-
1
-
-
21244492310
-
Myocardial substrate metabolism in the normal and failing heart
-
Stanley W.C., Recchia F.A., Lopaschuk G.D. Myocardial substrate metabolism in the normal and failing heart. Physiol. Rev. 2005, 85(3):1093-1129.
-
(2005)
Physiol. Rev.
, vol.85
, Issue.3
, pp. 1093-1129
-
-
Stanley, W.C.1
Recchia, F.A.2
Lopaschuk, G.D.3
-
3
-
-
84883425232
-
Cardiac metabolism and its interactions with contraction, growth, and survival of cardiomyocytes
-
Kolwicz S.C., Purohit S., Tian R. Cardiac metabolism and its interactions with contraction, growth, and survival of cardiomyocytes. Circ. Res. 2013, 113(5):603-616.
-
(2013)
Circ. Res.
, vol.113
, Issue.5
, pp. 603-616
-
-
Kolwicz, S.C.1
Purohit, S.2
Tian, R.3
-
4
-
-
77951901715
-
Cell death in the pathogenesis of heart disease: mechanisms and significance
-
Whelan R.S., Kaplinskiy V., Kitsis R.N. Cell death in the pathogenesis of heart disease: mechanisms and significance. Annu. Rev. Physiol. 2010, 72:19-44.
-
(2010)
Annu. Rev. Physiol.
, vol.72
, pp. 19-44
-
-
Whelan, R.S.1
Kaplinskiy, V.2
Kitsis, R.N.3
-
5
-
-
84881627749
-
Historical perspective on the pathology of myocardial ischemia/reperfusion injury
-
Jennings R.B. Historical perspective on the pathology of myocardial ischemia/reperfusion injury. Circ. Res. 2013, 113(4):428-438.
-
(2013)
Circ. Res.
, vol.113
, Issue.4
, pp. 428-438
-
-
Jennings, R.B.1
-
6
-
-
77951915586
-
Autophagy during cardiac stress: joys and frustrations of autophagy
-
Gottlieb R.A., Mentzer R.M. Autophagy during cardiac stress: joys and frustrations of autophagy. Annu. Rev. Physiol. 2010, 72:45-59.
-
(2010)
Annu. Rev. Physiol.
, vol.72
, pp. 45-59
-
-
Gottlieb, R.A.1
Mentzer, R.M.2
-
7
-
-
84920465115
-
Autophagy in cardiovascular biology
-
Lavandero S., Chiong M., Rothermel B.A., Hill J.A. Autophagy in cardiovascular biology. J. Clin. Invest. 2015, 125(1):55-64.
-
(2015)
J. Clin. Invest.
, vol.125
, Issue.1
, pp. 55-64
-
-
Lavandero, S.1
Chiong, M.2
Rothermel, B.A.3
Hill, J.A.4
-
9
-
-
84927582499
-
Therapeutic targeting of autophagy: potential and concerns in treating cardiovascular disease
-
Orogo A.M., Gustafsson A.B. Therapeutic targeting of autophagy: potential and concerns in treating cardiovascular disease. Circ. Res. 2015, 116(3):489-503.
-
(2015)
Circ. Res.
, vol.116
, Issue.3
, pp. 489-503
-
-
Orogo, A.M.1
Gustafsson, A.B.2
-
10
-
-
84894109257
-
Mammalian target of rapamycin signaling in cardiac physiology and disease
-
Sciarretta S., Volpe M., Sadoshima J. Mammalian target of rapamycin signaling in cardiac physiology and disease. Circ. Res. 2014, 114(3):549-564.
-
(2014)
Circ. Res.
, vol.114
, Issue.3
, pp. 549-564
-
-
Sciarretta, S.1
Volpe, M.2
Sadoshima, J.3
-
12
-
-
33947719279
-
Potential therapeutic applications of autophagy
-
Rubinsztein D.C., Gestwicki J.E., Murphy L.O., Klionsky D.J. Potential therapeutic applications of autophagy. Nat. Rev. Drug Discov. 2007, 6(4):304-312.
-
(2007)
Nat. Rev. Drug Discov.
, vol.6
, Issue.4
, pp. 304-312
-
-
Rubinsztein, D.C.1
Gestwicki, J.E.2
Murphy, L.O.3
Klionsky, D.J.4
-
13
-
-
77955884684
-
Characterization of autophagosome formation site by a hierarchical analysis of mammalian Atg proteins
-
Itakura E., Mizushima N. Characterization of autophagosome formation site by a hierarchical analysis of mammalian Atg proteins. Autophagy 2010, 6(6):764-776.
-
(2010)
Autophagy
, vol.6
, Issue.6
, pp. 764-776
-
-
Itakura, E.1
Mizushima, N.2
-
14
-
-
34147168105
-
Distinct roles of autophagy in the heart during ischemia and reperfusion: roles of AMP-activated protein kinase and Beclin 1 in mediating autophagy
-
Matsui Y., Takagi H., Qu X., Abdellatif M., Sakoda H., Asano T., et al. Distinct roles of autophagy in the heart during ischemia and reperfusion: roles of AMP-activated protein kinase and Beclin 1 in mediating autophagy. Circ. Res. 2007, 100(6):914-922.
-
(2007)
Circ. Res.
, vol.100
, Issue.6
, pp. 914-922
-
-
Matsui, Y.1
Takagi, H.2
Qu, X.3
Abdellatif, M.4
Sakoda, H.5
Asano, T.6
-
15
-
-
33749570745
-
Enhancing macroautophagy protects against ischemia/reperfusion injury in cardiac myocytes
-
Hamacher-Brady A., Brady N.R., Gottlieb R.A. Enhancing macroautophagy protects against ischemia/reperfusion injury in cardiac myocytes. J. Biol. Chem. 2006, 281(40):29776-29787.
-
(2006)
J. Biol. Chem.
, vol.281
, Issue.40
, pp. 29776-29787
-
-
Hamacher-Brady, A.1
Brady, N.R.2
Gottlieb, R.A.3
-
16
-
-
84863192578
-
Impaired autophagosome clearance contributes to cardiomyocyte death in ischemia/reperfusion injury
-
Ma X., Liu H., Foyil S.R., Godar R.J., Weinheimer C.J., Hill J.A., et al. Impaired autophagosome clearance contributes to cardiomyocyte death in ischemia/reperfusion injury. Circulation 2012, 125(25):3170-3181.
-
(2012)
Circulation
, vol.125
, Issue.25
, pp. 3170-3181
-
-
Ma, X.1
Liu, H.2
Foyil, S.R.3
Godar, R.J.4
Weinheimer, C.J.5
Hill, J.A.6
-
17
-
-
84895923936
-
Histone deacetylase inhibition blunts ischemia/reperfusion injury by inducing cardiomyocyte autophagy
-
Xie M., Kong Y., Tan W., May H., Battiprolu P.K., Pedrozo Z., et al. Histone deacetylase inhibition blunts ischemia/reperfusion injury by inducing cardiomyocyte autophagy. Circulation 2014, 129(10):1139-1151.
-
(2014)
Circulation
, vol.129
, Issue.10
, pp. 1139-1151
-
-
Xie, M.1
Kong, Y.2
Tan, W.3
May, H.4
Battiprolu, P.K.5
Pedrozo, Z.6
-
18
-
-
84955390424
-
Too much or not enough of a good thing-the Janus faces of autophagy in cardiac fuel and protein homeostasis
-
Ren J., Taegtmeyer H. Too much or not enough of a good thing-the Janus faces of autophagy in cardiac fuel and protein homeostasis. J. Mol. Cell. Cardiol. 2015, 84:223-226.
-
(2015)
J. Mol. Cell. Cardiol.
, vol.84
, pp. 223-226
-
-
Ren, J.1
Taegtmeyer, H.2
-
19
-
-
84922946917
-
Protein quality control and metabolism: bidirectional control in the heart
-
Wang Z.V., Hill J.A. Protein quality control and metabolism: bidirectional control in the heart. Cell Metab. 2015, 21(2):215-226.
-
(2015)
Cell Metab.
, vol.21
, Issue.2
, pp. 215-226
-
-
Wang, Z.V.1
Hill, J.A.2
-
20
-
-
73349134699
-
Blockade of Hsp20 phosphorylation exacerbates cardiac ischemia/reperfusion injury by suppressed autophagy and increased cell death
-
Qian J., Ren X., Wang X., Zhang P., Jones W.K., Molkentin J.D., et al. Blockade of Hsp20 phosphorylation exacerbates cardiac ischemia/reperfusion injury by suppressed autophagy and increased cell death. Circ. Res. 2009, 105(12):1223-1231.
-
(2009)
Circ. Res.
, vol.105
, Issue.12
, pp. 1223-1231
-
-
Qian, J.1
Ren, X.2
Wang, X.3
Zhang, P.4
Jones, W.K.5
Molkentin, J.D.6
-
21
-
-
33744536558
-
Urocortin inhibits Beclin1-mediated autophagic cell death in cardiac myocytes exposed to ischaemia/reperfusion injury
-
Valentim L., Laurence K.M., Townsend P.A., Carroll C.J., Soond S., Scarabelli T.M., et al. Urocortin inhibits Beclin1-mediated autophagic cell death in cardiac myocytes exposed to ischaemia/reperfusion injury. J. Mol. Cell. Cardiol. 2006, 40(6):846-852.
-
(2006)
J. Mol. Cell. Cardiol.
, vol.40
, Issue.6
, pp. 846-852
-
-
Valentim, L.1
Laurence, K.M.2
Townsend, P.A.3
Carroll, C.J.4
Soond, S.5
Scarabelli, T.M.6
-
22
-
-
33845511362
-
Response to myocardial ischemia/reperfusion injury involves Bnip3 and autophagy
-
Hamacher-Brady A., Brady N.R., Logue S.E., Sayen M.R., Jinno M., Kirshenbaum L.A., et al. Response to myocardial ischemia/reperfusion injury involves Bnip3 and autophagy. Cell Death Differ. 2007, 14(1):146-157.
-
(2007)
Cell Death Differ.
, vol.14
, Issue.1
, pp. 146-157
-
-
Hamacher-Brady, A.1
Brady, N.R.2
Logue, S.E.3
Sayen, M.R.4
Jinno, M.5
Kirshenbaum, L.A.6
-
23
-
-
79956126271
-
Oxidative stress stimulates autophagic flux during ischemia/reperfusion
-
Hariharan N., Zhai P., Sadoshima J. Oxidative stress stimulates autophagic flux during ischemia/reperfusion. Antioxid. Redox Signal. 2011, 14(11):2179-2190.
-
(2011)
Antioxid. Redox Signal.
, vol.14
, Issue.11
, pp. 2179-2190
-
-
Hariharan, N.1
Zhai, P.2
Sadoshima, J.3
-
24
-
-
84873665112
-
Regulation of mTORC1 by the Rag GTPases is necessary for neonatal autophagy and survival
-
Efeyan A., Zoncu R., Chang S., Gumper I., Snitkin H., Wolfson R.L., et al. Regulation of mTORC1 by the Rag GTPases is necessary for neonatal autophagy and survival. Nature 2013, 493(7434):679-683.
-
(2013)
Nature
, vol.493
, Issue.7434
, pp. 679-683
-
-
Efeyan, A.1
Zoncu, R.2
Chang, S.3
Gumper, I.4
Snitkin, H.5
Wolfson, R.L.6
-
25
-
-
34249714158
-
The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress
-
Nakai A., Yamaguchi O., Takeda T., Higuchi Y., Hikoso S., Taniike M., et al. The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress. Nat. Med. 2007, 13(5):619-624.
-
(2007)
Nat. Med.
, vol.13
, Issue.5
, pp. 619-624
-
-
Nakai, A.1
Yamaguchi, O.2
Takeda, T.3
Higuchi, Y.4
Hikoso, S.5
Taniike, M.6
-
26
-
-
77955342581
-
Inhibition of autophagy in the heart induces age-related cardiomyopathy
-
Taneike M., Yamaguchi O., Nakai A., Hikoso S., Takeda T., Mizote I., et al. Inhibition of autophagy in the heart induces age-related cardiomyopathy. Autophagy 2010, 6(5):600-606.
-
(2010)
Autophagy
, vol.6
, Issue.5
, pp. 600-606
-
-
Taneike, M.1
Yamaguchi, O.2
Nakai, A.3
Hikoso, S.4
Takeda, T.5
Mizote, I.6
-
27
-
-
37649005234
-
Autophagy in the pathogenesis of disease
-
Levine B., Kroemer G. Autophagy in the pathogenesis of disease. Cell 2008, 132(1):27-42.
-
(2008)
Cell
, vol.132
, Issue.1
, pp. 27-42
-
-
Levine, B.1
Kroemer, G.2
-
28
-
-
12944303650
-
Growth factor regulation of autophagy and cell survival in the absence of apoptosis
-
Lum J.J., Bauer D.E., Kong M., Harris M.H., Li C., Lindsten T., et al. Growth factor regulation of autophagy and cell survival in the absence of apoptosis. Cell 2005, 120(2):237-248.
-
(2005)
Cell
, vol.120
, Issue.2
, pp. 237-248
-
-
Lum, J.J.1
Bauer, D.E.2
Kong, M.3
Harris, M.H.4
Li, C.5
Lindsten, T.6
-
29
-
-
34250802633
-
AMPK mediates autophagy during myocardial ischemia in vivo
-
Takagi H., Matsui Y., Hirotani S., Sakoda H., Asano T., Sadoshima J. AMPK mediates autophagy during myocardial ischemia in vivo. Autophagy 2007, 3(4):405-407.
-
(2007)
Autophagy
, vol.3
, Issue.4
, pp. 405-407
-
-
Takagi, H.1
Matsui, Y.2
Hirotani, S.3
Sakoda, H.4
Asano, T.5
Sadoshima, J.6
-
30
-
-
78649704325
-
Autophagy and metabolism
-
Rabinowitz J.D., White E. Autophagy and metabolism. Science 2010, 330(6009):1344-1348.
-
(2010)
Science
, vol.330
, Issue.6009
, pp. 1344-1348
-
-
Rabinowitz, J.D.1
White, E.2
-
31
-
-
25444473426
-
Autophagy in chronically ischemic myocardium
-
Yan L., Vatner D.E., Kim S.J., Ge H., Masurekar M., Massover W.H., et al. Autophagy in chronically ischemic myocardium. Proc. Natl. Acad. Sci. U. S. A. 2005, 102(39):13807-13812.
-
(2005)
Proc. Natl. Acad. Sci. U. S. A.
, vol.102
, Issue.39
, pp. 13807-13812
-
-
Yan, L.1
Vatner, D.E.2
Kim, S.J.3
Ge, H.4
Masurekar, M.5
Massover, W.H.6
-
32
-
-
84890072367
-
Enhanced autophagy ameliorates cardiac proteinopathy
-
Bhuiyan M.S., Pattison J.S., Osinska H., James J., Gulick J., McLendon P.M., et al. Enhanced autophagy ameliorates cardiac proteinopathy. J. Clin. Invest. 2013, 123(12):5284-5297.
-
(2013)
J. Clin. Invest.
, vol.123
, Issue.12
, pp. 5284-5297
-
-
Bhuiyan, M.S.1
Pattison, J.S.2
Osinska, H.3
James, J.4
Gulick, J.5
McLendon, P.M.6
-
33
-
-
79958071314
-
Autophagy limits acute myocardial infarction induced by permanent coronary artery occlusion
-
Kanamori H., Takemura G., Goto K., Maruyama R., Ono K., Nagao K., et al. Autophagy limits acute myocardial infarction induced by permanent coronary artery occlusion. Am. J. Physiol. Heart Circ. Physiol. 2011, 300(6):H2261-H2271.
