Yamada, M.1
  • 148
    • 12244295437 scopus 로고    scopus 로고
    • The effects of ischaemic preconditioning, diazoxide and
    • DOI 10.1113/jphysiol.2002.031484
    • K.H.H. Lim, S.A. Javadov, M. Das, S.J. Clarke, M.S. Suleiman, and A.P. Halestrap The effects of ischaemic preconditioning, diazoxide and 5-hydroxydecanoate on rat heart mitochondrial volume and respiration J. Physiol. Lond. 545 2002 961 974 (Pubitemid 36024433)
    • (2002) Journal of Physiology , vol.545 , Issue.3 , pp. 961-974
    • Lim, K.H.H.1    Javadov, S.A.2    Das, M.3    Clarke, S.J.4    Suleiman, M.-S.5    Halestrap, A.P.6
  • 149
    • 0037337086 scopus 로고    scopus 로고
    • β-Oxidation of 5-hydroxydecanoate, a putative blocker of mitochondrial ATP-sensitive potassium channels
    • DOI 10.1113/jphysiol.2002.037044
    • P.J. Hanley, K.V. Gopalan, R.A. Lareau, D.K. Srivastava, M. von Meltzer, and J. Daut ß-oxidation of 5-hydroxydecanoate, a putative blocker of mitochondrial ATP-sensitive potassium channels J. Physiol. Lond. 547 2003 387 393 (Pubitemid 36304972)
    • (2003) Journal of Physiology , vol.547 , Issue.2 , pp. 387-393
    • Hanley, P.J.1    Gopalan, K.V.2    Lareau, R.A.3    Srivastava, D.K.4    Von Meltzer, M.5    Daut, J.6
  • 152
    • 2942615283 scopus 로고    scopus 로고
    • Potassium channel openers are uncoupling protonophores: Implication in cardioprotection
    • DOI 10.1016/j.febslet.2004.05.031, PII S0014579304006490
    • E.L. Holmuhamedov, A. Jahangir, A. Oberlin, A. Komarov, M. Colombini, and A. Terzic Potassium channel openers are uncoupling protonophores: implication in cardioprotection FEBS Lett. 568 2004 167 170 (Pubitemid 38757976)
    • (2004) FEBS Letters , vol.568 , Issue.1-3 , pp. 167-170
    • Holmuhamedov, E.L.1    Jahangir, A.2    Oberlin, A.3    Komarov, A.4    Colombini, M.5    Terzic, A.6
  • 157
    • 46349106237 scopus 로고    scopus 로고
    • The endogenous mitochondrial complex II inhibitor malonate regulates mitochondrial ATP-sensitive potassium channels: Implications for ischemic preconditioning
    • A.P. Wojtovich, and P.S. Brookes The endogenous mitochondrial complex II inhibitor malonate regulates mitochondrial ATP-sensitive potassium channels: implications for ischemic preconditioning Biochim. Biophys. Acta 1777 2008 882 889
    • (2008) Biochim. Biophys. Acta , vol.1777 , pp. 882-889
    • Wojtovich, A.P.1    Brookes, P.S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.