메뉴 건너뛰기




Volumn 45, Issue 1, 2012, Pages 322-328

PPARgamma rescue of the mitochondrial dysfunction in Huntington's disease

Author keywords

Huntingtin; Mitochondrial function; PGC 1 ; PPAR ; Thiazolidinedione

Indexed keywords

2,4 THIAZOLIDINEDIONE DERIVATIVE; PEROXISOME PROLIFERATOR ACTIVATED RECEPTOR GAMMA; ROSIGLITAZONE;

EID: 81955162873     PISSN: 09699961     EISSN: 1095953X     Source Type: Journal    
DOI: 10.1016/j.nbd.2011.08.016     Document Type: Article
Times cited : (77)

References (52)
  • 1
    • 34147182536 scopus 로고    scopus 로고
    • PPAR: a new pharmacological target for neuroprotection in stroke and neurodegenerative diseases
    • Bordet R., et al. PPAR: a new pharmacological target for neuroprotection in stroke and neurodegenerative diseases. Biochem. Soc. Trans. 2006, 34:1341-1346.
    • (2006) Biochem. Soc. Trans. , vol.34 , pp. 1341-1346
    • Bordet, R.1
  • 2
    • 0141926491 scopus 로고    scopus 로고
    • Mutant huntingtin promotes the fibrillogenesis of wild-type huntingtin: a potential mechanism for loss of huntingtin function in Huntington's disease
    • Busch A., et al. Mutant huntingtin promotes the fibrillogenesis of wild-type huntingtin: a potential mechanism for loss of huntingtin function in Huntington's disease. J. Biol. Chem. 2003, 278:41452-41461.
    • (2003) J. Biol. Chem. , vol.278 , pp. 41452-41461
    • Busch, A.1
  • 3
    • 34047180648 scopus 로고    scopus 로고
    • The corticostriatal pathway in Huntington's disease
    • Cepeda C., et al. The corticostriatal pathway in Huntington's disease. Prog. Neurobiol. 2007, 81:253-271.
    • (2007) Prog. Neurobiol. , vol.81 , pp. 253-271
    • Cepeda, C.1
  • 4
    • 33646136884 scopus 로고    scopus 로고
    • Mutant huntingtin aggregates impair mitochondrial movement and trafficking in cortical neurons
    • Chang D.T., et al. Mutant huntingtin aggregates impair mitochondrial movement and trafficking in cortical neurons. Neurobiol. Dis. 2006, 22:388-400.
    • (2006) Neurobiol. Dis. , vol.22 , pp. 388-400
    • Chang, D.T.1
  • 5
    • 77955017449 scopus 로고    scopus 로고
    • Impairment of PGC-1alpha expression, neuropathology and hepatic steatosis in a transgenic mouse model of Huntington's disease following chronic energy deprivation
    • Chaturvedi R.K., et al. Impairment of PGC-1alpha expression, neuropathology and hepatic steatosis in a transgenic mouse model of Huntington's disease following chronic energy deprivation. Hum. Mol. Genet. 2010, 19:3190-3205.
    • (2010) Hum. Mol. Genet. , vol.19 , pp. 3190-3205
    • Chaturvedi, R.K.1
  • 6
    • 17144386565 scopus 로고    scopus 로고
    • CAMP-response element-binding protein contributes to suppression of the A2A adenosine receptor promoter by mutant Huntingtin with expanded polyglutamine residues
    • Chiang M.C., et al. cAMP-response element-binding protein contributes to suppression of the A2A adenosine receptor promoter by mutant Huntingtin with expanded polyglutamine residues. J. Biol. Chem. 2005, 280:14331-14340.
    • (2005) J. Biol. Chem. , vol.280 , pp. 14331-14340
    • Chiang, M.C.1
  • 7
    • 34047184385 scopus 로고    scopus 로고
    • Dysregulation of C/EBPalpha by mutant Huntingtin causes the urea cycle deficiency in Huntington's disease
    • Chiang M.C., et al. Dysregulation of C/EBPalpha by mutant Huntingtin causes the urea cycle deficiency in Huntington's disease. Hum. Mol. Genet. 2007, 16:483-498.