-
(2011)
Am. J. Physiol. Heart Circ. Physiol.
, vol.300
, Issue.6
, pp. H2261-H2271
-
-
Kanamori, H.1
Takemura, G.2
Goto, K.3
Maruyama, R.4
Ono, K.5
Nagao, K.6
-
34
-
-
71649084135
-
Beneficial effects of Mammalian target of rapamycin inhibition on left ventricular remodeling after myocardial infarction
-
Buss S.J., Muenz S., Riffel J.H., Malekar P., Hagenmueller M., Weiss C.S., et al. Beneficial effects of Mammalian target of rapamycin inhibition on left ventricular remodeling after myocardial infarction. J. Am. Coll. Cardiol. 2009, 54(25):2435-2446.
-
(2009)
J. Am. Coll. Cardiol.
, vol.54
, Issue.25
, pp. 2435-2446
-
-
Buss, S.J.1
Muenz, S.2
Riffel, J.H.3
Malekar, P.4
Hagenmueller, M.5
Weiss, C.S.6
-
35
-
-
84857914471
-
Rheb is a critical regulator of autophagy during myocardial ischemia: pathophysiological implications in obesity and metabolic syndrome
-
Sciarretta S., Zhai P., Shao D., Maejima Y., Robbins J., Volpe M., et al. Rheb is a critical regulator of autophagy during myocardial ischemia: pathophysiological implications in obesity and metabolic syndrome. Circulation 2012, 125(9):1134-1146.
-
(2012)
Circulation
, vol.125
, Issue.9
, pp. 1134-1146
-
-
Sciarretta, S.1
Zhai, P.2
Shao, D.3
Maejima, Y.4
Robbins, J.5
Volpe, M.6
-
36
-
-
79959967420
-
The role of autophagy emerging in postinfarction cardiac remodelling
-
Kanamori H., Takemura G., Goto K., Maruyama R., Tsujimoto A., Ogino A., et al. The role of autophagy emerging in postinfarction cardiac remodelling. Cardiovasc. Res. 2011, 91(2):330-339.
-
(2011)
Cardiovasc. Res.
, vol.91
, Issue.2
, pp. 330-339
-
-
Kanamori, H.1
Takemura, G.2
Goto, K.3
Maruyama, R.4
Tsujimoto, A.5
Ogino, A.6
-
37
-
-
84914703544
-
Impaired autophagy contributes to adverse cardiac remodeling in acute myocardial infarction
-
Wu X., He L., Chen F., He X., Cai Y., Zhang G., et al. Impaired autophagy contributes to adverse cardiac remodeling in acute myocardial infarction. PLoS ONE 2014, 9(11):e112891.
-
(2014)
PLoS ONE
, vol.9
, Issue.11
-
-
Wu, X.1
He, L.2
Chen, F.3
He, X.4
Cai, Y.5
Zhang, G.6
-
38
-
-
84876531457
-
PINK1-phosphorylated mitofusin 2 is a Parkin receptor for culling damaged mitochondria
-
Chen Y., Dorn G.W. PINK1-phosphorylated mitofusin 2 is a Parkin receptor for culling damaged mitochondria. Science 2013, 340(6131):471-475.
-
(2013)
Science
, vol.340
, Issue.6131
, pp. 471-475
-
-
Chen, Y.1
Dorn, G.W.2
-
39
-
-
77956252454
-
Nix is critical to two distinct phases of mitophagy, reactive oxygen species-mediated autophagy induction and Parkin-ubiquitin-p62-mediated mitochondrial priming
-
Ding W.X., Ni H.M., Li M., Liao Y., Chen X., Stolz D.B., et al. Nix is critical to two distinct phases of mitophagy, reactive oxygen species-mediated autophagy induction and Parkin-ubiquitin-p62-mediated mitochondrial priming. J. Biol. Chem. 2010, 285(36):27879-27890.
-
(2010)
J. Biol. Chem.
, vol.285
, Issue.36
, pp. 27879-27890
-
-
Ding, W.X.1
Ni, H.M.2
Li, M.3
Liao, Y.4
Chen, X.5
Stolz, D.B.6
-
40
-
-
84920872756
-
The mitochondrial dynamism-mitophagy-cell Death interactome: multiple roles performed by members of a mitochondrial molecular ensemble
-
Dorn G.W., RN K. The mitochondrial dynamism-mitophagy-cell Death interactome: multiple roles performed by members of a mitochondrial molecular ensemble. Circ. Res. 2015, 116(1):167-182.
-
(2015)
Circ. Res.
, vol.116
, Issue.1
, pp. 167-182
-
-
Dorn, G.W.1
Kitsis, R.N.2
-
41
-
-
84872283780
-
Parkin protein deficiency exacerbates cardiac injury and reduces survival following myocardial infarction
-
Kubli D.A., Zhang X., Lee Y., Hanna R.A., Quinsay M.N., Nguyen C.K., et al. Parkin protein deficiency exacerbates cardiac injury and reduces survival following myocardial infarction. J. Biol. Chem. 2013, 288(2):915-926.
-
(2013)
J. Biol. Chem.
, vol.288
, Issue.2
, pp. 915-926
-
-
Kubli, D.A.1
Zhang, X.2
Lee, Y.3
Hanna, R.A.4
Quinsay, M.N.5
Nguyen, C.K.6
-
42
-
-
84921985434
-
Endogenous Drp1 mediates mitochondrial autophagy and protects the heart against energy stress
-
Ikeda Y., Shirakabe A., Maejima Y., Zhai P., Sciarretta S., Toli J., et al. Endogenous Drp1 mediates mitochondrial autophagy and protects the heart against energy stress. Circ. Res. 2015, 116(2):264-278.
-
(2015)
Circ. Res.
, vol.116
, Issue.2
, pp. 264-278
-
-
Ikeda, Y.1
Shirakabe, A.2
Maejima, Y.3
Zhai, P.4
Sciarretta, S.5
Toli, J.6
-
43
-
-
78649348967
-
Regulation of the mTOR complex 1 pathway by nutrients, growth factors, and stress
-
Sengupta S., Peterson T.R., Sabatini D.M. Regulation of the mTOR complex 1 pathway by nutrients, growth factors, and stress. Mol. Cell 2010, 40(2):310-322.
-
(2010)
Mol. Cell
, vol.40
, Issue.2
, pp. 310-322
-
-
Sengupta, S.1
Peterson, T.R.2
Sabatini, D.M.3
-
44
-
-
84873469666
-
Nutrient sensing, metabolism, and cell growth control
-
Yuan H.X., Xiong Y., Guan K.L. Nutrient sensing, metabolism, and cell growth control. Mol. Cell 2013, 49(3):379-387.
-
(2013)
Mol. Cell
, vol.49
, Issue.3
, pp. 379-387
-
-
Yuan, H.X.1
Xiong, Y.2
Guan, K.L.3
-
45
-
-
84920504512
-
MTOR: a pharmacologic target for autophagy regulation
-
Kim Y.C., Guan K.L. mTOR: a pharmacologic target for autophagy regulation. J. Clin. Invest. 2015, 125(1):25-32.
-
(2015)
J. Clin. Invest.
, vol.125
, Issue.1
, pp. 25-32
-
-
Kim, Y.C.1
Guan, K.L.2
-
46
-
-
33947264077
-
PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase
-
Sancak Y., Thoreen C.C., Peterson T.R., Lindquist R.A., Kang S.A., Spooner E., et al. PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase. Mol. Cell 2007, 25(6):903-915.
-
(2007)
Mol. Cell
, vol.25
, Issue.6
, pp. 903-915
-
-
Sancak, Y.1
Thoreen, C.C.2
Peterson, T.R.3
Lindquist, R.A.4
Kang, S.A.5
Spooner, E.6
-
47
-
-
34547099855
-
PRAS40 regulates mTORC1 kinase activity by functioning as a direct inhibitor of substrate binding
-
Wang L., Harris T.E., Roth R.A., Lawrence J.C. PRAS40 regulates mTORC1 kinase activity by functioning as a direct inhibitor of substrate binding. J. Biol. Chem. 2007, 282(27):20036-20044.
-
(2007)
J. Biol. Chem.
, vol.282
, Issue.27
, pp. 20036-20044
-
-
Wang, L.1
Harris, T.E.2
Roth, R.A.3
Lawrence, J.C.4
-
48
-
-
0037178786
-
MTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery
-
Kim D.H., Sarbassov D.D., Ali S.M., King J.E., Latek R.R., Erdjument-Bromage H., et al. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 2002, 110(2):163-175.
-
(2002)
Cell
, vol.110
, Issue.2
, pp. 163-175
-
-
Kim, D.H.1
Sarbassov, D.D.2
Ali, S.M.3
King, J.E.4
Latek, R.R.5
Erdjument-Bromage, H.6
-
49
-
-
0037623417
-
GbetaL, a positive regulator of the rapamycin-sensitive pathway required for the nutrient-sensitive interaction between raptor and mTOR
-
Kim D.H., Sarbassov D.D., Ali S.M., Latek R.R., Guntur K.V., Erdjument-Bromage H., et al. GbetaL, a positive regulator of the rapamycin-sensitive pathway required for the nutrient-sensitive interaction between raptor and mTOR. Mol. Cell 2003, 11(4):895-904.
-
(2003)
Mol. Cell
, vol.11
, Issue.4
, pp. 895-904
-
-
Kim, D.H.1
Sarbassov, D.D.2
Ali, S.M.3
Latek, R.R.4
Guntur, K.V.5
Erdjument-Bromage, H.6
-
50
-
-
77953800576
-
Tti1 and Tel2 are critical factors in mammalian target of rapamycin complex assembly
-
Kaizuka T., Hara T., Oshiro N., Kikkawa U., Yonezawa K., Takehana K., et al. Tti1 and Tel2 are critical factors in mammalian target of rapamycin complex assembly. J. Biol. Chem. 2010, 285(26):20109-20116.
-
(2010)
J. Biol. Chem.
, vol.285
, Issue.26
, pp. 20109-20116
-
-
Kaizuka, T.1
Hara, T.2
Oshiro, N.3
Kikkawa, U.4
Yonezawa, K.5
Takehana, K.6
-
51
-
-
0037178781
-
Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action
-
Hara K., Maruki Y., Long X., K-i Y., N O.O., S H.H., et al. Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell 2002, 110(2):177-189.
-
(2002)
Cell
, vol.110
, Issue.2
, pp. 177-189
-
-
Hara, K.1
Maruki, Y.2
Long, X.3
-
52
-
-
0037507252
-
The mammalian target of rapamycin (mTOR) partner, raptor, binds the mTOR substrates p70 S6 kinase and 4E-BP1 through their TOR signaling (TOS) motif
-
Nojima H., Tokunaga C., Eguchi S., Oshiro N., Hidayat S., Yoshino K., et al. The mammalian target of rapamycin (mTOR) partner, raptor, binds the mTOR substrates p70 S6 kinase and 4E-BP1 through their TOR signaling (TOS) motif. J. Biol. Chem. 2003, 278(18):15461-15464.
-
(2003)
J. Biol. Chem.
, vol.278
, Issue.18
, pp. 15461-15464
-
-
Nojima, H.1
Tokunaga, C.2
Eguchi, S.3
Oshiro, N.4
Hidayat, S.5
Yoshino, K.6
-
53
-
-
34547133519
-
The proline-rich Akt substrate of 40 kDa (PRAS40) is a physiological substrate of mammalian target of rapamycin complex 1
-
Oshiro N., Takahashi R., Yoshino K., Tanimura K., Nakashima A., Eguchi S., et al. The proline-rich Akt substrate of 40 kDa (PRAS40) is a physiological substrate of mammalian target of rapamycin complex 1. J. Biol. Chem. 2007, 282(28):20329-20339.
-
(2007)
J. Biol. Chem.
, vol.282
, Issue.28
, pp. 20329-20339
-
-
Oshiro, N.1
Takahashi, R.2
Yoshino, K.3
Tanimura, K.4
Nakashima, A.5
Eguchi, S.6
-
54
-
-
84881097036
-
Pathological hypertrophy amelioration by PRAS40-mediated inhibition of mTORC1
-
Volkers M., Toko H., Doroudgar S., Din S., Quijada P., Joyo A.Y., et al. Pathological hypertrophy amelioration by PRAS40-mediated inhibition of mTORC1. Proc. Natl. Acad. Sci. U. S. A. 2013, 110(31):12661-12666.
-
(2013)
Proc. Natl. Acad. Sci. U. S. A.
, vol.110
, Issue.31
, pp. 12661-12666
-
-
Volkers, M.1
Toko, H.2
Doroudgar, S.3
Din, S.4
Quijada, P.5
Joyo, A.Y.6
-
55
-
-
66449083078
-
ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy
-
Ganley I.G., H L.d., J W.W., X D.D., S C.C., X J.J. ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy. J. Biol. Chem. 2009, 284(18):12297-12305.
-
(2009)
J. Biol. Chem.
, vol.284
, Issue.18
, pp. 12297-12305
-
-
Ganley, I.G.1
Lam du, H.2
Wang, J.3
Ding, X.4
Chen, S.5
Jiang, X.6
-
56
-
-
65249119430
-
Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy
-
Hosokawa N., Hara T., Kaizuka T., Kishi C., Takamura A., Miura Y., et al. Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol. Biol. Cell 2009, 20(7):1981-1991.
-
(2009)
Mol. Biol. Cell
, vol.20
, Issue.7
, pp. 1981-1991
-
-
Hosokawa, N.1
Hara, T.2
Kaizuka, T.3
Kishi, C.4
Takamura, A.5
Miura, Y.6
-
57
-
-
65249176304
-
ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery
-
Jung C.H., Jun C.B., Ro S.H., Kim Y.M., Otto N.M., Cao J., et al. ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol. Biol. Cell 2009, 20(7):1992-2003.
-
(2009)
Mol. Biol. Cell
, vol.20
, Issue.7
, pp. 1992-2003
-
-
Jung, C.H.1
Jun, C.B.2
Ro, S.H.3
Kim, Y.M.4
Otto, N.M.5
Cao, J.6
-
58
-
-
79551598347
-
AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1
-
Kim J., Kundu M., Viollet B., Guan K.L. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat. Cell Biol. 2011, 13(2):132-141.
-
(2011)
Nat. Cell Biol.
, vol.13
, Issue.2
, pp. 132-141
-
-
Kim, J.1
Kundu, M.2
Viollet, B.3
Guan, K.L.4
-
59
-
-
79953211917
-
Nutrient starvation elicits an acute autophagic response mediated by Ulk1 dephosphorylation and its subsequent dissociation from AMPK
-
Shang L., Chen S., Du F., Li S., Zhao L., Wang X. Nutrient starvation elicits an acute autophagic response mediated by Ulk1 dephosphorylation and its subsequent dissociation from AMPK. Proc. Natl. Acad. Sci. U. S. A. 2011, 108(12):4788-4793.
-
(2011)
Proc. Natl. Acad. Sci. U. S. A.
, vol.108
, Issue.12
, pp. 4788-4793
-
-
Shang, L.1
Chen, S.2
Du, F.3
Li, S.4
Zhao, L.5
Wang, X.6
-
60
-
-
84876488191
-
MTOR inhibits autophagy by controlling ULK1 ubiquitylation, self-association and function through AMBRA1 and TRAF6
-
Nazio F., Strappazzon F., Antonioli M., Bielli P., Cianfanelli V., Bordi M., et al. mTOR inhibits autophagy by controlling ULK1 ubiquitylation, self-association and function through AMBRA1 and TRAF6. Nat. Cell Biol. 2013, 15(4):406-416.
