-
1
-
-
0035831451
-
Novel G proteins, Rag C and Rag D, interact with GTP-binding proteins, Rag A and Rag B
-
Sekiguchi, T., Hirose, E., Nakashima, N., Ii, M. & Nishimoto, T. Novel G proteins, Rag C and Rag D, interact with GTP-binding proteins, Rag A and Rag B. J. Biol. Chem. 276, 7246-7257 (2001).
-
(2001)
J. Biol. Chem
, vol.276
, pp. 7246-7257
-
-
Sekiguchi, T.1
Hirose, E.2
Nakashima, N.3
Ii, M.4
Nishimoto, T.5
-
2
-
-
0032771639
-
Saccharomyces cerevisiae putative G protein, Gtr1p, which forms complexes with itself and a novel protein designated as Gtr2p, negatively regulates the Ran/Gsp1p G protein cycle through Gtr2p
-
Nakashima, N., Noguchi, E. & Nishimoto, T. Saccharomyces cerevisiae putative G protein, Gtr1p, which forms complexes with itself and a novel protein designated as Gtr2p, negatively regulates the Ran/Gsp1p G protein cycle through Gtr2p. Genetics 152, 853-867 (1999). (Pubitemid 29330888)
-
(1999)
Genetics
, vol.152
, Issue.3
, pp. 853-867
-
-
Nakashima, N.1
Noguchi, E.2
Nishimoto, T.3
-
3
-
-
21244448694
-
The TOR and EGO protein complexes orchestrate microautophagy in yeast
-
DOI 10.1016/j.molcel.2005.05.020, PII S109727650501347X
-
Dubouloz, F., Deloche, O., Wanke, V., Cameroni, E. & De Virgilio, C. The TOR and EGO protein complexes orchestrate microautophagy in yeast. Mol. Cell 19, 15-26 (2005). (Pubitemid 40884654)
-
(2005)
Molecular Cell
, vol.19
, Issue.1
, pp. 15-26
-
-
Dubouloz, F.1
Deloche, O.2
Wanke, V.3
Cameroni, E.4
De Virgilio, C.5
-
4
-
-
33745745910
-
A conserved GTPase-containing complex is required for intracellular sorting of the general amino-acid permease in yeast
-
Gao, M. & Kaiser, C. A. A conserved GTPase-containing complex is required for intracellular sorting of the general amino-acid permease in yeast. Nat. Cell Biol. 8, 657-667 (2006).
-
(2006)
Nat. Cell Biol
, vol.8
, pp. 657-667
-
-
Gao, M.1
Kaiser, C.A.2
-
5
-
-
48649085816
-
Regulation of TORC1 by Rag GTPases in nutrient response
-
Kim, E., Goraksha-Hicks, P., Li, L., Neufeld, T. P. & Guan, K. L. Regulation of TORC1 by Rag GTPases in nutrient response. Nat. Cell Biol. 10, 935-945 (2008).
-
(2008)
Nat. Cell Biol
, vol.10
, pp. 935-945
-
-
Kim, E.1
Goraksha-Hicks, P.2
Li, L.3
Neufeld, T.P.4
Guan, K.L.5
-
6
-
-
45849105156
-
The rag GTPases bind raptor and mediate amino acid signaling to mTORC1
-
DOI 10.1126/science.1157535
-
Sancak, Y. et al. The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 320, 1496-1501 (2008). (Pubitemid 351929429)
-
(2008)
Science
, vol.320
, Issue.5882
, pp. 1496-1501
-
-
Sancak, Y.1
Peterson, T.R.2
Shaul, Y.D.3
Lindquist, R.A.4
Thoreen, C.C.5
Bar-Peled, L.6
Sabatini, D.M.7
-
7
-
-
84893477830
-
Amino acids activate mTOR complex1 without changing Rag GTPase guanyl nucleotide charging
-
Oshiro, N., Rapley, J. & Avruch, J. Amino acids activate mTOR complex1 without changing Rag GTPase guanyl nucleotide charging. J. Biol. Chem. 289, 2658-2674 (2013).