    • (2007) Hum. Mol. Genet. , vol.16 , pp. 483-498
    • Chiang, M.C.1
  • 8
    • 34249692543 scopus 로고    scopus 로고
    • Systematic uncovering of multiple pathways underlying the pathology of Huntington disease by an acid-cleavable isotope-coded affinity tag approach
    • Chiang M.C., et al. Systematic uncovering of multiple pathways underlying the pathology of Huntington disease by an acid-cleavable isotope-coded affinity tag approach. Mol. Cell. Proteomics 2007, 6:781-797.
    • (2007) Mol. Cell. Proteomics , vol.6 , pp. 781-797
    • Chiang, M.C.1
  • 9
    • 68049096318 scopus 로고    scopus 로고
    • The A2A adenosine receptor rescues the urea cycle deficiency of Huntington's disease by enhancing the activity of the ubiquitin-proteasome system
    • Chiang M.C., et al. The A2A adenosine receptor rescues the urea cycle deficiency of Huntington's disease by enhancing the activity of the ubiquitin-proteasome system. Hum. Mol. Genet. 2009, 18:2929-2942.
    • (2009) Hum. Mol. Genet. , vol.18 , pp. 2929-2942
    • Chiang, M.C.1
  • 10
    • 77957727491 scopus 로고    scopus 로고
    • Modulation of energy deficiency in Huntington's disease via activation of the peroxisome proliferator-activated receptor gamma
    • Chiang M.C., et al. Modulation of energy deficiency in Huntington's disease via activation of the peroxisome proliferator-activated receptor gamma. Hum. Mol. Genet. 2010, 19:4043-4058.
    • (2010) Hum. Mol. Genet. , vol.19 , pp. 4043-4058
    • Chiang, M.C.1
  • 11
    • 79960564783 scopus 로고    scopus 로고
    • The dysfunction of hepatic transcriptional factors in mice with Huntington's disease
    • Chiang M.C., et al. The dysfunction of hepatic transcriptional factors in mice with Huntington's disease. Biochim. Biophys. Acta 2011, 1812:1111-1120.
    • (2011) Biochim. Biophys. Acta , vol.1812 , pp. 1111-1120
    • Chiang, M.C.1
  • 12
    • 0034651101 scopus 로고    scopus 로고
    • Inflammatory mechanisms in Alzheimer's disease: inhibition of beta-amyloid-stimulated proinflammatory responses and neurotoxicity by PPARgamma agonists
    • Combs C.K., et al. Inflammatory mechanisms in Alzheimer's disease: inhibition of beta-amyloid-stimulated proinflammatory responses and neurotoxicity by PPARgamma agonists. J. Neurosci. 2000, 20:558-567.
    • (2000) J. Neurosci. , vol.20 , pp. 558-567
    • Combs, C.K.1
  • 13
    • 33749042331 scopus 로고    scopus 로고
    • Transcriptional repression of PGC-1alpha by mutant huntingtin leads to mitochondrial dysfunction and neurodegeneration
    • Cui L., et al. Transcriptional repression of PGC-1alpha by mutant huntingtin leads to mitochondrial dysfunction and neurodegeneration. Cell 2006, 127:59-69.
    • (2006) Cell , vol.127 , pp. 59-69
    • Cui, L.1
  • 14
    • 69049091946 scopus 로고    scopus 로고
    • Alterations in cortical excitation and inhibition in genetic mouse models of Huntington's disease
    • Cummings D.M., et al. Alterations in cortical excitation and inhibition in genetic mouse models of Huntington's disease. J. Neurosci. 2009, 29:10371-10386.
    • (2009) J. Neurosci. , vol.29 , pp. 10371-10386
    • Cummings, D.M.1
  • 15
    • 71949108518 scopus 로고    scopus 로고
    • Mitochondria in Huntington's disease
    • Damiano M., et al. Mitochondria in Huntington's disease. Biochim. Biophys. Acta 2010, 1802:52-61.
    • (2010) Biochim. Biophys. Acta , vol.1802 , pp. 52-61
    • Damiano, M.1
  • 16
    • 18544410106 scopus 로고    scopus 로고
    • Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation
    • Davies S.W., et al. Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell 1997, 90:537-548.