-
(2013)
Nat. Cell Biol.
, vol.15
, Issue.4
, pp. 406-416
-
-
Nazio, F.1
Strappazzon, F.2
Antonioli, M.3
Bielli, P.4
Cianfanelli, V.5
Bordi, M.6
-
61
-
-
77953543377
-
The Beclin 1-VPS34 complex-at the crossroads of autophagy and beyond
-
Funderburk S.F., Wang Q.J., Yue Z. The Beclin 1-VPS34 complex-at the crossroads of autophagy and beyond. Trends Cell Biol. 2010, 20(6):355-362.
-
(2010)
Trends Cell Biol.
, vol.20
, Issue.6
, pp. 355-362
-
-
Funderburk, S.F.1
Wang, Q.J.2
Yue, Z.3
-
62
-
-
84863116629
-
Class III PI3K Vps34 plays an essential role in autophagy and in heart and liver function
-
Jaber N., Dou Z., Chen J.-S., Catanzaro J., Jiang Y.-P., Ballou L.M., et al. Class III PI3K Vps34 plays an essential role in autophagy and in heart and liver function. Proc. Natl. Acad. Sci. 2012, 109(6):2003-2008.
-
(2012)
Proc. Natl. Acad. Sci.
, vol.109
, Issue.6
, pp. 2003-2008
-
-
Jaber, N.1
Dou, Z.2
Chen, J.-S.3
Catanzaro, J.4
Jiang, Y.-P.5
Ballou, L.M.6
-
63
-
-
84880331368
-
ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase
-
Russell R.C., Tian Y., Yuan H., Park H.W., Chang Y.Y., Kim J., et al. ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase. Nat. Cell Biol. 2013, 15(7):741-750.
-
(2013)
Nat. Cell Biol.
, vol.15
, Issue.7
, pp. 741-750
-
-
Russell, R.C.1
Tian, Y.2
Yuan, H.3
Park, H.W.4
Chang, Y.Y.5
Kim, J.6
-
64
-
-
84890848742
-
Regulation of PIK3C3/VPS34 complexes by MTOR in nutrient stress-induced autophagy
-
Yuan H.X., Russell R.C., Guan K.L. Regulation of PIK3C3/VPS34 complexes by MTOR in nutrient stress-induced autophagy. Autophagy 2013, 9(12):1983-1995.
-
(2013)
Autophagy
, vol.9
, Issue.12
, pp. 1983-1995
-
-
Yuan, H.X.1
Russell, R.C.2
Guan, K.L.3
-
65
-
-
80955177196
-
TFEB links autophagy to lysosomal biogenesis
-
Settembre C., Di Malta C., Polito V.A., Garcia Arencibia M., Vetrini F., Erdin S., et al. TFEB links autophagy to lysosomal biogenesis. Science 2011, 332(6036):1429-1433.
-
(2011)
Science
, vol.332
, Issue.6036
, pp. 1429-1433
-
-
Settembre, C.1
Di Malta, C.2
Polito, V.A.3
Garcia Arencibia, M.4
Vetrini, F.5
Erdin, S.6
-
66
-
-
84857997408
-
A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB
-
Settembre C., Zoncu R., Medina D.L., Vetrini F., Erdin S., Huynh T., et al. A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB. EMBO J. 2012, 31(5):1095-1108.
-
(2012)
EMBO J.
, vol.31
, Issue.5
, pp. 1095-1108
-
-
Settembre, C.1
Zoncu, R.2
Medina, D.L.3
Vetrini, F.4
Erdin, S.5
Huynh, T.6
-
67
-
-
0036713778
-
TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling
-
Inoki K., Li Y., Zhu T., Wu J., Guan K.L. TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat. Cell Biol. 2002, 4(9):648-657.
-
(2002)
Nat. Cell Biol.
, vol.4
, Issue.9
, pp. 648-657
-
-
Inoki, K.1
Li, Y.2
Zhu, T.3
Wu, J.4
Guan, K.L.5
-
68
-
-
0042701991
-
Tuberous sclerosis complex gene products, Tuberin and Hamartin, control mTOR signaling by acting as a GTPase-activating protein complex toward Rheb
-
(2015/09/12)
-
Tee A.R., Manning B.D., Roux P.P., Cantley L.C., Blenis J. Tuberous sclerosis complex gene products, Tuberin and Hamartin, control mTOR signaling by acting as a GTPase-activating protein complex toward Rheb. Curr. Biol. 2003, 13(15):1259-1268. (2015/09/12).
-
(2003)
Curr. Biol.
, vol.13
, Issue.15
, pp. 1259-1268
-
-
Tee, A.R.1
Manning, B.D.2
Roux, P.P.3
Cantley, L.C.4
Blenis, J.5
-
69
-
-
55649092252
-
Rheb activates protein synthesis and growth in adult rat ventricular cardiomyocytes
-
(2015/09/12)
-
Y W., BPH H., DS L., X W., JD J., CG P. Rheb activates protein synthesis and growth in adult rat ventricular cardiomyocytes. J. Mol. Cell. Cardiol. 2008, 45(6):812-820. (2015/09/12).
-
(2008)
J. Mol. Cell. Cardiol.
, vol.45
, Issue.6
, pp. 812-820
-
-
Wang, Y.1
Huang, B.P.2
Luciani, D.S.3
Wang, X.4
Johnson, J.D.5
Proud, C.G.6
-
70
-
-
84875978061
-
Rheb (Ras homologue enriched in brain)-dependent mammalian target of rapamycin complex 1 (mTORC1) activation becomes indispensable for cardiac hypertrophic growth after early postnatal period
-
Tamai T., Yamaguchi O., Hikoso S., Takeda T., Taneike M., Oka T., et al. Rheb (Ras homologue enriched in brain)-dependent mammalian target of rapamycin complex 1 (mTORC1) activation becomes indispensable for cardiac hypertrophic growth after early postnatal period. J. Biol. Chem. 2013, 288(14):10176-10187.
-
(2013)
J. Biol. Chem.
, vol.288
, Issue.14
, pp. 10176-10187
-
-
Tamai, T.1
Yamaguchi, O.2
Hikoso, S.3
Takeda, T.4
Taneike, M.5
Oka, T.6
-
71
-
-
0029587224
-
Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B
-
Cross D.A., Alessi D.R., Cohen P., Andjelkovich M., Hemmings B.A. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 1995, 378(6559):785-789.
-
(1995)
Nature
, vol.378
, Issue.6559
, pp. 785-789
-
-
Cross, D.A.1
Alessi, D.R.2
Cohen, P.3
Andjelkovich, M.4
Hemmings, B.A.5
-
72
-
-
33748153690
-
TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth
-
Inoki K., Ouyang H., Zhu T., Lindvall C., Wang Y., Zhang X., et al. TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth. Cell 2006, 126(5):955-968.
-
(2006)
Cell
, vol.126
, Issue.5
, pp. 955-968
-
-
Inoki, K.1
Ouyang, H.2
Zhu, T.3
Lindvall, C.4
Wang, Y.5
Zhang, X.6
-
73
-
-
84869147050
-
Akt-mediated regulation of autophagy and tumorigenesis through Beclin 1 phosphorylation
-
Wang R.C., Wei Y., An Z., Zou Z., Xiao G., Bhagat G., et al. Akt-mediated regulation of autophagy and tumorigenesis through Beclin 1 phosphorylation. Science 2012, 338(6109):956-959.
-
(2012)
Science
, vol.338
, Issue.6109
, pp. 956-959
-
-
Wang, R.C.1
Wei, Y.2
An, Z.3
Zou, Z.4
Xiao, G.5
Bhagat, G.6
-
74
-
-
33845703636
-
Akt2 regulates cardiac metabolism and cardiomyocyte survival
-
DeBosch B., Sambandam N., Weinheimer C., Courtois M., Muslin A.J. Akt2 regulates cardiac metabolism and cardiomyocyte survival. J. Biol. Chem. 2006, 281(43):32841-32851.
-
(2006)
J. Biol. Chem.
, vol.281
, Issue.43
, pp. 32841-32851
-
-
DeBosch, B.1
Sambandam, N.2
Weinheimer, C.3
Courtois, M.4
Muslin, A.J.5
-
75
-
-
33646449520
-
Akt1 is required for physiological cardiac growth
-
DeBosch B., Treskov I., Lupu T.S., Weinheimer C., Kovacs A., Courtois M., et al. Akt1 is required for physiological cardiac growth. Circulation 2006, 113(17):2097-2104.
-
(2006)
Circulation
, vol.113
, Issue.17
, pp. 2097-2104
-
-
DeBosch, B.1
Treskov, I.2
Lupu, T.S.3
Weinheimer, C.4
Kovacs, A.5
Courtois, M.6
-
76
-
-
84864378837
-
The Akt1 isoform is an essential mediator of ischaemic preconditioning
-
Kunuthur S.P., Mocanu M.M., Hemmings B.A., Hausenloy D.J., Yellon D.M. The Akt1 isoform is an essential mediator of ischaemic preconditioning. J. Cell. Mol. Med. 2012, 16(8):1739-1749.
-
(2012)
J. Cell. Mol. Med.
, vol.16
, Issue.8
, pp. 1739-1749
-
-
Kunuthur, S.P.1
Mocanu, M.M.2
Hemmings, B.A.3
Hausenloy, D.J.4
Yellon, D.M.5
-
77
-
-
78349234696
-
Revisited and revised: is RhoA always a villain in cardiac pathophysiology?
-
Miyamoto S., Del Re D.P., Xiang S.Y., Zhao X., Florholmen G., Brown J.H. Revisited and revised: is RhoA always a villain in cardiac pathophysiology?. J. Cardiovasc. Transl. Res. 2010, 3(4):330-343.
-
(2010)
J. Cardiovasc. Transl. Res.
, vol.3
, Issue.4
, pp. 330-343
-
-
Miyamoto, S.1
Del Re, D.P.2
Xiang, S.Y.3
Zhao, X.4
Florholmen, G.5
Brown, J.H.6
-
78
-
-
79960091427
-
Myocardial AKT: the omnipresent nexus
-
Sussman M.A., Volkers M., Fischer K., Bailey B., Cottage C.T., Din S., et al. Myocardial AKT: the omnipresent nexus. Physiol. Rev. 2011, 91(3):1023-1070.
-
(2011)
Physiol. Rev.
, vol.91
, Issue.3
, pp. 1023-1070
-
-
Sussman, M.A.1
Volkers, M.2
Fischer, K.3
Bailey, B.4
Cottage, C.T.5
Din, S.6
-
79
-
-
84919830272
-
Antioxidant catalase rescues against high fat diet-induced cardiac dysfunction via an IKKbeta-AMPK-dependent regulation of autophagy
-
Liang L., Shou X.L., Zhao H.K., Ren G.Q., Wang J.B., Wang X.H., et al. Antioxidant catalase rescues against high fat diet-induced cardiac dysfunction via an IKKbeta-AMPK-dependent regulation of autophagy. Biochim. Biophys. Acta 2015, 1852(2):343-352.
-
(2015)
Biochim. Biophys. Acta
, vol.1852
, Issue.2
, pp. 343-352
-
-
Liang, L.1
Shou, X.L.2
Zhao, H.K.3
Ren, G.Q.4
Wang, J.B.5
Wang, X.H.6
-
80
-
-
84880914913
-
MTOR overactivation and interrupted autophagy flux in obese hearts: a dicey assembly?
-
Zhang Y., Xu X., Ren J. MTOR overactivation and interrupted autophagy flux in obese hearts: a dicey assembly?. Autophagy 2013, 9(6):939-941.
-
(2013)
Autophagy
, vol.9
, Issue.6
, pp. 939-941
-
-
Zhang, Y.1
Xu, X.2
Ren, J.3
-
81
-
-
84899969108
-
Akt2 knockout alleviates prolonged caloric restriction-induced change in cardiac contractile function through regulation of autophagy
-
Zhang Y., Han X., Hu N., Huff A.F., Gao F., Ren J. Akt2 knockout alleviates prolonged caloric restriction-induced change in cardiac contractile function through regulation of autophagy. J. Mol. Cell. Cardiol. 2014, 71:81-91.
-
(2014)
J. Mol. Cell. Cardiol.
, vol.71
, pp. 81-91
-
-
Zhang, Y.1
Han, X.2
Hu, N.3
Huff, A.F.4
Gao, F.5
Ren, J.6
-
82
-
-
78650835776
-
Impact of long-term caloric restriction on cardiac senescence: caloric restriction ameliorates cardiac diastolic dysfunction associated with aging
-
Shinmura K., Tamaki K., Sano M., Murata M., Yamakawa H., Ishida H., et al. Impact of long-term caloric restriction on cardiac senescence: caloric restriction ameliorates cardiac diastolic dysfunction associated with aging. J. Mol. Cell. Cardiol. 2011, 50(1):117-127.
-
(2011)
J. Mol. Cell. Cardiol.
, vol.50
, Issue.1
, pp. 117-127
-
-
Shinmura, K.1
Tamaki, K.2
Sano, M.3
Murata, M.4
Yamakawa, H.5
Ishida, H.6
-
83
-
-
78650943298
-
ERK1/2 Phosphorylate Raptor to Promote Ras-dependent Activation of mTOR Complex 1 (mTORC1)
-
Carriere A., Romeo Y., Acosta-Jaquez H.A., Moreau J., Bonneil E., Thibault P., et al. ERK1/2 Phosphorylate Raptor to Promote Ras-dependent Activation of mTOR Complex 1 (mTORC1). J. Biol. Chem. 2011, 286(1):567-577.
-
(2011)
J. Biol. Chem.
, vol.286
, Issue.1
, pp. 567-577
-
-
Carriere, A.1
Romeo, Y.2
Acosta-Jaquez, H.A.3
Moreau, J.4
Bonneil, E.5
Thibault, P.6
-
84
-
-
17444431201
-
Phosphorylation and functional inactivation of TSC2 by Erk
-
(2015/09/12)
-
Ma L., Chen Z., Erdjument-Bromage H., Tempst P., Pandolfi P.P. Phosphorylation and functional inactivation of TSC2 by Erk. Cell 2005, 121(2):179-193. (2015/09/12).
-
(2005)
Cell
, vol.121
, Issue.2
, pp. 179-193
-
-
Ma, L.1
Chen, Z.2
Erdjument-Bromage, H.3
Tempst, P.4
Pandolfi, P.P.5
-
85
-
-
21744446249
-
Activation of protein synthesis in cardiomyocytes by the hypertrophic agent phenylephrine requires the activation of ERK and involves phosphorylation of tuberous sclerosis complex 2 (TSC2)
-
(2005-06-15)
-
Rolfe M., McLeod L.E., Pratt P.F., Pround C.G. Activation of protein synthesis in cardiomyocytes by the hypertrophic agent phenylephrine requires the activation of ERK and involves phosphorylation of tuberous sclerosis complex 2 (TSC2). Biochem. J. 2005, 388(3):973-984. (2005-06-15).
-
(2005)
Biochem. J.
