-
1
-
-
0023642480
-
The unmasking of mitochondrial Eve
-
Lewin R. The unmasking of mitochondrial Eve. Science. 1987;238:24-26.
-
(1987)
Science
, vol.238
, pp. 24-26
-
-
Lewin, R.1
-
3
-
-
0000549919
-
Mitochondrial origins
-
Yang D, Oyaizu Y, Oyaizu H, Olsen GJ, Woese CR. Mitochondrial origins. Proc Natl Acad Sci U S A. 1985;82:4443-4447.
-
(1985)
Proc Natl Acad Sci USA
, vol.82
, pp. 4443-4447
-
-
Yang, D.1
Oyaizu, Y.2
Oyaizu, H.3
Olsen, G.J.4
Woese, C.R.5
-
4
-
-
1542373685
-
Transcriptional regulatory circuits controlling mitochondrial biogenesis and function
-
Kelly DP, Scarpulla RC. Transcriptional regulatory circuits controlling mitochondrial biogenesis and function. Genes Dev. 2004;18:357-368. doi: 10.1101/gad.1177604.
-
(2004)
Genes Dev.
, vol.18
, pp. 357-368
-
-
Kelly, D.P.1
Scarpulla, R.C.2
-
5
-
-
84897113087
-
Mitochondrial contagion induced by Parkin deficiency in Drosophila hearts and its containment by suppressing mitofusin
-
Bhandari P, Song M, Chen Y, Burelle Y, Dorn GW II. Mitochondrial contagion induced by Parkin deficiency in Drosophila hearts and its containment by suppressing mitofusin. Circ Res. 2014;114:257-265. doi: 10.1161/CIRCRESAHA.114.302734.
-
(2014)
Circ Res.
, vol.114
, pp. 257-265
-
-
Bhandari, P.1
Song, M.2
Chen, Y.3
Burelle, Y.4
Dorn, G.W.5
-
6
-
-
79960817081
-
Mitochondrial fusion and division
-
Hales KG. Mitochondrial fusion and division. Nat Educ. 2010;3:12.
-
(2010)
Nat Educ.
, vol.3
, pp. 12
-
-
Hales, K.G.1
-
7
-
-
84887321199
-
Mitochondrial fusion directs cardiomyocyte differentiation via calcineurin and Notch signaling
-
Kasahara A, Cipolat S, Chen Y, Dorn GW II, Scorrano L. Mitochondrial fusion directs cardiomyocyte differentiation via calcineurin and Notch signaling. Science. 2013;342:734-737. doi: 10.1126/science.1241359.
-
(2013)
Science
, vol.342
, pp. 734-737
-
-
Kasahara, A.1
Cipolat, S.2
Chen, Y.3
Dorn, G.W.4
Scorrano, L.5
-
8
-
-
84880679646
-
Building a fission machine-structural insights into dynamin assembly and activation
-
Chappie JS, Dyda F. Building a fission machine-structural insights into dynamin assembly and activation. J Cell Sci. 2013;126:2773-2784. doi: 10.1242/jcs.108845.
-
(2013)
J Cell Sci.
, vol.126
, pp. 2773-2784
-
-
Chappie, J.S.1
Dyda, F.2
-
9
-
-
33745758647
-
Molecular mechanism of mitochondrial membrane fusion
-
Griffin EE, Detmer SA, Chan DC. Molecular mechanism of mitochondrial membrane fusion. Biochim Biophys Acta. 2006;1763:482-489. doi: 10.1016/j.bbamcr.2006.02.003.
-
(2006)
Biochim Biophys Acta.
, vol.1763
, pp. 482-489
-
-
Griffin, E.E.1
Detmer, S.A.2
Chan, D.C.3
-
10
-
-
80054844842
-
ER tubules mark sites of mitochondrial division
-
Friedman JR, Lackner LL, West M, DiBenedetto JR, Nunnari J, Voeltz GK. ER tubules mark sites of mitochondrial division. Science. 2011;334:358-362. doi: 10.1126/science.1207385.