    • (1997) Cell , vol.90 , pp. 537-548
    • Davies, S.W.1
  • 17
    • 0037150687 scopus 로고    scopus 로고
    • Sp1 and TAFII130 transcriptional activity disrupted in early Huntington's disease
    • Dunah A.W., et al. Sp1 and TAFII130 transcriptional activity disrupted in early Huntington's disease. Science 2002, 296:2238-2243.
    • (2002) Science , vol.296 , pp. 2238-2243
    • Dunah, A.W.1
  • 18
    • 0030835678 scopus 로고    scopus 로고
    • The organization, promoter analysis, and expression of the human PPARgamma gene
    • Fajas L., et al. The organization, promoter analysis, and expression of the human PPARgamma gene. J. Biol. Chem. 1997, 272:18779-18789.
    • (1997) J. Biol. Chem. , vol.272 , pp. 18779-18789
    • Fajas, L.1
  • 19
    • 37549060702 scopus 로고    scopus 로고
    • Peroxisome proliferator-activated receptor gamma up-regulates the Bcl-2 anti-apoptotic protein in neurons and induces mitochondrial stabilization and protection against oxidative stress and apoptosis
    • Fuenzalida K., et al. Peroxisome proliferator-activated receptor gamma up-regulates the Bcl-2 anti-apoptotic protein in neurons and induces mitochondrial stabilization and protection against oxidative stress and apoptosis. J. Biol. Chem. 2007, 282:37006-37015.
    • (2007) J. Biol. Chem. , vol.282 , pp. 37006-37015
    • Fuenzalida, K.1
  • 20
    • 34347346156 scopus 로고    scopus 로고
    • The thiazolidinedione pioglitazone alters mitochondrial function in human neuron-like cells
    • Ghosh S., et al. The thiazolidinedione pioglitazone alters mitochondrial function in human neuron-like cells. Mol. Pharmacol. 2007, 71:1695-1702.
    • (2007) Mol. Pharmacol. , vol.71 , pp. 1695-1702
    • Ghosh, S.1
  • 21
    • 13844262924 scopus 로고    scopus 로고
    • Corepressors selectively control the transcriptional activity of PPARgamma in adipocytes
    • Guan H.P., et al. Corepressors selectively control the transcriptional activity of PPARgamma in adipocytes. Genes Dev. 2005, 19:453-461.
    • (2005) Genes Dev. , vol.19 , pp. 453-461
    • Guan, H.P.1
  • 22
    • 78349291479 scopus 로고    scopus 로고
    • Nicotinamide improves motor deficits and upregulates PGC-1alpha and BDNF gene expression in a mouse model of Huntington's disease
    • Hathorn T., et al. Nicotinamide improves motor deficits and upregulates PGC-1alpha and BDNF gene expression in a mouse model of Huntington's disease. Neurobiol. Dis. 2010, 41:43-50.
    • (2010) Neurobiol. Dis. , vol.41 , pp. 43-50
    • Hathorn, T.1
  • 23
    • 33646782581 scopus 로고    scopus 로고
    • Thiazolidinediones and rexinoids induce peroxisome proliferator-activated receptor-coactivator (PGC)-1alpha gene transcription: an autoregulatory loop controls PGC-1alpha expression in adipocytes via peroxisome proliferator-activated receptor-gamma coactivation
    • Hondares E., et al. Thiazolidinediones and rexinoids induce peroxisome proliferator-activated receptor-coactivator (PGC)-1alpha gene transcription: an autoregulatory loop controls PGC-1alpha expression in adipocytes via peroxisome proliferator-activated receptor-gamma coactivation. Endocrinology 2006, 147:2829-2838.
    • (2006) Endocrinology , vol.147 , pp. 2829-2838
    • Hondares, E.1
  • 24
    • 44449131447 scopus 로고    scopus 로고
    • Huntington's disease: from pathology and genetics to potential therapies
    • Imarisio S., et al. Huntington's disease: from pathology and genetics to potential therapies. Biochem. J. 2008, 412:191-209.