, vol.388
, Issue.3
, pp. 973-984
-
-
Rolfe, M.1
McLeod, L.E.2
Pratt, P.F.3
Pround, C.G.4
-
86
-
-
34547605613
-
IKKbeta suppression of TSC1 links inflammation and tumor angiogenesis via the mTOR pathway
-
(2015/09/12)
-
Lee D.-F., Kuo H.-P., Chen C.-T., Hsu J.-M., Chou C.-K., Wei Y., et al. IKKbeta suppression of TSC1 links inflammation and tumor angiogenesis via the mTOR pathway. Cell 2007, 130(3):440-455. (2015/09/12).
-
(2007)
Cell
, vol.130
, Issue.3
, pp. 440-455
-
-
Lee, D.-F.1
Kuo, H.-P.2
Chen, C.-T.3
Hsu, J.-M.4
Chou, C.-K.5
Wei, Y.6
-
87
-
-
84877287873
-
Bidirectional regulation of nuclear factor-κB and mammalian target of rapamycin signaling functionally links Bnip3 gene repression and cell survival of ventricular myocytes
-
Dhingra R., Gang H., Wang Y., Biala A.K., Aviv Y., Margulets V., et al. Bidirectional regulation of nuclear factor-κB and mammalian target of rapamycin signaling functionally links Bnip3 gene repression and cell survival of ventricular myocytes. Circ. Heart Fail. 2013, 6(2):335-343.
-
(2013)
Circ. Heart Fail.
, vol.6
, Issue.2
, pp. 335-343
-
-
Dhingra, R.1
Gang, H.2
Wang, Y.3
Biala, A.K.4
Aviv, Y.5
Margulets, V.6
-
88
-
-
84906971768
-
Akt-dependent activation of mTORC1 complex involves phosphorylation of mTOR (mammalian target of rapamycin) by IkB kinase alpha (IKKalpha)
-
Dan H.C., Ebbs A., Pasparakis M., Van Dyke T., Basseres D.S., Baldwin A.S. Akt-dependent activation of mTORC1 complex involves phosphorylation of mTOR (mammalian target of rapamycin) by IkB kinase alpha (IKKalpha). J. Biol. Chem. 2014, 289(36):25227-25240.
-
(2014)
J. Biol. Chem.
, vol.289
, Issue.36
, pp. 25227-25240
-
-
Dan, H.C.1
Ebbs, A.2
Pasparakis, M.3
Van Dyke, T.4
Basseres, D.S.5
Baldwin, A.S.6
-
89
-
-
79251587803
-
Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy
-
Egan D.F., Shackelford D.B., Mihaylova M.M., Gelino S., Kohnz R.A., Mair W., et al. Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science 2011, 331(6016):456-461.
-
(2011)
Science
, vol.331
, Issue.6016
, pp. 456-461
-
-
Egan, D.F.1
Shackelford, D.B.2
Mihaylova, M.M.3
Gelino, S.4
Kohnz, R.A.5
Mair, W.6
-
90
-
-
42949139481
-
AMPK phosphorylation of raptor mediates a metabolic checkpoint
-
Gwinn D.M., Shackelford D.B., Egan D.F., Mihaylova M.M., Mery A., Vasquez D.S., et al. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol. Cell 2008, 30(2):214-226.
-
(2008)
Mol. Cell
, vol.30
, Issue.2
, pp. 214-226
-
-
Gwinn, D.M.1
Shackelford, D.B.2
Egan, D.F.3
Mihaylova, M.M.4
Mery, A.5
Vasquez, D.S.6
-
91
-
-
0345167800
-
TSC2 mediates cellular energy response to control cell growth and survival
-
Inoki K., Zhu T., Guan K.L. TSC2 mediates cellular energy response to control cell growth and survival. Cell 2003, 115(5):577-590.
-
(2003)
Cell
, vol.115
, Issue.5
, pp. 577-590
-
-
Inoki, K.1
Zhu, T.2
Guan, K.L.3
-
92
-
-
84919831857
-
Inhibition of AMPK accentuates prolonged caloric restriction-induced change in cardiac contractile function through disruption of compensatory autophagy
-
Zheng Q., Zhao K., Han X., Huff A.F., Cui Q., Babcock S.A., et al. Inhibition of AMPK accentuates prolonged caloric restriction-induced change in cardiac contractile function through disruption of compensatory autophagy. Biochim. Biophys. Acta 2015, 1852(2):332-342.
-
(2015)
Biochim. Biophys. Acta
, vol.1852
, Issue.2
, pp. 332-342
-
-
Zheng, Q.1
Zhao, K.2
Han, X.3
Huff, A.F.4
Cui, Q.5
Babcock, S.A.6
-
93
-
-
84920815706
-
The GSK-3 family as therapeutic target for myocardial diseases
-
Lal H., Ahmad F., Woodgett J., Force T. The GSK-3 family as therapeutic target for myocardial diseases. Circ. Res. 2015, 116(1):138-149.
-
(2015)
Circ. Res.
, vol.116
, Issue.1
, pp. 138-149
-
-
Lal, H.1
Ahmad, F.2
Woodgett, J.3
Force, T.4
-
94
-
-
80052147341
-
Differential roles of GSK-3beta during myocardial ischemia and ischemia/reperfusion
-
Zhai P., Sciarretta S., Galeotti J., Volpe M., Sadoshima J. Differential roles of GSK-3beta during myocardial ischemia and ischemia/reperfusion. Circ. Res. 2011, 109(5):502-511.
-
(2011)
Circ. Res.
, vol.109
, Issue.5
, pp. 502-511
-
-
Zhai, P.1
Sciarretta, S.2
Galeotti, J.3
Volpe, M.4
Sadoshima, J.5
-
95
-
-
84875858766
-
GSK-3alpha is a central regulator of age-related pathologies in mice
-
Zhou J., Freeman T.A., Ahmad F., Shang X., Mangano E., Gao E., et al. GSK-3alpha is a central regulator of age-related pathologies in mice. J. Clin. Invest. 2013, 123(4):1821-1832.
-
(2013)
J. Clin. Invest.
, vol.123
, Issue.4
, pp. 1821-1832
-
-
Zhou, J.1
Freeman, T.A.2
Ahmad, F.3
Shang, X.4
Mangano, E.5
Gao, E.6
-
96
-
-
0033542380
-
Death-associated protein kinase 2 is a new calcium/calmodulin-dependent protein kinase that signals apoptosis through its catalytic activity
-
Kawai T., Nomura F., Hoshino K., Copeland N.G., Gilbert D.J., Jenkins N.A., et al. Death-associated protein kinase 2 is a new calcium/calmodulin-dependent protein kinase that signals apoptosis through its catalytic activity. Oncogene 1999, 18(23):3471-3480.
-
(1999)
Oncogene
, vol.18
, Issue.23
, pp. 3471-3480
-
-
Kawai, T.1
Nomura, F.2
Hoshino, K.3
Copeland, N.G.4
Gilbert, D.J.5
Jenkins, N.A.6
-
97
-
-
84922541430
-
DAPK2 is a novel regulator of mTORC1 activity and autophagy
-
Ber Y., Shiloh R., Gilad Y., Degani N., Bialik S., Kimchi A. DAPK2 is a novel regulator of mTORC1 activity and autophagy. Cell Death Differ. 2015, 22(3):465-475.
-
(2015)
Cell Death Differ.
, vol.22
, Issue.3
, pp. 465-475
-
-
Ber, Y.1
Shiloh, R.2
Gilad, Y.3
Degani, N.4
Bialik, S.5
Kimchi, A.6
-
98
-
-
14044254273
-
Diabetes induces p66shc gene expression in human peripheral blood mononuclear cells: relationship to oxidative stress
-
Pagnin E., Fadini G., R d.T., A T., L C., A A. Diabetes induces p66shc gene expression in human peripheral blood mononuclear cells: relationship to oxidative stress. J. Clin. Endocrinol. Metab. 2005, 90(2):1130-1136.
-
(2005)
J. Clin. Endocrinol. Metab.
, vol.90
, Issue.2
, pp. 1130-1136
-
-
Pagnin, E.1
Fadini, G.2
de Toni, R.3
Tiengo, A.4
Calò, L.5
Avogaro, A.6
-
99
-
-
77954925200
-
Hyperglycemia-induced p66shc inhibits insulin-like growth factor I-dependent cell survival via impairment of Src kinase-mediated phosphoinositide-3 kinase/AKT activation in vascular smooth muscle cells
-
Xi G., Shen X., Radhakrishnan Y., Maile L., Clemmons D. Hyperglycemia-induced p66shc inhibits insulin-like growth factor I-dependent cell survival via impairment of Src kinase-mediated phosphoinositide-3 kinase/AKT activation in vascular smooth muscle cells. Endocrinology 2010, 151(8):3611-3623.
-
(2010)
Endocrinology
, vol.151
, Issue.8
, pp. 3611-3623
-
-
Xi, G.1
Shen, X.2
Radhakrishnan, Y.3
Maile, L.4
Clemmons, D.5
-
100
-
-
77955798757
-
Mammalian life-span determinant p66shcA mediates obesity-induced insulin resistance
-
Ranieri S.C., Fusco S., Panieri E., Labate V., Mele M., Tesori V., et al. Mammalian life-span determinant p66shcA mediates obesity-induced insulin resistance. Proc. Natl. Acad. Sci. 2010, 107(30):13420-13425.
-
(2010)
Proc. Natl. Acad. Sci.
, vol.107
, Issue.30
, pp. 13420-13425
-
-
Ranieri, S.C.1
Fusco, S.2
Panieri, E.3
Labate, V.4
Mele, M.5
Tesori, V.6
-
101
-
-
78651344799
-
The Shc locus regulates insulin signaling and adiposity in mammals
-
Tomilov A.A., Ramsey J.J., Hagopian K., Giorgio M., Kim K.M., Lam A., et al. The Shc locus regulates insulin signaling and adiposity in mammals. Aging Cell 2011, 10(1):55-65.
-
(2011)
Aging Cell
, vol.10
, Issue.1
, pp. 55-65
-
-
Tomilov, A.A.1
Ramsey, J.J.2
Hagopian, K.3
Giorgio, M.4
Kim, K.M.5
Lam, A.6
-
102
-
-
84883424865
-
Downregulated adaptor protein p66Shc mitigates autophagy process by low nutrient and enhances apoptotic resistance in human lung adenocarcinoma A549 cells
-
Zheng Z., Yang J., Zhao D., Gao D., Yan X., Yao Z., et al. Downregulated adaptor protein p66Shc mitigates autophagy process by low nutrient and enhances apoptotic resistance in human lung adenocarcinoma A549 cells. FEBS J. 2013, 280(18):4522-4530.
-
(2013)
FEBS J.
, vol.280
, Issue.18
, pp. 4522-4530
-
-
Zheng, Z.1
Yang, J.2
Zhao, D.3
Gao, D.4
Yan, X.5
Yao, Z.6
-
103
-
-
0017697151
-
Induction of autophagy by amino-acid deprivation in perfused rat liver
-
Mortimore G.E., Schworer C.M. Induction of autophagy by amino-acid deprivation in perfused rat liver. Nature 1977, 270(5633):174-176.
-
(1977)
Nature
, vol.270
, Issue.5633
, pp. 174-176
-
-
Mortimore, G.E.1
Schworer, C.M.2
-
104
-
-
0032486268
-
Amino acid sufficiency and mTOR regulate p70 S6 kinase and eIF-4E BP1 through a common effector mechanism
-
Hara K., Yonezawa K., Weng Q.-P., Kozlowski M.T., Belham C., Avruch J. Amino acid sufficiency and mTOR regulate p70 S6 kinase and eIF-4E BP1 through a common effector mechanism. J. Biol. Chem. 1998, 273(23):14484-14494.
-
(1998)
J. Biol. Chem.
, vol.273
, Issue.23
, pp. 14484-14494
-
-
Hara, K.1
Yonezawa, K.2
Weng, Q.-P.3
Kozlowski, M.T.4
Belham, C.5
Avruch, J.6
-
105
-
-
21244456553
-
Rheb binding to mammalian target of rapamycin (mTOR) is regulated by amino acid sufficiency
-
Long X., Ortiz-Vega S., Lin Y., Avruch J. Rheb binding to mammalian target of rapamycin (mTOR) is regulated by amino acid sufficiency. J. Biol. Chem. 2005, 280(25):23433-23436.
-
(2005)
J. Biol. Chem.
, vol.280
, Issue.25
, pp. 23433-23436
-
-
Long, X.1
Ortiz-Vega, S.2
Lin, Y.3
Avruch, J.4
-
106
-
-
0032528917
-
Amino acid availability regulates p70 S6 kinase and multiple translation factors
-
(1998-08-15)
-
Wang X., Campbell L.E., Miller C.M., Proud C.G. Amino acid availability regulates p70 S6 kinase and multiple translation factors. Biochem. J. 1998, 334(1):261-267. (1998-08-15).
-
(1998)
Biochem. J.
, vol.334
, Issue.1
, pp. 261-267
-
-
Wang, X.1
Campbell, L.E.2
Miller, C.M.3
Proud, C.G.4
-
107
-
-
48649085816
-
Regulation of TORC1 by Rag GTPases in nutrient response
-
Kim E., Goraksha-Hicks P., Li L., Neufeld T.P., Guan K.-L. Regulation of TORC1 by Rag GTPases in nutrient response. Nat. Cell Biol. 2008, 10(8):935-945.
-
(2008)
Nat. Cell Biol.
, vol.10
, Issue.8
, pp. 935-945
-
-
Kim, E.1
Goraksha-Hicks, P.2
Li, L.3
Neufeld, T.P.4
Guan, K.-L.5
-
108
-
-
45849105156
-
The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1
-
Sancak Y., Peterson T.R., Shaul Y.D., Lindquist R.A., Thoreen C.C., Bar-Peled L., et al. The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 2008, 320(5882):1496-1501.
-
(2008)
Science
, vol.320
, Issue.5882
, pp. 1496-1501
-
-
Sancak, Y.1
Peterson, T.R.2
Shaul, Y.D.3
Lindquist, R.A.4
Thoreen, C.C.5
Bar-Peled, L.6
-
109
-
-
84903795431
-
Rag GTPases are cardioprotective by regulating lysosomal function
-
Kim Y.C., Park H.W., Sciarretta S., Mo J.-S., Jewell J.L., Russell R.C., et al. Rag GTPases are cardioprotective by regulating lysosomal function. Nat. Commun. 2014, 5(4241).
-
(2014)
Nat. Commun.
, vol.5
, Issue.4241
-
-
Kim, Y.C.1
Park, H.W.2
Sciarretta, S.3
Mo, J.-S.4
Jewell, J.L.5
Russell, R.C.6
-
110
-
-
77951768486
-
Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids
-
Sancak Y., Bar-Peled L., Zoncu R., Markhard A.L., Nada S., Sabatini D.M. Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 2010, 141(2):290-303.
-
(2010)
Cell
, vol.141
, Issue.2
, pp. 290-303
-
-
Sancak, Y.1
Bar-Peled, L.2
Zoncu, R.3
Markhard, A.L.4
Nada, S.5
Sabatini, D.M.6
-
111
-
-
84866431363
-
Ragulator is a GEF for the Rag GTPases that signal amino acid levels to mTORC1
-
(2015/09/12)
-
Bar-Peled L., Schweitzer L.D., Zoncu R., Sabatini D.M. Ragulator is a GEF for the Rag GTPases that signal amino acid levels to mTORC1. Cell 2012, 150(6):1196-1208. (2015/09/12).