-
(2013)
J. Biol. Chem
, vol.289
, pp. 2658-2674
-
-
Oshiro, N.1
Rapley, J.2
Avruch, J.3
-
8
-
-
77951768486
-
Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids
-
Sancak, Y. et al. Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 141, 290-303 (2010).
-
(2010)
Cell
, vol.141
, pp. 290-303
-
-
Sancak, Y.1
-
9
-
-
0043127125
-
Rheb GTpase is a direct target of TSC2 GAP activity and regulates mTOR signaling
-
DOI 10.1101/gad.1110003
-
Inoki, K., Li, Y., Xu, T. & Guan, K. L. Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes Dev. 17, 1829-1834 (2003). (Pubitemid 36944560)
-
(2003)
Genes and Development
, vol.17
, Issue.15
, pp. 1829-1834
-
-
Inoki, K.1
Li, Y.2
Xu, T.3
Guan, K.-L.4
-
10
-
-
84894114029
-
Spatial control of the TSC complex integrates insulin and nutrient regulation of mTORC1 at the lysosome
-
Menon, S. et al. Spatial control of the TSC complex integrates insulin and nutrient regulation of mTORC1 at the lysosome. Cell 156, 771-785 (2014).
-
(2014)
Cell
, vol.156
, pp. 771-785
-
-
Menon, S.1
-
11
-
-
80555143078
-
MTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase
-
Zoncu, R. et al. mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase. Science 334, 678-683 (2011).
-
(2011)
Science
, vol.334
, pp. 678-683
-
-
Zoncu, R.1
-
12
-
-
84866431363
-
Ragulator is a GEF for the Rag GTPases that signal amino acid levels to mTORC1
-
Bar-Peled, L., Schweitzer, L. D., Zoncu, R. & Sabatini, D. M. Ragulator is a GEF for the Rag GTPases that signal amino acid levels to mTORC1. Cell 150, 1196-1208 (2012).
-
(2012)
Cell
, vol.150
, pp. 1196-1208
-
-
Bar-Peled, L.1
Schweitzer, L.D.2
Zoncu, R.3
Sabatini, D.M.4
-
13
-
-
2942687937
-
The cell biology of lysosomal storage disorders
-
DOI 10.1038/nrm1423
-
Futerman, A. H. & van Meer, G. The cell biology of lysosomal storage disorders. Nat. Rev. Mol. Cell Biol. 5, 554-565 (2004). (Pubitemid 38868584)
-
(2004)
Nature Reviews Molecular Cell Biology
, vol.5
, Issue.7
, pp. 554-565
-
-
Futerman, A.H.1
Van Meer, G.2
-
14
-
-
84871960929
-
The cell biology of disease: Lysosomal storage disorders: The cellular impact of lysosomal dysfunction
-
Platt, F. M., Boland, B. & van der Spoel, A. C. The cell biology of disease: lysosomal storage disorders: the cellular impact of lysosomal dysfunction. J. Cell Biol. 199, 723-734 (2012).
-
(2012)
J. Cell Biol
, vol.199
, pp. 723-734
-
-
Platt, F.M.1
Boland, B.2
Van Der Spoel, A.C.3
-
15
-
-
84876812269
-
Signals from the lysosome: A control centre for cellular clearance and energy metabolism
-
Settembre, C., Fraldi, A., Medina, D. L. & Ballabio, A. Signals from the lysosome: a control centre for cellular clearance and energy metabolism. Nat. Rev. Mol. Cell Biol. 14, 283-296 (2013).
-
(2013)
Nat. Rev. Mol. Cell Biol
, vol.14
, pp. 283-296
-
-
Settembre, C.1
Fraldi, A.2
Medina, D.L.3
Ballabio, A.4
-
16
-
-
84857997408
-
A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB
-
Settembre, C. et al. A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB. EMBO J. 31, 1095-1108 (2012).