    • (2008) Biochem. J. , vol.412 , pp. 191-209
    • Imarisio, S.1
  • 25
    • 11844269951 scopus 로고    scopus 로고
    • Peroxisome proliferator-activated receptor-gamma agonist extends survival in transgenic mouse model of amyotrophic lateral sclerosis
    • Kiaei M., et al. Peroxisome proliferator-activated receptor-gamma agonist extends survival in transgenic mouse model of amyotrophic lateral sclerosis. Exp. Neurol. 2005, 191:331-336.
    • (2005) Exp. Neurol. , vol.191 , pp. 331-336
    • Kiaei, M.1
  • 26
    • 0014949207 scopus 로고
    • Cleavage of structural proteins during the assembly of the head of bacteriophage T4
    • Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970, 227:680-685.
    • (1970) Nature , vol.227 , pp. 680-685
    • Laemmli, U.K.1
  • 27
    • 33745265189 scopus 로고    scopus 로고
    • PPARgamma agonists as new therapeutic agents for the treatment of Alzheimer's disease
    • Landreth G. PPARgamma agonists as new therapeutic agents for the treatment of Alzheimer's disease. Exp. Neurol. 2006, 199:245-248.
    • (2006) Exp. Neurol. , vol.199 , pp. 245-248
    • Landreth, G.1
  • 28
    • 28944446431 scopus 로고    scopus 로고
    • The many faces of PPARgamma
    • Lehrke M., Lazar M.A. The many faces of PPARgamma. Cell 2005, 123:993-999.
    • (2005) Cell , vol.123 , pp. 993-999
    • Lehrke, M.1    Lazar, M.A.2
  • 29
    • 16044373842 scopus 로고    scopus 로고
    • Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice
    • Mangiarini L., et al. Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell 1996, 87:493-506.
    • (1996) Cell , vol.87 , pp. 493-506
    • Mangiarini, L.1
  • 30
    • 0022876328 scopus 로고
    • Huntington's disease. Pathogenesis and management
    • Martin J.B., Gusella J.F. Huntington's disease. Pathogenesis and management. N Engl J. Med. 1986, 315:1267-1276.
    • (1986) N Engl J. Med. , vol.315 , pp. 1267-1276
    • Martin, J.B.1    Gusella, J.F.2
  • 31
    • 33750462349 scopus 로고    scopus 로고
    • PGC-1alpha, a new therapeutic target in Huntington's disease?
    • McGill J.K., Beal M.F. PGC-1alpha, a new therapeutic target in Huntington's disease?. Cell 2006, 127:465-468.
    • (2006) Cell , vol.127 , pp. 465-468
    • McGill, J.K.1    Beal, M.F.2
  • 32
    • 24744444740 scopus 로고    scopus 로고
    • Mitochondrial respiration and ATP production are significantly impaired in striatal cells expressing mutant huntingtin
    • Milakovic T., Johnson G.V. Mitochondrial respiration and ATP production are significantly impaired in striatal cells expressing mutant huntingtin. J. Biol. Chem. 2005, 280:30773-30782.
    • (2005) J. Biol. Chem. , vol.280 , pp. 30773-30782
    • Milakovic, T.1    Johnson, G.V.2
  • 33
    • 53049085274 scopus 로고    scopus 로고
    • PGC-1alpha integrates insulin signaling, mitochondrial regulation, and bioenergetic function in skeletal muscle
    • Pagel-Langenickel I., et al. PGC-1alpha integrates insulin signaling, mitochondrial regulation, and bioenergetic function in skeletal muscle. J. Biol. Chem. 2008, 283:22464-22472.
    • (2008) J. Biol. Chem. , vol.283 , pp. 22464-22472
    • Pagel-Langenickel, I.1
  • 34
    • 0036327065 scopus 로고    scopus 로고
    • Early mitochondrial calcium defects in Huntington's disease are a direct effect of polyglutamines
    • Panov A.V., et al. Early mitochondrial calcium defects in Huntington's disease are a direct effect of polyglutamines. Nat. Neurosci. 2002, 5:731-736.