-
(2012)
Cell
, vol.150
, Issue.6
, pp. 1196-1208
-
-
Bar-Peled, L.1
Schweitzer, L.D.2
Zoncu, R.3
Sabatini, D.M.4
-
112
-
-
18244362311
-
Novel role of the small GTPase Rheb: its implication in endocytic pathway independent of the activation of mammalian target of rapamycin
-
Saito K., Araki Y., Kontani K., Nishina H., Katada T. Novel role of the small GTPase Rheb: its implication in endocytic pathway independent of the activation of mammalian target of rapamycin. J. Biochem. 2005, 137(3):423-430.
-
(2005)
J. Biochem.
, vol.137
, Issue.3
, pp. 423-430
-
-
Saito, K.1
Araki, Y.2
Kontani, K.3
Nishina, H.4
Katada, T.5
-
113
-
-
80555143078
-
MTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase
-
Zoncu R., Bar-Peled L., Efeyan A., Wang S., Sancak Y., Sabatini D.M. mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase. Science 2011, 334(6056):678-683.
-
(2011)
Science
, vol.334
, Issue.6056
, pp. 678-683
-
-
Zoncu, R.1
Bar-Peled, L.2
Efeyan, A.3
Wang, S.4
Sancak, Y.5
Sabatini, D.M.6
-
114
-
-
84922743269
-
Metabolism. Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1
-
Wang S., Tsun Z.Y., Wolfson R.L., Shen K., Wyant G.A., Plovanich M.E., et al. Metabolism. Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1. Science 2015, 347(6218):188-194.
-
(2015)
Science
, vol.347
, Issue.6218
, pp. 188-194
-
-
Wang, S.1
Tsun, Z.Y.2
Wolfson, R.L.3
Shen, K.4
Wyant, G.A.5
Plovanich, M.E.6
-
115
-
-
84925777835
-
SLC38A9 is a component of the lysosomal amino acid sensing machinery that controls mTORC1
-
Rebsamen M., Pochini L., Stasyk T., de Araujo M.E., Galluccio M., Kandasamy R.K., et al. SLC38A9 is a component of the lysosomal amino acid sensing machinery that controls mTORC1. Nature 2015, 519(7544):477-481.
-
(2015)
Nature
, vol.519
, Issue.7544
, pp. 477-481
-
-
Rebsamen, M.1
Pochini, L.2
Stasyk, T.3
de Araujo, M.E.4
Galluccio, M.5
Kandasamy, R.K.6
-
116
-
-
84862777407
-
Leucyl-tRNA synthetase is an intracellular leucine sensor for the mTORC1-signaling pathway
-
Han J.M., Jeong S.J., Park M.C., Kim G., Kwon N.H., Kim H.K., et al. Leucyl-tRNA synthetase is an intracellular leucine sensor for the mTORC1-signaling pathway. Cell 2012, 149(2):410-424.
-
(2012)
Cell
, vol.149
, Issue.2
, pp. 410-424
-
-
Han, J.M.1
Jeong, S.J.2
Park, M.C.3
Kim, G.4
Kwon, N.H.5
Kim, H.K.6
-
117
-
-
84922727084
-
Metabolism. Differential regulation of mTORC1 by leucine and glutamine
-
Jewell J.L., Kim Y.C., Russell R.C., Yu F.X., Park H.W., Plouffe S.W., et al. Metabolism. Differential regulation of mTORC1 by leucine and glutamine. Science 2015, 347(6218):194-198.
-
(2015)
Science
, vol.347
, Issue.6218
, pp. 194-198
-
-
Jewell, J.L.1
Kim, Y.C.2
Russell, R.C.3
Yu, F.X.4
Park, H.W.5
Plouffe, S.W.6
-
118
-
-
84864931233
-
Glutaminolysis activates Rag-mTORC1 signaling
-
(2015/09/12)
-
Duran R.V., Oppliger W., Robitaille A.M., Heiserich L., Skendaj R., Gottlieb E., et al. Glutaminolysis activates Rag-mTORC1 signaling. Mol. Cell 2012, 47(3):349-358. (2015/09/12).
-
(2012)
Mol. Cell
, vol.47
, Issue.3
, pp. 349-358
-
-
Duran, R.V.1
Oppliger, W.2
Robitaille, A.M.3
Heiserich, L.4
Skendaj, R.5
Gottlieb, E.6
-
119
-
-
84880906805
-
Glutamate dehydrogenase contributes to leucine sensing in the regulation of autophagy
-
Lorin S., Tol M.J., Bauvy C., Strijland A., Pous C., Verhoeven A.J., et al. Glutamate dehydrogenase contributes to leucine sensing in the regulation of autophagy. Autophagy 2013, 9(6):850-860.
-
(2013)
Autophagy
, vol.9
, Issue.6
, pp. 850-860
-
-
Lorin, S.1
Tol, M.J.2
Bauvy, C.3
Strijland, A.4
Pous, C.5
Verhoeven, A.J.6
-
120
-
-
0025339848
-
Regulation of glutamate dehydrogenase by Mg2+ and magnification of leucine activation by Mg2+
-
Fahien L.A., Teller J.K., Macdonald M.J., Fahien C.M. Regulation of glutamate dehydrogenase by Mg2+ and magnification of leucine activation by Mg2+. Mol. Pharmacol. 1990, 37(6):943-949.
-
(1990)
Mol. Pharmacol.
, vol.37
, Issue.6
, pp. 943-949
-
-
Fahien, L.A.1
Teller, J.K.2
Macdonald, M.J.3
Fahien, C.M.4
-
121
-
-
77955287742
-
Metformin, independent of AMPK, inhibits mTORC1 in a rag GTPase-dependent manner
-
Kalender A., Selvaraj A., Kim S.Y., Gulati P., Brule S., Viollet B., et al. Metformin, independent of AMPK, inhibits mTORC1 in a rag GTPase-dependent manner. Cell Metab. 2010, 11(5):390-401.
-
(2010)
Cell Metab.
, vol.11
, Issue.5
, pp. 390-401
-
-
Kalender, A.1
Selvaraj, A.2
Kim, S.Y.3
Gulati, P.4
Brule, S.5
Viollet, B.6
-
122
-
-
84891388331
-
Glucose regulation of load-induced mTOR signaling and ER stress in mammalian heart
-
Sen S., Kundu B.K., Wu H.C., Hashmi S.S., Guthrie P., Locke L.W., et al. Glucose regulation of load-induced mTOR signaling and ER stress in mammalian heart. J. Am. Heart. Assoc. 2013, 2(3):e004796.
-
(2013)
J. Am. Heart. Assoc.
, vol.2
, Issue.3
-
-
Sen, S.1
Kundu, B.K.2
Wu, H.C.3
Hashmi, S.S.4
Guthrie, P.5
Locke, L.W.6
-
123
-
-
34548418134
-
Glucose phosphorylation is required for insulin-dependent mTOR signalling in the heart
-
Sharma S., Guthrie P.H., Chan S.S., Haq S., Taegtmeyer H. Glucose phosphorylation is required for insulin-dependent mTOR signalling in the heart. Cardiovasc. Res. 2007, 76(1):71-80.
-
(2007)
Cardiovasc. Res.
, vol.76
, Issue.1
, pp. 71-80
-
-
Sharma, S.1
Guthrie, P.H.2
Chan, S.S.3
Haq, S.4
Taegtmeyer, H.5
-
124
-
-
0041309460
-
Hexokinase II: the integration of energy metabolism and control of apoptosis
-
Pastorino J.G., Hoek J.B. Hexokinase II: the integration of energy metabolism and control of apoptosis. Curr. Med. Chem. 2003, 10(16):1535-1551.
-
(2003)
Curr. Med. Chem.
, vol.10
, Issue.16
, pp. 1535-1551
-
-
Pastorino, J.G.1
Hoek, J.B.2
-
125
-
-
0038714272
-
Isozymes of mammalian hexokinase: structure, subcellular localization and metabolic function
-
Wilson J.E. Isozymes of mammalian hexokinase: structure, subcellular localization and metabolic function. J. Exp. Biol. 2003, 206(Pt 12):2049-2057.
-
(2003)
J. Exp. Biol.
, vol.206
, pp. 2049-2057
-
-
Wilson, J.E.1
-
126
-
-
35448964610
-
Warburg, me and Hexokinase 2: multiple discoveries of key molecular events underlying one of cancers' most common phenotypes, the "Warburg Effect", i.e., elevated glycolysis in the presence of oxygen
-
PL P. Warburg, me and Hexokinase 2: multiple discoveries of key molecular events underlying one of cancers' most common phenotypes, the "Warburg Effect", i.e., elevated glycolysis in the presence of oxygen. J. Bioenerg. Biomembr. 2007, 39(3):211-222.
-
(2007)
J. Bioenerg. Biomembr.
, vol.39
, Issue.3
, pp. 211-222
-
-
Pedersen, P.L.1
-
127
-
-
84902301848
-
Cardiac-specific hexokinase 2 overexpression attenuates hypertrophy by increasing pentose phosphate pathway flux
-
McCommis K.S., Douglas D.L., Krenz M., Baines C.P. Cardiac-specific hexokinase 2 overexpression attenuates hypertrophy by increasing pentose phosphate pathway flux. J. Am. Heart Assoc. 2013, 2(6):e000355.
-
(2013)
J. Am. Heart Assoc.
, vol.2
, Issue.6
-
-
McCommis, K.S.1
Douglas, D.L.2
Krenz, M.3
Baines, C.P.4
-
128
-
-
84882321254
-
Akt phosphorylates HK-II at Thr-473 and increases mitochondrial HK-II association to protect cardiomyocytes
-
Roberts D.J., Tan-Sah V.P., Smith J.M., Miyamoto S. Akt phosphorylates HK-II at Thr-473 and increases mitochondrial HK-II association to protect cardiomyocytes. J. Biol. Chem. 2013, 288(33):23798-23806.
-
(2013)
J. Biol. Chem.
, vol.288
, Issue.33
, pp. 23798-23806
-
-
Roberts, D.J.1
Tan-Sah, V.P.2
Smith, J.M.3
Miyamoto, S.4
-
129
-
-
38549163731
-
Glucose phosphorylation and mitochondrial binding are required for the protective effects of hexokinases I and II
-
Sun L., Shukair S., Naik T.J., Moazed F., Ardehali H. Glucose phosphorylation and mitochondrial binding are required for the protective effects of hexokinases I and II. Mol. Cell. Biol. 2008, 28(3):1007-1017.
-
(2008)
Mol. Cell. Biol.
, vol.28
, Issue.3
, pp. 1007-1017
-
-
Sun, L.1
Shukair, S.2
Naik, T.J.3
Moazed, F.4
Ardehali, H.5
-
130
-
-
79451474587
-
Reduction in hexokinase II levels results in decreased cardiac function and altered remodeling after ischemia/reperfusion injury
-
Wu R., Smeele K.M., Wyatt E., Ichikawa Y., Eerbeek O., Sun L., et al. Reduction in hexokinase II levels results in decreased cardiac function and altered remodeling after ischemia/reperfusion injury. Circ. Res. 2011, 108(1):60-69.
-
(2011)
Circ. Res.
, vol.108
, Issue.1
, pp. 60-69
-
-
Wu, R.1
Smeele, K.M.2
Wyatt, E.3
Ichikawa, Y.4
Eerbeek, O.5
Sun, L.6
-
131
-
-
84863456083
-
Hexokinase II knockdown results in exaggerated cardiac hypertrophy via increased ROS production
-
Wu R., Wyatt E., Chawla K., Tran M., Ghanefar M., Laakso M., et al. Hexokinase II knockdown results in exaggerated cardiac hypertrophy via increased ROS production. EMBO Mol Med. 2012, 4(7):633-646.
-
(2012)
EMBO Mol Med.
, vol.4
, Issue.7
, pp. 633-646
-
-
Wu, R.1
Wyatt, E.2
Chawla, K.3
Tran, M.4
Ghanefar, M.5
Laakso, M.6
-
132
-
-
0013945981
-
Heart muscle hexokinase: subcellular distribution and inhibition by glucose 6-phosphate
-
Mayer S.E., Mayfield A.C., Haas J.A. Heart muscle hexokinase: subcellular distribution and inhibition by glucose 6-phosphate. Mol. Pharmacol. 1966, 2(5):393-405.
-
(1966)
Mol. Pharmacol.
, vol.2
, Issue.5
, pp. 393-405
-
-
Mayer, S.E.1
Mayfield, A.C.2
Haas, J.A.3
-
133
-
-
0014198143
-
Mitochondrial hexokinase. Release, rebinding, and location
-
Rose I.A., Warms J.V. Mitochondrial hexokinase. Release, rebinding, and location. J. Biol. Chem. 1967, 242(7):1635-1645.
-
(1967)
J. Biol. Chem.
, vol.242
, Issue.7
, pp. 1635-1645
-
-
Rose, I.A.1
Warms, J.V.2
-
134
-
-
0031238860
-
Structural determinants for the intracellular localization of the isozymes of mammalian hexokinase: intracellular localization of fusion constructs incorporating structural elements from the hexokinase isozymes and the green fluorescent protein
-
Sui D., Wilson J.E. Structural determinants for the intracellular localization of the isozymes of mammalian hexokinase: intracellular localization of fusion constructs incorporating structural elements from the hexokinase isozymes and the green fluorescent protein. Arch. Biochem. Biophys. 1997, 345(1):111-125.
-
(1997)
Arch. Biochem. Biophys.
, vol.345
, Issue.1
, pp. 111-125
-
-
Sui, D.1
Wilson, J.E.2
-
135
-
-
0024246133
-
Rat brain hexokinase: the hydrophobic N-terminus of the mitochondrially bound enzyme is inserted in the lipid bilayer
-
Xie G.C., Wilson J.E. Rat brain hexokinase: the hydrophobic N-terminus of the mitochondrially bound enzyme is inserted in the lipid bilayer. Arch. Biochem. Biophys. 1988, 267(2):803-810.
-
(1988)
Arch. Biochem. Biophys.
, vol.267
, Issue.2
, pp. 803-810
-
-
Xie, G.C.1
Wilson, J.E.2
-
136
-
-
9744221185
-
Hexokinase-mitochondria interaction mediated by Akt is required to inhibit apoptosis in the presence or absence of Bax and Bak
-
Majewski N., Nogueira V., Bhaskar P., Coy P.E., Skeen J.E., Gottlob K., et al. Hexokinase-mitochondria interaction mediated by Akt is required to inhibit apoptosis in the presence or absence of Bax and Bak. Mol. Cell 2004, 16(5):819-830.
-
(2004)
Mol. Cell
, vol.16
, Issue.5
, pp. 819-830
-
-
Majewski, N.1
Nogueira, V.2
Bhaskar, P.3
Coy, P.E.4
Skeen, J.E.5
Gottlob, K.6
-
137
-
-
0347986675
-
Akt inhibits apoptosis downstream of BID cleavage via a glucose-dependent mechanism involving mitochondrial hexokinases
-
Majewski N., Nogueira V., Robey R.B., Hay N. Akt inhibits apoptosis downstream of BID cleavage via a glucose-dependent mechanism involving mitochondrial hexokinases. Mol. Cell. Biol. 2004, 24(2):730-740.
-
(2004)
Mol. Cell. Biol.
, vol.24
, Issue.2
, pp. 730-740
-
-
Majewski, N.1
Nogueira, V.2
Robey, R.B.3
Hay, N.4
-
138
-
-
39449114808
-
Akt mediates mitochondrial protection in cardiomyocytes through phosphorylation of mitochondrial hexokinase-II
-
Miyamoto S., Murphy A.N., Brown J.H. Akt mediates mitochondrial protection in cardiomyocytes through phosphorylation of mitochondrial hexokinase-II. Cell Death Differ. 2008, 15(3):521-529.