-
(2012)
EMBO J
, vol.31
, pp. 1095-1108
-
-
Settembre, C.1
-
17
-
-
84874352229
-
Rag GTPases mediate amino acid-dependent recruitment of TFEB and MITF to lysosomes
-
Martina, J. A. & Puertollano, R. Rag GTPases mediate amino acid-dependent recruitment of TFEB and MITF to lysosomes. J. Cell Biol. 200, 475-491 (2013).
-
(2013)
J. Cell Biol
, vol.200
, pp. 475-491
-
-
Martina, J.A.1
Puertollano, R.2
-
18
-
-
80955177196
-
TFEB links autophagy to lysosomal biogenesis
-
Settembre, C. et al. TFEB links autophagy to lysosomal biogenesis. Science 332, 1429-1433 (2011).
-
(2011)
Science
, vol.332
, pp. 1429-1433
-
-
Settembre, C.1
-
19
-
-
84874712704
-
Gene transfer of master autophagy regulator TFEB results in clearance of toxic protein and correction of hepatic disease in alpha-1-antitrypsin deficiency
-
Pastore, N. et al. Gene transfer of master autophagy regulator TFEB results in clearance of toxic protein and correction of hepatic disease in alpha-1-antitrypsin deficiency. EMBO Mol. Med. 5, 397-412 (2013).
-
(2013)
EMBO Mol. Med
, vol.5
, pp. 397-412
-
-
Pastore, N.1
-
20
-
-
84877011421
-
TFEB regulates lysosomal proteostasis
-
Song, W. et al. TFEB regulates lysosomal proteostasis. Hum. Mol. Genet. 22, 1994-2009 (2013).
-
(2013)
Hum. Mol. Genet
, vol.22
, pp. 1994-2009
-
-
Song, W.1
-
21
-
-
54849426651
-
Skeletal muscle-specific ablation of raptor, but not of rictor, causes metabolic changes and results in muscle dystrophy
-
Bentzinger, C. F. et al. Skeletal muscle-specific ablation of raptor, but not of rictor, causes metabolic changes and results in muscle dystrophy. Cell Metab. 8, 411-424 (2008).
-
(2008)
Cell Metab
, vol.8
, pp. 411-424
-
-
Bentzinger, C.F.1
-
22
-
-
74049088121
-
Muscle inactivation of mTOR causes metabolic and dystrophin defects leading to severe myopathy
-
Risson, V. et al. Muscle inactivation of mTOR causes metabolic and dystrophin defects leading to severe myopathy. J. Cell Biol. 187, 859-874 (2009).
-
(2009)
J. Cell Biol
, vol.187
, pp. 859-874
-
-
Risson, V.1
-
23
-
-
77955290360
-
MTORC1 regulates cardiac function and myocyte survival through 4E-BP1 inhibition in mice
-
Zhang, D. et al. MTORC1 regulates cardiac function and myocyte survival through 4E-BP1 inhibition in mice. J. Clin. Invest. 120, 2805-2816 (2010).
-
(2010)
J. Clin. Invest
, vol.120
, pp. 2805-2816
-
-
Zhang, D.1
-
24
-
-
79953033875
-
Cardiac raptor ablation impairs adaptive hypertrophy, alters metabolic gene expression, and causes heart failure in mice
-
Shende, P. et al. Cardiac raptor ablation impairs adaptive hypertrophy, alters metabolic gene expression, and causes heart failure in mice. Circulation 123, 1073-1082 (2011).