    • (2002) Nat. Neurosci. , vol.5 , pp. 731-736
    • Panov, A.V.1
  • 35
    • 5444224643 scopus 로고    scopus 로고
    • Efficacy of MitoTracker Green and CMXrosamine to measure changes in mitochondrial membrane potentials in living cells and tissues
    • Pendergrass W., et al. Efficacy of MitoTracker Green and CMXrosamine to measure changes in mitochondrial membrane potentials in living cells and tissues. Cytom. A 2004, 61:162-169.
    • (2004) Cytom. A , vol.61 , pp. 162-169
    • Pendergrass, W.1
  • 36
    • 12144288637 scopus 로고    scopus 로고
    • Increased formation of reactive oxygen species, but no changes in glutathione peroxidase activity, in striata of mice transgenic for the Huntington's disease mutation
    • Perez-Severiano F., et al. Increased formation of reactive oxygen species, but no changes in glutathione peroxidase activity, in striata of mice transgenic for the Huntington's disease mutation. Neurochem. Res. 2004, 29:729-733.
    • (2004) Neurochem. Res. , vol.29 , pp. 729-733
    • Perez-Severiano, F.1
  • 37
    • 0037326196 scopus 로고    scopus 로고
    • Peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1 alpha): transcriptional coactivator and metabolic regulator
    • Puigserver P., Spiegelman B.M. Peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1 alpha): transcriptional coactivator and metabolic regulator. Endocr. Rev. 2003, 24:78-90.
    • (2003) Endocr. Rev. , vol.24 , pp. 78-90
    • Puigserver, P.1    Spiegelman, B.M.2
  • 38
    • 54449092109 scopus 로고    scopus 로고
    • Rosiglitazone treatment prevents mitochondrial dysfunction in mutant huntingtin-expressing cells: possible role of peroxisome proliferator-activated receptor-gamma (PPARgamma) in the pathogenesis of Huntington disease
    • Quintanilla R.A., et al. Rosiglitazone treatment prevents mitochondrial dysfunction in mutant huntingtin-expressing cells: possible role of peroxisome proliferator-activated receptor-gamma (PPARgamma) in the pathogenesis of Huntington disease. J. Biol. Chem. 2008, 283:25628-25637.
    • (2008) J. Biol. Chem. , vol.283 , pp. 25628-25637
    • Quintanilla, R.A.1
  • 39
    • 0033010987 scopus 로고    scopus 로고
    • Recent advances in understanding the pathogenesis of Huntington's disease
    • Reddy P.H., et al. Recent advances in understanding the pathogenesis of Huntington's disease. Trends Neurosci. 1999, 22:248-255.
    • (1999) Trends Neurosci. , vol.22 , pp. 248-255
    • Reddy, P.H.1
  • 40
    • 0141705360 scopus 로고    scopus 로고
    • Mitochondrial dysfunction and reactive oxygen species in excitotoxicity and apoptosis: implications for the pathogenesis of neurodegenerative diseases
    • Rego A.C., Oliveira C.R. Mitochondrial dysfunction and reactive oxygen species in excitotoxicity and apoptosis: implications for the pathogenesis of neurodegenerative diseases. Neurochem. Res. 2003, 28:1563-1574.
    • (2003) Neurochem. Res. , vol.28 , pp. 1563-1574
    • Rego, A.C.1    Oliveira, C.R.2
  • 41
    • 33645011201 scopus 로고    scopus 로고
    • Nuclear control of respiratory gene expression in mammalian cells
    • Scarpulla R.C. Nuclear control of respiratory gene expression in mammalian cells. J. Cell. Biochem. 2006, 97:673-683.
    • (2006) J. Cell. Biochem. , vol.97 , pp. 673-683
    • Scarpulla, R.C.1
  • 42
    • 26444441008 scopus 로고    scopus 로고
    • HD CAG repeat implicates a dominant property of huntingtin in mitochondrial energy metabolism
    • Seong I.S., et al. HD CAG repeat implicates a dominant property of huntingtin in mitochondrial energy metabolism. Hum. Mol. Genet. 2005, 14:2871-2880.