-
(2008)
Cell Death Differ.
, vol.15
, Issue.3
, pp. 521-529
-
-
Miyamoto, S.1
Murphy, A.N.2
Brown, J.H.3
-
139
-
-
33746927077
-
Mitochondrial hexokinases, novel mediators of the antiapoptotic effects of growth factors and Akt
-
Robey R.B., Hay N. Mitochondrial hexokinases, novel mediators of the antiapoptotic effects of growth factors and Akt. Oncogene 2006, 25(34):4683-4696.
-
(2006)
Oncogene
, vol.25
, Issue.34
, pp. 4683-4696
-
-
Robey, R.B.1
Hay, N.2
-
140
-
-
84921887492
-
Hexokinase II integrates energy metabolism and cellular protection: Akting on mitochondria and TORCing to autophagy
-
Roberts D.J., Miyamoto S. Hexokinase II integrates energy metabolism and cellular protection: Akting on mitochondria and TORCing to autophagy. Cell Death Differ. 2015, 22(2):248-257.
-
(2015)
Cell Death Differ.
, vol.22
, Issue.2
, pp. 248-257
-
-
Roberts, D.J.1
Miyamoto, S.2
-
141
-
-
84894105147
-
Hexokinase-II positively regulates glucose starvation induced autophagy through TORC1 inhibition
-
Roberts D.J., Tan-Sah V.P., Ding E.Y., Smith J.M., Miyamoto S. Hexokinase-II positively regulates glucose starvation induced autophagy through TORC1 inhibition. Mol. Cell 2014, 53(4):521-533.
-
(2014)
Mol. Cell
, vol.53
, Issue.4
, pp. 521-533
-
-
Roberts, D.J.1
Tan-Sah, V.P.2
Ding, E.Y.3
Smith, J.M.4
Miyamoto, S.5
-
142
-
-
0037117409
-
Identification of a conserved motif required for mTOR signaling
-
Schalm S.S., Blenis J. Identification of a conserved motif required for mTOR signaling. Curr. Biol. 2002, 12(8):632-639.
-
(2002)
Curr. Biol.
, vol.12
, Issue.8
, pp. 632-639
-
-
Schalm, S.S.1
Blenis, J.2
-
143
-
-
23844452781
-
New nuclear functions of the glycolytic protein, glyceraldehyde-3-phosphate dehydrogenase, in mammalian cells
-
Sirover M.A. New nuclear functions of the glycolytic protein, glyceraldehyde-3-phosphate dehydrogenase, in mammalian cells. J. Cell. Biochem. 2005, 95(1):45-52.
-
(2005)
J. Cell. Biochem.
, vol.95
, Issue.1
, pp. 45-52
-
-
Sirover, M.A.1
-
144
-
-
34249279169
-
GAPDH and autophagy preserve survival after apoptotic cytochrome c release in the absence of caspase activation
-
Colell A., Ricci J.E., Tait S., Milasta S., Maurer U., Bouchier-Hayes L., et al. GAPDH and autophagy preserve survival after apoptotic cytochrome c release in the absence of caspase activation. Cell 2007, 129(5):983-997.
-
(2007)
Cell
, vol.129
, Issue.5
, pp. 983-997
-
-
Colell, A.1
Ricci, J.E.2
Tait, S.3
Milasta, S.4
Maurer, U.5
Bouchier-Hayes, L.6
-
145
-
-
67650076833
-
Glycolytic flux signals to mTOR through glyceraldehyde-3-phosphate dehydrogenase-mediated regulation of Rheb
-
Lee M.N., Ha S.H., Kim J., Koh A., Lee C.S., Kim J.H., et al. Glycolytic flux signals to mTOR through glyceraldehyde-3-phosphate dehydrogenase-mediated regulation of Rheb. Mol. Cell. Biol. 2009, 29(14):3991-4001.
-
(2009)
Mol. Cell. Biol.
, vol.29
, Issue.14
, pp. 3991-4001
-
-
Lee, M.N.1
Ha, S.H.2
Kim, J.3
Koh, A.4
Lee, C.S.5
Kim, J.H.6
-
147
-
-
84879587600
-
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) phosphorylation by protein kinase Cdelta (PKCdelta) inhibits mitochondria elimination by lysosomal-like structures following ischemia and reoxygenation-induced injury
-
Yogalingam G., Hwang S., Ferreira J.C., Mochly-Rosen D. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) phosphorylation by protein kinase Cdelta (PKCdelta) inhibits mitochondria elimination by lysosomal-like structures following ischemia and reoxygenation-induced injury. J. Biol. Chem. 2013, 288(26):18947-18960.
-
(2013)
J. Biol. Chem.
, vol.288
, Issue.26
, pp. 18947-18960
-
-
Yogalingam, G.1
Hwang, S.2
Ferreira, J.C.3
Mochly-Rosen, D.4
-
148
-
-
77955483125
-
Activation of a metabolic gene regulatory network downstream of mTOR complex 1
-
Duvel K., Yecies J.L., Menon S., Raman P., Lipovsky A.I., Souza A.L., et al. Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol. Cell 2010, 39(2):171-183.
-
(2010)
Mol. Cell
, vol.39
, Issue.2
, pp. 171-183
-
-
Duvel, K.1
Yecies, J.L.2
Menon, S.3
Raman, P.4
Lipovsky, A.I.5
Souza, A.L.6
-
149
-
-
70249146172
-
MTORC1 hyperactivity inhibits serum deprivation-induced apoptosis via increased hexokinase II and GLUT1 expression, sustained Mcl-1 expression, and glycogen synthase kinase 3beta inhibition
-
Bhaskar P.T., Nogueira V., Patra K.C., Jeon S.M., Park Y., Robey R.B., et al. mTORC1 hyperactivity inhibits serum deprivation-induced apoptosis via increased hexokinase II and GLUT1 expression, sustained Mcl-1 expression, and glycogen synthase kinase 3beta inhibition. Mol. Cell. Biol. 2009, 29(18):5136-5147.
-
(2009)
Mol. Cell. Biol.
, vol.29
, Issue.18
, pp. 5136-5147
-
-
Bhaskar, P.T.1
Nogueira, V.2
Patra, K.C.3
Jeon, S.M.4
Park, Y.5
Robey, R.B.6
-
150
-
-
79952749503
-
Mammalian target of rapamycin up-regulation of pyruvate kinase isoenzyme type M2 is critical for aerobic glycolysis and tumor growth
-
Sun Q., Chen X., Ma J., Peng H., Wang F., Zha X., et al. Mammalian target of rapamycin up-regulation of pyruvate kinase isoenzyme type M2 is critical for aerobic glycolysis and tumor growth. Proc. Natl. Acad. Sci. U. S. A. 2011, 108(10):4129-4134.
-
(2011)
Proc. Natl. Acad. Sci. U. S. A.
, vol.108
, Issue.10
, pp. 4129-4134
-
-
Sun, Q.1
Chen, X.2
Ma, J.3
Peng, H.4
Wang, F.5
Zha, X.6
-
151
-
-
84907816174
-
Mammalian target of rapamycin is essential for cardiomyocyte survival and heart development in mice
-
Zhang P., Shan T., Liang X., Deng C., Kuang S. Mammalian target of rapamycin is essential for cardiomyocyte survival and heart development in mice. Biochem. Biophys. Res. Commun. 2014, 452(1):53-59.
-
(2014)
Biochem. Biophys. Res. Commun.
, vol.452
, Issue.1
, pp. 53-59
-
-
Zhang, P.1
Shan, T.2
Liang, X.3
Deng, C.4
Kuang, S.5
-
152
-
-
79955365919
-
Glucose metabolism and cardiac hypertrophy
-
Kolwicz S.C., Tian R. Glucose metabolism and cardiac hypertrophy. Cardiovasc. Res. 2011, 90(2):194-201.
-
(2011)
Cardiovasc. Res.
, vol.90
, Issue.2
, pp. 194-201
-
-
Kolwicz, S.C.1
Tian, R.2
-
153
-
-
84897394439
-
Mitochondrial fatty acid oxidation alterations in heart failure, ischaemic heart disease and diabetic cardiomyopathy
-
Fillmore N., Mori J., Lopaschuk G.D. Mitochondrial fatty acid oxidation alterations in heart failure, ischaemic heart disease and diabetic cardiomyopathy. Br. J. Pharmacol. 2014, 171(8):2080-2090.
-
(2014)
Br. J. Pharmacol.
, vol.171
, Issue.8
, pp. 2080-2090
-
-
Fillmore, N.1
Mori, J.2
Lopaschuk, G.D.3
-
154
-
-
84908233371
-
Rethinking cardiac metabolism: metabolic cycles to refuel and rebuild the failing heart
-
Taegtmeyer H., Lubrano G. Rethinking cardiac metabolism: metabolic cycles to refuel and rebuild the failing heart. F1000Prime Rep. 2014, 6:90.
-
(2014)
F1000Prime Rep.
, vol.6
, pp. 90
-
-
Taegtmeyer, H.1
Lubrano, G.2
-
155
-
-
79955454974
-
Modulating fatty acid oxidation in heart failure
-
Lionetti V., Stanley W.C., Recchia F.A. Modulating fatty acid oxidation in heart failure. Cardiovasc. Res. 2011, 90(2):202-209.
-
(2011)
Cardiovasc. Res.
, vol.90
, Issue.2
, pp. 202-209
-
-
Lionetti, V.1
Stanley, W.C.2
Recchia, F.A.3
-
156
-
-
84879390835
-
Hexokinase cellular trafficking in ischemia-reperfusion and ischemic preconditioning is altered in type I diabetic heart
-
Gurel E., Ustunova S., Kapucu A., Yilmazer N., Eerbeek O., Nederlof R., et al. Hexokinase cellular trafficking in ischemia-reperfusion and ischemic preconditioning is altered in type I diabetic heart. Mol. Biol. Rep. 2013, 40(7):4153-4160.
-
(2013)
Mol. Biol. Rep.
, vol.40
, Issue.7
, pp. 4153-4160
-
-
Gurel, E.1
Ustunova, S.2
Kapucu, A.3
Yilmazer, N.4
Eerbeek, O.5
Nederlof, R.6
-
157
-
-
0014962558
-
Multiple forms of hexokinase. Activities associated with subcellular particulate and soluble fractions of normal and streptozotocin diabetic rat tissues
-
Katzen H.M., Soderman D.D., Wiley C.E. Multiple forms of hexokinase. Activities associated with subcellular particulate and soluble fractions of normal and streptozotocin diabetic rat tissues. J. Biol. Chem. 1970, 245(16):4081-4096.
-
(1970)
J. Biol. Chem.
, vol.245
, Issue.16
, pp. 4081-4096
-
-
Katzen, H.M.1
Soderman, D.D.2
Wiley, C.E.3
-
158
-
-
77954608736
-
Cardiac-specific overexpression of HIF-1 prevents deterioration of glycolytic pathway and cardiac remodeling in streptozotocin-induced diabetic mice
-
Xue W., Cai L., Tan Y., Thistlethwaite P., Kang Y.J., Li X., et al. Cardiac-specific overexpression of HIF-1 prevents deterioration of glycolytic pathway and cardiac remodeling in streptozotocin-induced diabetic mice. Am. J. Pathol. 2010, 177(1):97-105.
-
(2010)
Am. J. Pathol.
, vol.177
, Issue.1
, pp. 97-105
-
-
Xue, W.1
Cai, L.2
Tan, Y.3
Thistlethwaite, P.4
Kang, Y.J.5
Li, X.6
-
159
-
-
66649112486
-
Inactivation of GSK-3beta by metallothionein prevents diabetes-related changes in cardiac energy metabolism, inflammation, nitrosative damage, and remodeling
-
Wang Y., Feng W., Xue W., Tan Y., Hein D.W., Li X.K., et al. Inactivation of GSK-3beta by metallothionein prevents diabetes-related changes in cardiac energy metabolism, inflammation, nitrosative damage, and remodeling. Diabetes 2009, 58(6):1391-1402.
-
(2009)
Diabetes
, vol.58
, Issue.6
, pp. 1391-1402
-
-
Wang, Y.1
Feng, W.2
Xue, W.3
Tan, Y.4
Hein, D.W.5
Li, X.K.6
-
160
-
-
0014025895
-
The effect of diabetes and insulin in vivo and in vitro on a low Km form of hexokinase from various rat tissues
-
Katzen H.M. The effect of diabetes and insulin in vivo and in vitro on a low Km form of hexokinase from various rat tissues. Biochem. Biophys. Res. Commun. 1966, 24(4):531-536.
-
(1966)
Biochem. Biophys. Res. Commun.
, vol.24
, Issue.4
, pp. 531-536
-
-
Katzen, H.M.1
-
161
-
-
77949879018
-
Glyceraldehyde-3-phosphate dehydrogenase in retinal microvasculature: implications for the development and progression of diabetic retinopathy
-
Madsen-Bouterse S., Mohammad G., Kowluru R.A. Glyceraldehyde-3-phosphate dehydrogenase in retinal microvasculature: implications for the development and progression of diabetic retinopathy. Invest. Ophthalmol. Vis. Sci. 2010, 51(3):1765-1772.
-
(2010)
Invest. Ophthalmol. Vis. Sci.
, vol.51
, Issue.3
, pp. 1765-1772
-
-
Madsen-Bouterse, S.1
Mohammad, G.2
Kowluru, R.A.3
-
162
-
-
84886412451
-
Hypoxia-inducible factor 1 and cardiovascular disease
-
Semenza G.L. Hypoxia-inducible factor 1 and cardiovascular disease. Annu. Rev. Physiol. 2014, 76:39-56.
-
(2014)
Annu. Rev. Physiol.
, vol.76
, pp. 39-56
-
-
Semenza, G.L.1
-
163
-
-
0035030534
-
Hypoxia induces the expression of the pro-apoptotic gene BNIP3
-
Guo K., Searfoss G., Krolikowski D., Pagnoni M., Franks C., Clark K., et al. Hypoxia induces the expression of the pro-apoptotic gene BNIP3. Cell Death Differ. 2001, 8(4):367-376.
-
(2001)
Cell Death Differ.
, vol.8
, Issue.4
, pp. 367-376
-
-
Guo, K.1
Searfoss, G.2
Krolikowski, D.3
Pagnoni, M.4
Franks, C.5
Clark, K.6
-
164
-
-
34547471625
-
Bnip3 mediates mitochondrial dysfunction and cell death through Bax and Bak
-
Kubli D.A., Ycaza J.E., Gustafsson A.B. Bnip3 mediates mitochondrial dysfunction and cell death through Bax and Bak. Biochem. J. 2007, 405(3):407-415.
-
(2007)
Biochem. J.
, vol.405
, Issue.3
, pp. 407-415
-
-
Kubli, D.A.1
Ycaza, J.E.2
Gustafsson, A.B.3
-
166
-
-
33644973657
-
Distinct pathways regulate proapoptotic Nix and BNip3 in cardiac stress
-
Galvez A.S., Brunskill E.W., Marreez Y., Benner B.J., Regula K.M., Kirschenbaum L.A., et al. Distinct pathways regulate proapoptotic Nix and BNip3 in cardiac stress. J. Biol. Chem. 2006, 281(3):1442-1448.