-
(2011)
Circulation
, vol.123
, pp. 1073-1082
-
-
Shende, P.1
-
25
-
-
0032214652
-
A muscle-specific insulin receptor knockout exhibits features of the metabolic syndrome of NIDDM without altering glucose tolerance
-
Bruning, J. C. et al. A muscle-specific insulin receptor knockout exhibits features of the metabolic syndrome of NIDDM without altering glucose tolerance. Mol. Cell 2, 559-569 (1998). (Pubitemid 128379082)
-
(1998)
Molecular Cell
, vol.2
, Issue.5
, pp. 559-569
-
-
Bruning, J.C.1
Michael, M.D.2
Winnay, J.N.3
Hayashi, T.4
Horsch, D.5
Accili, D.6
Goodyear, L.J.7
Kahn, C.R.8
-
26
-
-
79951693039
-
Cardiac muscle regeneration: Lessons from development
-
Mercola, M., Ruiz-Lozano, P. & Schneider, M. D. Cardiac muscle regeneration: lessons from development. Genes Dev. 25, 299-309 (2011).
-
(2011)
Genes Dev
, vol.25
, pp. 299-309
-
-
Mercola, M.1
Ruiz-Lozano, P.2
Schneider, M.D.3
-
27
-
-
34249714158
-
The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress
-
DOI 10.1038/nm1574, PII NM1574
-
Nakai, A. et al. The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress. Nat. Med. 13, 619-624 (2007). (Pubitemid 46828485)
-
(2007)
Nature Medicine
, vol.13
, Issue.5
, pp. 619-624
-
-
Nakai, A.1
Yamaguchi, O.2
Takeda, T.3
Higuchi, Y.4
Hikoso, S.5
Taniike, M.6
Omiya, S.7
Mizote, I.8
Matsumura, Y.9
Asahi, M.10
Nishida, K.11
Hori, M.12
Mizushima, N.13
Otsu, K.14
-
28
-
-
84863116629
-
Class III PI3K Vps34 plays an essential role in autophagy and in heart and liver function
-
Jaber, N. et al. Class III PI3K Vps34 plays an essential role in autophagy and in heart and liver function. Proc. Natl Acad. Sci. USA 109, 2003-2008 (2012).
-
(2012)
Proc. Natl Acad. Sci. USA
, vol.109
, pp. 2003-2008
-
-
Jaber, N.1
-
29
-
-
84862295360
-
Guidelines for the use and interpretation of assays for monitoring autophagy
-
Klionsky, D. J. et al. Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 8, 445-544 (2012).
-
(2012)
Autophagy
, vol.8
, pp. 445-544
-
-
Klionsky, D.J.1
-
30
-
-
67749122634
-
A gene network regulating lysosomal biogenesis and function
-
Sardiello, M. et al. A gene network regulating lysosomal biogenesis and function. Science 325, 473-477 (2009).
-
(2009)
Science
, vol.325
, pp. 473-477
-
-
Sardiello, M.1
-
31
-
-
35448946098
-
Vacuolar ATPases: Rotary proton pumps in physiology and pathophysiology
-
DOI 10.1038/nrm2272, PII NRM2272
-
Forgac, M. Vacuolar ATPases: rotary proton pumps in physiology and pathophysiology. Nat. Rev. Mol. Cell Biol. 8, 917-929 (2007). (Pubitemid 47622561)
-
(2007)
Nature Reviews Molecular Cell Biology
, vol.8
, Issue.11
, pp. 917-929
-
-
Forgac, M.1
-
32
-
-
69249227502
-
Lysosome biogenesis and lysosomal membrane proteins: Trafficking meets function
-
Saftig, P. & Klumperman, J. Lysosome biogenesis and lysosomal membrane proteins: trafficking meets function. Nat. Rev. Mol. Cell Biol. 10, 623-635 (2009).
-
(2009)
Nat. Rev. Mol. Cell Biol
, vol.10
, pp. 623-635
-
-
Saftig, P.1
Klumperman, J.2
-
33
-
-
80052716148
-
Characterization of the CLEAR network reveals an integrated control of cellular clearance pathways
-
Palmieri, M. et al. Characterization of the CLEAR network reveals an integrated control of cellular clearance pathways. Hum. Mol. Genet. 20, 3852-3866 (2011).