    • (2005) Hum. Mol. Genet. , vol.14 , pp. 2871-2880
    • Seong, I.S.1
  • 43
    • 12944263711 scopus 로고    scopus 로고
    • The Huntington's disease protein interacts with p53 and CREB-binding protein and represses transcription
    • Steffan J.S., et al. The Huntington's disease protein interacts with p53 and CREB-binding protein and represses transcription. Proc. Natl Acad. Sci. USA 2000, 97:6763-6768.
    • (2000) Proc. Natl Acad. Sci. USA , vol.97 , pp. 6763-6768
    • Steffan, J.S.1
  • 44
    • 33749999530 scopus 로고    scopus 로고
    • Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators
    • St-Pierre J., et al. Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell 2006, 127:397-408.
    • (2006) Cell , vol.127 , pp. 397-408
    • St-Pierre, J.1
  • 45
    • 33744994576 scopus 로고    scopus 로고
    • PPARgamma as a therapeutic target in central nervous system diseases
    • Sundararajan S., et al. PPARgamma as a therapeutic target in central nervous system diseases. Neurochem. Int. 2006, 49:136-144.
    • (2006) Neurochem. Int. , vol.49 , pp. 136-144
    • Sundararajan, S.1
  • 46
    • 0022395922 scopus 로고
    • Neuropathological classification of Huntington's disease
    • Vonsattel J.P., et al. Neuropathological classification of Huntington's disease. J. Neuropathol. Exp. Neurol. 1985, 44:559-577.
    • (1985) J. Neuropathol. Exp. Neurol. , vol.44 , pp. 559-577
    • Vonsattel, J.P.1
  • 47
    • 50649102114 scopus 로고    scopus 로고
    • Subcutaneous abdominal adipose tissue subcompartments: potential role in rosiglitazone effects
    • Walker G.E., et al. Subcutaneous abdominal adipose tissue subcompartments: potential role in rosiglitazone effects. Obesity (Silver Spring) 2008, 16:1983-1991.
    • (2008) Obesity (Silver Spring) , vol.16 , pp. 1983-1991
    • Walker, G.E.1
  • 48
    • 69249084890 scopus 로고    scopus 로고
    • PGC-1{alpha} and PGC-1{beta} regulate mitochondrial density in neurons
    • Wareski P., et al. PGC-1{alpha} and PGC-1{beta} regulate mitochondrial density in neurons. J. Biol. Chem. 2009, 284:21379-21385.
    • (2009) J. Biol. Chem. , vol.284 , pp. 21379-21385
    • Wareski, P.1
  • 49
    • 0037304599 scopus 로고    scopus 로고
    • Mitochondrial biogenesis and remodeling during adipogenesis and in response to the insulin sensitizer rosiglitazone
    • Wilson-Fritch L., et al. Mitochondrial biogenesis and remodeling during adipogenesis and in response to the insulin sensitizer rosiglitazone. Mol. Cell. Biol. 2003, 23:1085-1094.
    • (2003) Mol. Cell. Biol. , vol.23 , pp. 1085-1094
    • Wilson-Fritch, L.1
  • 50
    • 0033538473 scopus 로고    scopus 로고
    • Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1
    • Wu Z., et al. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 1999, 98:115-124.
    • (1999) Cell , vol.98 , pp. 115-124
    • Wu, Z.1
  • 51
    • 0036566675 scopus 로고    scopus 로고
    • Heat shock protein 27 prevents cellular polyglutamine toxicity and suppresses the increase of reactive oxygen species caused by huntingtin
    • Wyttenbach A., et al. Heat shock protein 27 prevents cellular polyglutamine toxicity and suppresses the increase of reactive oxygen species caused by huntingtin. Hum. Mol. Genet. 2002, 11:1137-1151.
    • (2002) Hum. Mol. Genet. , vol.11 , pp. 1137-1151
    • Wyttenbach, A.1
  • 52
    • 0037444445 scopus 로고    scopus 로고
    • Mutant huntingtin causes context-dependent neurodegeneration in mice with Huntington's disease
    • Yu Z.X., et al. Mutant huntingtin causes context-dependent neurodegeneration in mice with Huntington's disease. J. Neurosci. 2003, 23:2193-2202.
    • (2003) J. Neurosci. , vol.23 , pp. 2193-2202
    • Yu, Z.X.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.