-
(2006)
J. Biol. Chem.
, vol.281
, Issue.3
, pp. 1442-1448
-
-
Galvez, A.S.1
Brunskill, E.W.2
Marreez, Y.3
Benner, B.J.4
Regula, K.M.5
Kirschenbaum, L.A.6
-
167
-
-
0037047647
-
Inducible expression of BNIP3 provokes mitochondrial defects and hypoxia-mediated cell death of ventricular myocytes
-
Regula K.M., Ens K., Kirshenbaum L.A. Inducible expression of BNIP3 provokes mitochondrial defects and hypoxia-mediated cell death of ventricular myocytes. Circ. Res. 2002, 91(3):226-231.
-
(2002)
Circ. Res.
, vol.91
, Issue.3
, pp. 226-231
-
-
Regula, K.M.1
Ens, K.2
Kirshenbaum, L.A.3
-
168
-
-
77955514158
-
Mitochondrial pruning by Nix and BNip3: an essential function for cardiac-expressed death factors
-
Dorn, G.W. Mitochondrial pruning by Nix and BNip3: an essential function for cardiac-expressed death factors. J. Cardiovasc. Transl. Res. 2010, 3(4):374-383.
-
(2010)
J. Cardiovasc. Transl. Res.
, vol.3
, Issue.4
, pp. 374-383
-
-
Dorn, G.W.1
-
169
-
-
77957683915
-
Bnip3-mediated mitochondrial autophagy is independent of the mitochondrial permeability transition pore
-
Quinsay M.N., Thomas R.L., Lee Y., Gustafsson A.B. Bnip3-mediated mitochondrial autophagy is independent of the mitochondrial permeability transition pore. Autophagy 2010, 6(7):855-862.
-
(2010)
Autophagy
, vol.6
, Issue.7
, pp. 855-862
-
-
Quinsay, M.N.1
Thomas, R.L.2
Lee, Y.3
Gustafsson, A.B.4
-
170
-
-
37248999267
-
Bnip3 mediates the hypoxia-induced inhibition on mammalian target of rapamycin by interacting with Rheb
-
Li Y., Wang Y., Kim E., Beemiller P., Wang C.Y., Swanson J., et al. Bnip3 mediates the hypoxia-induced inhibition on mammalian target of rapamycin by interacting with Rheb. J. Biol. Chem. 2007, 282(49):35803-35813.
-
(2007)
J. Biol. Chem.
, vol.282
, Issue.49
, pp. 35803-35813
-
-
Li, Y.1
Wang, Y.2
Kim, E.3
Beemiller, P.4
Wang, C.Y.5
Swanson, J.6
-
171
-
-
66349121718
-
Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains
-
Bellot G., Garcia-Medina R., Gounon P., Chiche J., Roux D., Pouyssegur J., et al. Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains. Mol. Cell. Biol. 2009, 29(10):2570-2581.
-
(2009)
Mol. Cell. Biol.
, vol.29
, Issue.10
, pp. 2570-2581
-
-
Bellot, G.1
Garcia-Medina, R.2
Gounon, P.3
Chiche, J.4
Roux, D.5
Pouyssegur, J.6
-
172
-
-
68249104457
-
REDD1, an inhibitor of mTOR signalling, is regulated by the CUL4A-DDB1 ubiquitin ligase
-
Katiyar S., Liu E., Knutzen C.A., Lang E.S., Lombardo C.R., Sankar S., et al. REDD1, an inhibitor of mTOR signalling, is regulated by the CUL4A-DDB1 ubiquitin ligase. EMBO Rep. 2009, 10(8):866-872.
-
(2009)
EMBO Rep.
, vol.10
, Issue.8
, pp. 866-872
-
-
Katiyar, S.1
Liu, E.2
Knutzen, C.A.3
Lang, E.S.4
Lombardo, C.R.5
Sankar, S.6
-
173
-
-
84908267031
-
RTP801/REDD1: a stress coping regulator that turns into a troublemaker in neurodegenerative disorders
-
Canal M., Romani-Aumedes J., Martin-Flores N., Perez-Fernandez V., Malagelada C. RTP801/REDD1: a stress coping regulator that turns into a troublemaker in neurodegenerative disorders. Front. Cell. Neurosci. 2014, 8:313.
-
(2014)
Front. Cell. Neurosci.
, vol.8
, pp. 313
-
-
Canal, M.1
Romani-Aumedes, J.2
Martin-Flores, N.3
Perez-Fernandez, V.4
Malagelada, C.5
-
174
-
-
10044276783
-
Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex
-
Brugarolas J., Lei K., Hurley R.L., Manning B.D., Reiling J.H., Hafen E., et al. Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex. Genes Dev. 2004, 18(23):2893-2904.
-
(2004)
Genes Dev.
, vol.18
, Issue.23
, pp. 2893-2904
-
-
Brugarolas, J.1
Lei, K.2
Hurley, R.L.3
Manning, B.D.4
Reiling, J.H.5
Hafen, E.6
-
175
-
-
21744459535
-
Regulation of mTOR and cell growth in response to energy stress by REDD1
-
Sofer A., Lei K., Johannessen C.M., Ellisen L.W. Regulation of mTOR and cell growth in response to energy stress by REDD1. Mol. Cell. Biol. 2005, 25(14):5834-5845.
-
(2005)
Mol. Cell. Biol.
, vol.25
, Issue.14
, pp. 5834-5845
-
-
Sofer, A.1
Lei, K.2
Johannessen, C.M.3
Ellisen, L.W.4
-
176
-
-
15444362044
-
The stress-inducted proteins RTP801 and RTP801L are negative regulators of the mammalian target of rapamycin pathway
-
Corradetti M.N., Inoki K., Guan K.L. The stress-inducted proteins RTP801 and RTP801L are negative regulators of the mammalian target of rapamycin pathway. J. Biol. Chem. 2005, 280(11):9769-9772.
-
(2005)
J. Biol. Chem.
, vol.280
, Issue.11
, pp. 9769-9772
-
-
Corradetti, M.N.1
Inoki, K.2
Guan, K.L.3
-
177
-
-
38349056675
-
Hypoxia regulates TSC1/2-mTOR signaling and tumor suppression through REDD1-mediated 14-3-3 shuttling
-
DeYoung M.P., Horak P., Sofer A., Sgroi D., Ellisen L.W. Hypoxia regulates TSC1/2-mTOR signaling and tumor suppression through REDD1-mediated 14-3-3 shuttling. Genes Dev. 2008, 22(2):239-251.
-
(2008)
Genes Dev.
, vol.22
, Issue.2
, pp. 239-251
-
-
DeYoung, M.P.1
Horak, P.2
Sofer, A.3
Sgroi, D.4
Ellisen, L.W.5
-
178
-
-
84910144653
-
REDD1 attenuates cardiac hypertrophy via enhancing autophagy
-
Liu C., Xue R., Wu D., Wu L., Chen C., Tan W., et al. REDD1 attenuates cardiac hypertrophy via enhancing autophagy. Biochem. Biophys. Res. Commun. 2014, 454(1):215-220.
-
(2014)
Biochem. Biophys. Res. Commun.
, vol.454
, Issue.1
, pp. 215-220
-
-
Liu, C.1
Xue, R.2
Wu, D.3
Wu, L.4
Chen, C.5
Tan, W.6
-
179
-
-
84928785260
-
A REDD1/TXNIP pro-oxidant complex regulates ATG4B activity to control stress-induced autophagy and sustain exercise capacity
-
Qiao S., Dennis M., Song X., Vadysirisack D.D., Salunke D., Nash Z., et al. A REDD1/TXNIP pro-oxidant complex regulates ATG4B activity to control stress-induced autophagy and sustain exercise capacity. Nat. Commun. 2015, 6:7014.
-
(2015)
Nat. Commun.
, vol.6
, pp. 7014
-
-
Qiao, S.1
Dennis, M.2
Song, X.3
Vadysirisack, D.D.4
Salunke, D.5
Nash, Z.6
-
181
-
-
33745713432
-
P53 and metabolism: inside the TIGAR
-
Green D.R., Chipuk J.E. p53 and metabolism: inside the TIGAR. Cell 2006, 126(1):30-32.
-
(2006)
Cell
, vol.126
, Issue.1
, pp. 30-32
-
-
Green, D.R.1
Chipuk, J.E.2
-
182
-
-
33745918951
-
TIGAR, a p53-inducible regulator of glycolysis and apoptosis
-
Bensaad K., Tsuruta A., Selak M.A., Vidal M.N., Nakano K., Bartrons R., et al. TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell 2006, 126(1):107-120.
-
(2006)
Cell
, vol.126
, Issue.1
, pp. 107-120
-
-
Bensaad, K.1
Tsuruta, A.2
Selak, M.A.3
Vidal, M.N.4
Nakano, K.5
Bartrons, R.6
-
183
-
-
59449084996
-
Structural and biochemical studies of TIGAR (TP53-induced glycolysis and apoptosis regulator)
-
Li H., Jogl G. Structural and biochemical studies of TIGAR (TP53-induced glycolysis and apoptosis regulator). J. Biol. Chem. 2009, 284(3):1748-1754.
-
(2009)
J. Biol. Chem.
, vol.284
, Issue.3
, pp. 1748-1754
-
-
Li, H.1
Jogl, G.2
-
184
-
-
62549161375
-
Loss of p53 enhances catalytic activity of IKKbeta through O-linked beta-N-acetyl glucosamine modification
-
Kawauchi K., Araki K., Tobiume K., Tanaka N. Loss of p53 enhances catalytic activity of IKKbeta through O-linked beta-N-acetyl glucosamine modification. Proc. Natl. Acad. Sci. U. S. A. 2009, 106(9):3431-3436.
-
(2009)
Proc. Natl. Acad. Sci. U. S. A.
, vol.106
, Issue.9
, pp. 3431-3436
-
-
Kawauchi, K.1
Araki, K.2
Tobiume, K.3
Tanaka, N.4
-
185
-
-
43049139541
-
P53 regulates glucose metabolism through an IKK-NF-kappaB pathway and inhibits cell transformation
-
Kawauchi K., Araki K., Tobiume K., Tanaka N. p53 regulates glucose metabolism through an IKK-NF-kappaB pathway and inhibits cell transformation. Nat. Cell Biol. 2008, 10(5):611-618.
-
(2008)
Nat. Cell Biol.
, vol.10
, Issue.5
, pp. 611-618
-
-
Kawauchi, K.1
Araki, K.2
Tobiume, K.3
Tanaka, N.4
-
186
-
-
80053036165
-
The role of p53 in metabolic regulation
-
Puzio-Kuter A.M. The role of p53 in metabolic regulation. Genes Cancer 2010, 2(4):385-391.
-
(2010)
Genes Cancer
, vol.2
, Issue.4
, pp. 385-391
-
-
Puzio-Kuter, A.M.1
-
187
-
-
34248194200
-
The regulation of AMPK beta1, TSC2, and PTEN expression by p53: stress, cell and tissue specificity, and the role of these gene products in modulating the IGF-1-AKT-mTOR pathways
-
Feng Z., Hu W., de Stanchina E., Teresky A.K., Jin S., Lowe S., et al. The regulation of AMPK beta1, TSC2, and PTEN expression by p53: stress, cell and tissue specificity, and the role of these gene products in modulating the IGF-1-AKT-mTOR pathways. Cancer Res. 2007, 67(7):3043-3053.
-
(2007)
Cancer Res.
, vol.67
, Issue.7
, pp. 3043-3053
-
-
Feng, Z.1
Hu, W.2
de Stanchina, E.3
Teresky, A.K.4
Jin, S.5
Lowe, S.6
-
188
-
-
48449101433
-
P53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling
-
Budanov A.V., Karin M. p53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling. Cell 2008, 134(3):451-460.
-
(2008)
Cell
, vol.134
, Issue.3
, pp. 451-460
-
-
Budanov, A.V.1
Karin, M.2
-
189
-
-
66849111716
-
Stimulation of autophagy by the p53 target gene Sestrin2
-
Maiuri M.C., Malik S.A., Morselli E., Kepp O., Criollo A., Mouchel P.L., et al. Stimulation of autophagy by the p53 target gene Sestrin2. Cell Cycle 2009, 8(10):1571-1576.
-
(2009)
Cell Cycle
, vol.8
, Issue.10
, pp. 1571-1576
-
-
Maiuri, M.C.1
Malik, S.A.2
Morselli, E.3
Kepp, O.4
Criollo, A.5
Mouchel, P.L.6
-
190
-
-
84889681863
-
Sestrins orchestrate cellular metabolism to attenuate aging
-
Lee J.H., Budanov A.V., Karin M. Sestrins orchestrate cellular metabolism to attenuate aging. Cell Metab. 2013, 18(6):792-801.
-
(2013)
Cell Metab.
, vol.18
, Issue.6
, pp. 792-801
-
-
Lee, J.H.1
Budanov, A.V.2
Karin, M.3
-
191
-
-
84937412004
-
Sestrin2 promotes LKB1-mediated AMPK activation in the ischemic heart
-
Morrison A., Chen L., Wang J., Zhang M., Yang H., Ma Y., et al. Sestrin2 promotes LKB1-mediated AMPK activation in the ischemic heart. FASEB J. 2015, 29(2):408-417.
-
(2015)
FASEB J.
, vol.29
, Issue.2
, pp. 408-417
-
-
Morrison, A.1
Chen, L.2
Wang, J.3
Zhang, M.4
Yang, H.5
Ma, Y.6
-
192
-
-
34247186472
-
Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4
-
Scherz-Shouval R., Shvets E., Fass E., Shorer H., Gil L., Elazar Z. Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J. 2007, 26(7):1749-1760.
-
(2007)
EMBO J.
, vol.26
, Issue.7
, pp. 1749-1760
-
-
Scherz-Shouval, R.1
Shvets, E.2
Fass, E.3
Shorer, H.4
Gil, L.5
Elazar, Z.6
-
193
-
-
84904734344
-
Super-suppression of mitochondrial reactive oxygen species signaling impairs compensatory autophagy in primary mitophagic cardiomyopathy
-
Song M., Chen Y., Gong G., Murphy E., Rabinovitch P.S., Dorn G.W. Super-suppression of mitochondrial reactive oxygen species signaling impairs compensatory autophagy in primary mitophagic cardiomyopathy. Circ. Res. 2014, 115(3):348-353.
-
(2014)
Circ. Res.
, vol.115
, Issue.3
, pp. 348-353
-
-
Song, M.1
Chen, Y.2
Gong, G.3
Murphy, E.4
Rabinovitch, P.S.5
Dorn, G.W.6
-
194
-
-
84888136345
-
Activation of NADPH oxidase 4 in the endoplasmic reticulum promotes cardiomyocyte autophagy and survival during energy stress through the protein kinase RNA-activated-like endoplasmic reticulum kinase/eukaryotic initiation factor 2alpha/activating transcription factor 4 pathway
-
(Nov 8)
-
Sciarretta S., Zhai P., Shao D., Zablocki D., Nagarajan N., Terada L.S., et al. Activation of NADPH oxidase 4 in the endoplasmic reticulum promotes cardiomyocyte autophagy and survival during energy stress through the protein kinase RNA-activated-like endoplasmic reticulum kinase/eukaryotic initiation factor 2alpha/activating transcription factor 4 pathway. Circ. Res. 2013, 113(11):1253-1264. (Nov 8).
-
(2013)
Circ. Res.
, vol.113
, Issue.11
, pp. 1253-1264
-
-
Sciarretta, S.1
Zhai, P.2
Shao, D.3
Zablocki, D.4
Nagarajan, N.5
Terada, L.S.6
-
195
-
-
64449087671
-
Hypoxic activation of AMPK is dependent on mitochondrial ROS but independent of an increase in AMP/ATP ratio
-
Emerling B.M., Weinberg F., Snyder C., Burgess Z., Mutlu G.M., Viollet B., et al. Hypoxic activation of AMPK is dependent on mitochondrial ROS but independent of an increase in AMP/ATP ratio. Free Radic. Biol. Med. 2009, 46(10):1386-1391.