-
(2011)
Hum. Mol. Genet
, vol.20
, pp. 3852-3866
-
-
Palmieri, M.1
-
34
-
-
84878606239
-
TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop
-
Settembre, C. et al. TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop. Nat. Cell Biol. 15, 647-658 (2013).
-
(2013)
Nat. Cell Biol
, vol.15
, pp. 647-658
-
-
Settembre, C.1
-
35
-
-
52049098451
-
Cathepsin D: A cellular roadmap
-
Zaidi, N., Maurer, A., Nieke, S. & Kalbacher, H. Cathepsin D: a cellular roadmap. Biochem. Biophys. Res. Commun. 376, 5-9 (2008).
-
(2008)
Biochem. Biophys. Res. Commun
, vol.376
, pp. 5-9
-
-
Zaidi, N.1
Maurer, A.2
Nieke, S.3
Kalbacher, H.4
-
36
-
-
77953812943
-
Muscle degeneration in neuraminidase 1-deficient mice results from infiltration of the muscle fibers by expanded connective tissue
-
Zanoteli, E. et al. Muscle degeneration in neuraminidase 1-deficient mice results from infiltration of the muscle fibers by expanded connective tissue. Biochim. Biophys. Acta 1802, 659-672 (2010).
-
(2010)
Biochim. Biophys. Acta
, vol.1802
, pp. 659-672
-
-
Zanoteli, E.1
-
37
-
-
46049114060
-
Neuraminidase 1 Is a Negative Regulator of Lysosomal Exocytosis
-
DOI 10.1016/j.devcel.2008.05.005, PII S1534580708002050
-
Yogalingam, G. et al. Neuraminidase 1 is a negative regulator of lysosomal exocytosis. Dev. Cell 15, 74-86 (2008). (Pubitemid 351895600)
-
(2008)
Developmental Cell
, vol.15
, Issue.1
, pp. 74-86
-
-
Yogalingam, G.1
Bonten, E.J.2
Van De Vlekkert, D.3
Hu, H.4
Moshiach, S.5
Connell, S.A.6
D'Azzo, A.7
-
39
-
-
34247327312
-
The heart in Anderson-Fabry disease and other lysosomal storage disorders
-
DOI 10.1136/hrt.2005.063818
-
Linhart, A. & Elliott, P. M. The heart in Anderson-Fabry disease and other lysosomal storage disorders. Heart 93, 528-535 (2007). (Pubitemid 46631530)
-
(2007)
Heart
, vol.93
, Issue.4
, pp. 528-535
-
-
Linhart, A.1
Elliott, P.M.2
-
40
-
-
0029049719
-
Phosphorylation of sites 3a and 3b (Ser640 and Ser644) in the control of rabbit muscle glycogen synthase
-
Skurat, A. V. & Roach, P. J. Phosphorylation of sites 3a and 3b (Ser640 and Ser644) in the control of rabbit muscle glycogen synthase. J. Biol. Chem. 270, 12491-12497 (1995).
-
(1995)
J. Biol. Chem
, vol.270
, pp. 12491-12497
-
-
Skurat, A.V.1
Roach, P.J.2
-
41
-
-
57049094929
-
Suppression of autophagy in skeletal muscle uncovers the accumulation of ubiquitinated proteins and their potential role in muscle damage in Pompe disease
-
DOI 10.1093/hmg/ddn292
-
Raben, N. et al. Suppression of autophagy in skeletal muscle uncovers the accumulation of ubiquitinated proteins and their potential role in muscle damage in Pompe disease. Hum. Mol. Genet. 17, 3897-3908 (2008). (Pubitemid 352762852)
-
(2008)
Human Molecular Genetics
, vol.17
, Issue.24
, pp. 3897-3908
-
-
Raben, N.1
Hill, V.2
Shea, L.3
Takikita, S.4
Baum, R.5
Mizushima, N.6
Ralston, E.7
Plotz, P.8
-
42
-
-
84884676252
-
Nutrient signaling to mTOR and cell growth
-
Jewell, J. L. & Guan, K. L. Nutrient signaling to mTOR and cell growth. Trends Biochem. Sci. 38, 233-242 (2013).