-
(2011)
Science
, vol.334
, pp. 358-362
-
-
Friedman, J.R.1
Lackner, L.L.2
West, M.3
Dibenedetto, J.R.4
Nunnari, J.5
Voeltz, G.K.6
-
11
-
-
84894363564
-
A role for myosin II in mammalian mitochondrial fission
-
Korobova F, Gauvin TJ, Higgs HN. A role for myosin II in mammalian mitochondrial fission. Curr Biol. 2014;24:409-414. doi: 10.1016/j. cub.2013.12.032.
-
(2014)
Curr Biol.
, vol.24
, pp. 409-414
-
-
Korobova, F.1
Gauvin, T.J.2
Higgs, H.N.3
-
12
-
-
84872769447
-
An actin-dependent step in mitochondrial fission mediated by the ER-associated formin INF2
-
Korobova F, Ramabhadran V, Higgs HN. An actin-dependent step in mitochondrial fission mediated by the ER-associated formin INF2. Science. 2013;339:464-467. doi: 10.1126/science.1228360.
-
(2013)
Science
, vol.339
, pp. 464-467
-
-
Korobova, F.1
Ramabhadran, V.2
Higgs, H.N.3
-
13
-
-
3843075121
-
Structural basis of mitochondrial tethering by mitofusin complexes
-
Koshiba T, Detmer SA, Kaiser JT, Chen H, McCaffery JM, Chan DC. Structural basis of mitochondrial tethering by mitofusin complexes. Science. 2004;305:858-862. doi: 10.1126/science.1099793.
-
(2004)
Science
, vol.305
, pp. 858-862
-
-
Koshiba, T.1
Detmer, S.A.2
Kaiser, J.T.3
Chen, H.4
McCaffery, J.M.5
Chan, D.C.6
-
14
-
-
84878228268
-
Mitochondrial dynamism and cardiac fate-A personal perspective
-
Dorn GW II. Mitochondrial dynamism and cardiac fate-a personal perspective. Circ J. 2013;77:1370-1379.
-
(2013)
Circ J.
, vol.77
, pp. 1370-1379
-
-
Dorn, G.W.1
-
16
-
-
68149103297
-
Mitofusins and OPA1 mediate sequential steps in mitochondrial membrane fusion
-
Song Z, Ghochani M, McCaffery JM, Frey TG, Chan DC. Mitofusins and OPA1 mediate sequential steps in mitochondrial membrane fusion. Mol Biol Cell. 2009;20:3525-3532. doi: 10.1091/mbc.E09-03-0252.
-
(2009)
Mol Biol Cell.
, vol.20
, pp. 3525-3532
-
-
Song, Z.1
Ghochani, M.2
McCaffery, J.M.3
Frey, T.G.4
Chan, D.C.5
-
17
-
-
79451472120
-
MARF and Opa1 control mitochondrial and cardiac function in Drosophila
-
Dorn GW II, Clark CF, Eschenbacher WH, Kang MY, Engelhard JT, Warner SJ, Matkovich SJ, Jowdy CC. MARF and Opa1 control mitochondrial and cardiac function in Drosophila. Circ Res. 2011;108:12-17. doi: 10.1161/CIRCRESAHA.110.236745.
-
(2011)
Circ Res.
, vol.108
, pp. 12-17
-
-
Dorn, G.W.1
Clark, C.F.2
Eschenbacher, W.H.3
Kang, M.Y.4
Engelhard, J.T.5
Warner, S.J.6
Matkovich, S.J.7
Jowdy, C.C.8
-
18
-
-
55749090654
-
The Parkinson's disease genes pink1 and parkin promote mitochondrial fission and/or inhibit fusion in Drosophila
-
Deng H, Dodson MW, Huang H, Guo M. The Parkinson's disease genes pink1 and parkin promote mitochondrial fission and/or inhibit fusion in Drosophila. Proc Natl Acad Sci U S A. 2008;105:14503-14508. doi: 10.1073/pnas.0803998105.
-
(2008)
Proc Natl Acad Sci USA
, vol.105
, pp. 14503-14508
-
-
Deng, H.1
Dodson, M.W.2
Huang, H.3
Guo, M.4
-
19
-
-
0037455575
-
Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development
-
Chen H, Detmer SA, Ewald AJ, Griffin EE, Fraser SE, Chan DC. Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J Cell Biol. 2003;160:189-200. doi: 10.1083/jcb.200211046.
-
(2003)
J Cell Biol.