-
(2009)
Free Radic. Biol. Med.
, vol.46
, Issue.10
, pp. 1386-1391
-
-
Emerling, B.M.1
Weinberg, F.2
Snyder, C.3
Burgess, Z.4
Mutlu, G.M.5
Viollet, B.6
-
196
-
-
0035860237
-
The regulation of AMP-activated protein kinase by H(2)O(2)
-
Choi S.L., Kim S.J., Lee K.T., Kim J., Mu J., Birnbaum M.J., et al. The regulation of AMP-activated protein kinase by H(2)O(2). Biochem. Biophys. Res. Commun. 2001, 287(1):92-97.
-
(2001)
Biochem. Biophys. Res. Commun.
, vol.287
, Issue.1
, pp. 92-97
-
-
Choi, S.L.1
Kim, S.J.2
Lee, K.T.3
Kim, J.4
Mu, J.5
Birnbaum, M.J.6
-
197
-
-
78149479438
-
Redox regulation of the AMP-activated protein kinase
-
Han Y., Wang Q., Song P., Zhu Y., Zou M.H. Redox regulation of the AMP-activated protein kinase. PLoS ONE 2010, 5(11):e15420.
-
(2010)
PLoS ONE
, vol.5
, Issue.11
-
-
Han, Y.1
Wang, Q.2
Song, P.3
Zhu, Y.4
Zou, M.H.5
-
198
-
-
77958501463
-
Exposure to hydrogen peroxide induces oxidation and activation of AMP-activated protein kinase
-
Zmijewski J.W., Banerjee S., Bae H., Friggeri A., Lazarowski E.R., Abraham E. Exposure to hydrogen peroxide induces oxidation and activation of AMP-activated protein kinase. J. Biol. Chem. 2010, 285(43):33154-33164.
-
(2010)
J. Biol. Chem.
, vol.285
, Issue.43
, pp. 33154-33164
-
-
Zmijewski, J.W.1
Banerjee, S.2
Bae, H.3
Friggeri, A.4
Lazarowski, E.R.5
Abraham, E.6
-
199
-
-
4544347659
-
Pyruvate prevents cardiac dysfunction and AMP-activated protein kinase activation by hydrogen peroxide in isolated rat hearts
-
Leon H., Atkinson L.L., Sawicka J., Strynadka K., Lopaschuk G.D., Schulz R. Pyruvate prevents cardiac dysfunction and AMP-activated protein kinase activation by hydrogen peroxide in isolated rat hearts. Can. J. Physiol. Pharmacol. 2004, 82(6):409-416.
-
(2004)
Can. J. Physiol. Pharmacol.
, vol.82
, Issue.6
, pp. 409-416
-
-
Leon, H.1
Atkinson, L.L.2
Sawicka, J.3
Strynadka, K.4
Lopaschuk, G.D.5
Schulz, R.6
-
200
-
-
6344292389
-
Activation of the AMP-activated protein kinase by the anti-diabetic drug metformin in vivo. Role of mitochondrial reactive nitrogen species
-
Zou M.H., Kirkpatrick S.S., Davis B.J., Nelson J.S., Wiles W.G., Schlattner U., et al. Activation of the AMP-activated protein kinase by the anti-diabetic drug metformin in vivo. Role of mitochondrial reactive nitrogen species. J. Biol. Chem. 2004, 279(42):43940-43951.
-
(2004)
J. Biol. Chem.
, vol.279
, Issue.42
, pp. 43940-43951
-
-
Zou, M.H.1
Kirkpatrick, S.S.2
Davis, B.J.3
Nelson, J.S.4
Wiles, W.G.5
Schlattner, U.6
-
201
-
-
84867602835
-
Starvation-induced autophagy is regulated by mitochondrial reactive oxygen species leading to AMPK activation
-
Li L., Chen Y., Gibson S.B. Starvation-induced autophagy is regulated by mitochondrial reactive oxygen species leading to AMPK activation. Cell. Signal. 2013, 25(1):50-65.
-
(2013)
Cell. Signal.
, vol.25
, Issue.1
, pp. 50-65
-
-
Li, L.1
Chen, Y.2
Gibson, S.B.3
-
202
-
-
84872241559
-
Mitochondrial reactive oxygen species enhance AMP-activated protein kinase activation in the endothelium of patients with coronary artery disease and diabetes
-
Mackenzie R.M., Salt I.P., Miller W.H., Logan A., Ibrahim H.A., Degasperi A., et al. Mitochondrial reactive oxygen species enhance AMP-activated protein kinase activation in the endothelium of patients with coronary artery disease and diabetes. Clin. Sci. (Lond.) 2013, 124(6):403-411.
-
(2013)
Clin. Sci. (Lond.)
, vol.124
, Issue.6
, pp. 403-411
-
-
Mackenzie, R.M.1
Salt, I.P.2
Miller, W.H.3
Logan, A.4
Ibrahim, H.A.5
Degasperi, A.6
-
203
-
-
79952227187
-
2-Deoxy-d-glucose treatment of endothelial cells induces autophagy by reactive oxygen species-mediated activation of the AMP-activated protein kinase
-
Wang Q., Liang B., Shirwany N.A., Zou M.H. 2-Deoxy-d-glucose treatment of endothelial cells induces autophagy by reactive oxygen species-mediated activation of the AMP-activated protein kinase. PLoS ONE 2011, 6(2):e17234.
-
(2011)
PLoS ONE
, vol.6
, Issue.2
-
-
Wang, Q.1
Liang, B.2
Shirwany, N.A.3
Zou, M.H.4
-
204
-
-
84878619819
-
Glutathione S-transferases interact with AMP-activated protein kinase: evidence for S-glutathionylation and activation in vitro
-
Klaus A., Zorman S., Berthier A., Polge C., Ramirez S., Michelland S., et al. Glutathione S-transferases interact with AMP-activated protein kinase: evidence for S-glutathionylation and activation in vitro. PLoS ONE 2013, 8(5):e62497.
-
(2013)
PLoS ONE
, vol.8
, Issue.5
-
-
Klaus, A.1
Zorman, S.2
Berthier, A.3
Polge, C.4
Ramirez, S.5
Michelland, S.6
-
205
-
-
33646573080
-
Activation of protein kinase C zeta by peroxynitrite regulates LKB1-dependent AMP-activated protein kinase in cultured endothelial cells
-
Xie Z., Dong Y., Zhang M., Cui M.Z., Cohen R.A., Riek U., et al. Activation of protein kinase C zeta by peroxynitrite regulates LKB1-dependent AMP-activated protein kinase in cultured endothelial cells. J. Biol. Chem. 2006, 281(10):6366-6375.
-
(2006)
J. Biol. Chem.
, vol.281
, Issue.10
, pp. 6366-6375
-
-
Xie, Z.1
Dong, Y.2
Zhang, M.3
Cui, M.Z.4
Cohen, R.A.5
Riek, U.6
-
206
-
-
77749233738
-
ATM signals to TSC2 in the cytoplasm to regulate mTORC1 in response to ROS
-
Alexander A., Cai S.L., Kim J., Nanez A., Sahin M., MacLean K.H., et al. ATM signals to TSC2 in the cytoplasm to regulate mTORC1 in response to ROS. Proc. Natl. Acad. Sci. U. S. A. 2010, 107(9):4153-4158.
-
(2010)
Proc. Natl. Acad. Sci. U. S. A.
, vol.107
, Issue.9
, pp. 4153-4158
-
-
Alexander, A.1
Cai, S.L.2
Kim, J.3
Nanez, A.4
Sahin, M.5
MacLean, K.H.6
-
207
-
-
84881413580
-
Reactive nitrogen species regulate autophagy through ATM-AMPK-TSC2-mediated suppression of mTORC1
-
Tripathi D.N., Chowdhury R., Trudel L.J., Tee A.R., Slack R.S., Walker C.L., et al. Reactive nitrogen species regulate autophagy through ATM-AMPK-TSC2-mediated suppression of mTORC1. Proc. Natl. Acad. Sci. U. S. A. 2013, 110(32):E2950-E2957.
-
(2013)
Proc. Natl. Acad. Sci. U. S. A.
, vol.110
, Issue.32
, pp. E2950-E2957
-
-
Tripathi, D.N.1
Chowdhury, R.2
Trudel, L.J.3
Tee, A.R.4
Slack, R.S.5
Walker, C.L.6
-
208
-
-
79959218250
-
Ataxia telangiectasia mutated kinase plays a protective role in beta-adrenergic receptor-stimulated cardiac myocyte apoptosis and myocardial remodeling
-
Foster C.R., Singh M., Subramanian V., Singh K. Ataxia telangiectasia mutated kinase plays a protective role in beta-adrenergic receptor-stimulated cardiac myocyte apoptosis and myocardial remodeling. Mol. Cell. Biochem. 2011, 353(1-2):13-22.
-
(2011)
Mol. Cell. Biochem.
, vol.353
, Issue.1-2
, pp. 13-22
-
-
Foster, C.R.1
Singh, M.2
Subramanian, V.3
Singh, K.4
-
209
-
-
84924911803
-
Inhibition of autophagic turnover in beta-cells by fatty acids and glucose leads to apoptotic cell death
-
Mir S.U., George N.M., Zahoor L., Harms R., Guinn Z., Sarvetnick N.E. Inhibition of autophagic turnover in beta-cells by fatty acids and glucose leads to apoptotic cell death. J. Biol. Chem. 2015, 290(10):6071-6085.
-
(2015)
J. Biol. Chem.
, vol.290
, Issue.10
, pp. 6071-6085
-
-
Mir, S.U.1
George, N.M.2
Zahoor, L.3
Harms, R.4
Guinn, Z.5
Sarvetnick, N.E.6
-
210
-
-
84948823352
-
Loss of long-chain acyl-CoA synthetase isoform 1 impairs cardiac autophagy and mitochondrial structure through mechanistic target of rapamycin complex 1 activation
-
Grevengoed T.J., Cooper D.E., Young P.A., Ellis J.M., Coleman R.A. Loss of long-chain acyl-CoA synthetase isoform 1 impairs cardiac autophagy and mitochondrial structure through mechanistic target of rapamycin complex 1 activation. FASEB J. 2015, 29(11):4641-4653.
-
(2015)
FASEB J.
, vol.29
, Issue.11
, pp. 4641-4653
-
-
Grevengoed, T.J.1
Cooper, D.E.2
Young, P.A.3
Ellis, J.M.4
Coleman, R.A.5
-
211
-
-
50549202600
-
The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus
-
Randle P.J., Garland P.B., Hales C.N., Newsholme E.A. The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet 1963, 1(7285):785-789.
-
(1963)
Lancet
, vol.1
, Issue.7285
, pp. 785-789
-
-
Randle, P.J.1
Garland, P.B.2
Hales, C.N.3
Newsholme, E.A.4
-
212
-
-
65949095803
-
Autophagy regulates lipid metabolism
-
Singh R., Kaushik S., Wang Y., Xiang Y., Novak I., Komatsu M., et al. Autophagy regulates lipid metabolism. Nature 2009, 458(7242):1131-1135.
-
(2009)
Nature
, vol.458
, Issue.7242
, pp. 1131-1135
-
-
Singh, R.1
Kaushik, S.2
Wang, Y.3
Xiang, Y.4
Novak, I.5
Komatsu, M.6
-
213
-
-
84905472344
-
TAK1-mediated autophagy and fatty acid oxidation prevent hepatosteatosis and tumorigenesis
-
Inokuchi-Shimizu S., Park E.J., Roh Y.S., Yang L., Zhang B., Song J., et al. TAK1-mediated autophagy and fatty acid oxidation prevent hepatosteatosis and tumorigenesis. J. Clin. Invest. 2014, 124(8):3566-3578.
-
(2014)
J. Clin. Invest.
, vol.124
, Issue.8
, pp. 3566-3578
-
-
Inokuchi-Shimizu, S.1
Park, E.J.2
Roh, Y.S.3
Yang, L.4
Zhang, B.5
Song, J.6
-
214
-
-
84890812887
-
Distinct functions of Ulk1 and Ulk2 in the regulation of lipid metabolism in adipocytes
-
Ro S.H., Jung C.H., Hahn W.S., Xu X., Kim Y.M., Yun Y.S., et al. Distinct functions of Ulk1 and Ulk2 in the regulation of lipid metabolism in adipocytes. Autophagy 2013, 9(12):2103-2114.
-
(2013)
Autophagy
, vol.9
, Issue.12
, pp. 2103-2114
-
-
Ro, S.H.1
Jung, C.H.2
Hahn, W.S.3
Xu, X.4
Kim, Y.M.5
Yun, Y.S.6
-
215
-
-
84925324049
-
Fatty acid trafficking in starved cells: regulation by lipid droplet lipolysis, autophagy, and mitochondrial fusion dynamics
-
Rambold A.S., Cohen S., Lippincott-Schwartz J. Fatty acid trafficking in starved cells: regulation by lipid droplet lipolysis, autophagy, and mitochondrial fusion dynamics. Dev. Cell 2015, 32(6):678-692.
-
(2015)
Dev. Cell
, vol.32
, Issue.6
, pp. 678-692
-
-
Rambold, A.S.1
Cohen, S.2
Lippincott-Schwartz, J.3
-
216
-
-
54849426651
-
Skeletal muscle-specific ablation of raptor, but not of rictor, causes metabolic changes and results in muscle dystrophy
-
Bentzinger C.F., Romanino K., Cloetta D., Lin S., Mascarenhas J.B., Oliveri F., et al. Skeletal muscle-specific ablation of raptor, but not of rictor, causes metabolic changes and results in muscle dystrophy. Cell Metab. 2008, 8(5):411-424.
-
(2008)
Cell Metab.
, vol.8
, Issue.5
, pp. 411-424
-
-
Bentzinger, C.F.1
Romanino, K.2
Cloetta, D.3
Lin, S.4
Mascarenhas, J.B.5
Oliveri, F.6
-
217
-
-
48249146208
-
Disruption of Tsc2 in pancreatic beta cells induces beta cell mass expansion and improved glucose tolerance in a TORC1-dependent manner
-
Rachdi L., Balcazar N., Osorio-Duque F., Elghazi L., Weiss A., Gould A., et al. Disruption of Tsc2 in pancreatic beta cells induces beta cell mass expansion and improved glucose tolerance in a TORC1-dependent manner. Proc. Natl. Acad. Sci. U. S. A. 2008, 105(27):9250-9255.
-
(2008)
Proc. Natl. Acad. Sci. U. S. A.
, vol.105
, Issue.27
, pp. 9250-9255
-
-
Rachdi, L.1
Balcazar, N.2
Osorio-Duque, F.3
Elghazi, L.4
Weiss, A.5
Gould, A.6
-
218
-
-
78650848337
-
MTORC1 controls fasting-induced ketogenesis and its modulation by ageing
-
Sengupta S., Peterson T.R., Laplante M., Oh S., Sabatini D.M. mTORC1 controls fasting-induced ketogenesis and its modulation by ageing. Nature 2010, 468(7327):1100-1104.
-
(2010)
Nature
, vol.468
, Issue.7327
, pp. 1100-1104
-
-
Sengupta, S.1
Peterson, T.R.2
Laplante, M.3
Oh, S.4
Sabatini, D.M.5
|