-
(2013)
Trends Biochem. Sci
, vol.38
, pp. 233-242
-
-
Jewell, J.L.1
Guan, K.L.2
-
43
-
-
84900405146
-
RagA, but Not RagB, is essential for embryonic development and adult mice
-
Efeyan, A. et al. RagA, but Not RagB, is essential for embryonic development and adult mice. Dev. Cell 29, 321-329 (2014).
-
(2014)
Dev. Cell
, vol.29
, pp. 321-329
-
-
Efeyan, A.1
-
44
-
-
84856800302
-
Role of AMPK-mTOR-Ulk1/2 in the regulation of autophagy: Cross talk, shortcuts, and feedbacks
-
Alers, S., Loffler, A. S., Wesselborg, S. & Stork, B. Role of AMPK-mTOR-Ulk1/2 in the regulation of autophagy: cross talk, shortcuts, and feedbacks. Mol. Cell Biol. 32, 2-11 (2012).
-
(2012)
Mol. Cell Biol
, vol.32
, pp. 2-11
-
-
Alers, S.1
Loffler, A.S.2
Wesselborg, S.3
Stork, B.4
-
45
-
-
34548259958
-
P62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy [S]
-
DOI 10.1074/jbc.M702824200
-
Pankiv, S. et al. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J. Biol. Chem. 282, 24131-24145 (2007). (Pubitemid 47328003)
-
(2007)
Journal of Biological Chemistry
, vol.282
, Issue.33
, pp. 24131-24145
-
-
Pankiv, S.1
Clausen, T.H.2
Lamark, T.3
Brech, A.4
Bruun, J.-A.5
Outzen, H.6
Overvatn, A.7
Bjorkoy, G.8
Johansen, T.9
-
46
-
-
36849089101
-
Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice
-
DOI 10.1016/j.cell.2007.10.035, PII S0092867407013542
-
Komatsu, M. et al. Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell 131, 1149-1163 (2007). (Pubitemid 350235021)
-
(2007)
Cell
, vol.131
, Issue.6
, pp. 1149-1163
-
-
Komatsu, M.1
Waguri, S.2
Koike, M.3
Sou, Y.-s.4
Ueno, T.5
Hara, T.6
Mizushima, N.7
Iwata, J.-i.8
Ezaki, J.9
Murata, S.10
Hamazaki, J.11
Nishito, Y.12
Iemura, S.-i.13
Natsume, T.14
Yanagawa, T.15
Uwayama, J.16
Warabi, E.17
Yoshida, H.18
Ishii, T.19
Kobayashi, A.20
Yamamoto, M.21
Yue, Z.22
Uchiyama, Y.23
Kominami, E.24
Tanaka, K.25
more..
-
47
-
-
77953699711
-
Termination of autophagy and reformation of lysosomes regulated by mTOR
-
Yu, L. et al. Termination of autophagy and reformation of lysosomes regulated by mTOR. Nature 465, 942-946 (2010).
-
(2010)
Nature
, vol.465
, pp. 942-946
-
-
Yu, L.1
-
48
-
-
84862602473
-
Autophagy in lysosomal storage disorders
-
Lieberman, A. P. et al. Autophagy in lysosomal storage disorders. Autophagy 8, 719-730 (2012).
-
(2012)
Autophagy
, vol.8
, pp. 719-730
-
-
Lieberman, A.P.1
-
50
-
-
84878691312
-
Defects of Vps15 in skeletal muscles lead to autophagic vacuolar myopathy and lysosomal disease
-
Nemazanyy, I. et al. Defects of Vps15 in skeletal muscles lead to autophagic vacuolar myopathy and lysosomal disease. EMBO Mol. Med. 5, 870-890 (2013).
-
(2013)
EMBO Mol. Med
, vol.5
, pp. 870-890
-
-
Nemazanyy, I.1
|