, vol.160
, pp. 189-200
-
-
Chen, H.1
Detmer, S.A.2
Ewald, A.J.3
Griffin, E.E.4
Fraser, S.E.5
Chan, D.C.6
-
20
-
-
57349100367
-
Mitofusin 2 tethers endoplasmic reticulum to mitochondria
-
de Brito OM, Scorrano L. Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature. 2008;456:605-610. doi: 10.1038/nature07534.
-
(2008)
Nature
, vol.456
, pp. 605-610
-
-
De Brito, O.M.1
Scorrano, L.2
-
21
-
-
22544451586
-
Disruption of fusion results in mitochondrial heterogeneity and dysfunction
-
Chen H, Chomyn A, Chan DC. Disruption of fusion results in mitochondrial heterogeneity and dysfunction. J Biol Chem. 2005;280:26185-26192. doi: 10.1074/jbc.M503062200.
-
(2005)
J Biol Chem.
, vol.280
, pp. 26185-26192
-
-
Chen, H.1
Chomyn, A.2
Chan, D.C.3
-
22
-
-
34547601410
-
Mitochondrial fusion protects against neurodegeneration in the cerebellum
-
Chen H, McCaffery JM, Chan DC. Mitochondrial fusion protects against neurodegeneration in the cerebellum. Cell. 2007;130:548-562. doi: 10.1016/j.cell.2007.06.026.
-
(2007)
Cell.
, vol.130
, pp. 548-562
-
-
Chen, H.1
McCaffery, J.M.2
Chan, D.C.3
-
23
-
-
77951737783
-
Mitochondrial fusion is required for mtDNA stability in skeletal muscle and tolerance of mtDNA mutations
-
Chen H, Vermulst M, Wang YE, Chomyn A, Prolla TA, McCaffery JM, Chan DC. Mitochondrial fusion is required for mtDNA stability in skeletal muscle and tolerance of mtDNA mutations. Cell. 2010;141:280-289. doi: 10.1016/j.cell.2010.02.026.
-
(2010)
Cell.
, vol.141
, pp. 280-289
-
-
Chen, H.1
Vermulst, M.2
Wang, Y.E.3
Chomyn, A.4
Prolla, T.A.5
McCaffery, J.M.6
Chan, D.C.7
-
24
-
-
84856109625
-
Mitochondrial fusion is essential for organelle function and cardiac homeostasis
-
Chen Y, Liu Y, Dorn GW II. Mitochondrial fusion is essential for organelle function and cardiac homeostasis. Circ Res. 2011;109:1327-1331. doi: 10.1161/CIRCRESAHA.111.258723.
-
(2011)
Circ Res.
, vol.109
, pp. 1327-1331
-
-
Chen, Y.1
Liu, Y.2
Dorn, G.W.3
-
25
-
-
84866894493
-
Mitofusins 1 and 2 are essential for postnatal metabolic remodeling in heart
-
Papanicolaou KN, Kikuchi R, Ngoh GA, Coughlan KA, Dominguez I, Stanley WC, Walsh K. Mitofusins 1 and 2 are essential for postnatal metabolic remodeling in heart. Circ Res. 2012;111:1012-1026. doi: 10.1161/CIRCRESAHA.112.274142.
-
(2012)
Circ Res.
, vol.111
, pp. 1012-1026
-
-
Papanicolaou, K.N.1
Kikuchi, R.2
Ngoh, G.A.3
Coughlan, K.A.4
Dominguez, I.5
Stanley, W.C.6
Walsh, K.7
-
26
-
-
85060472723
-
A brief history of: Velcro
-
June 15
-
Suddath C. A brief history of: Velcro. Time Magazine. June 15, 2010.
-
(2010)
Time Magazine.
-
-
Suddath, C.1
-
27
-
-
77957284223
-
Two close, too close: Sarcoplasmic reticulummitochondrial crosstalk and cardiomyocyte fate
-
Dorn GW II, Scorrano L. Two close, too close: sarcoplasmic reticulummitochondrial crosstalk and cardiomyocyte fate. Circ Res. 2010;107:689-699. doi: 10.1161/CIRCRESAHA.110.225714.
-
(2010)
Circ Res.
, vol.107
, pp. 689-699
-
-
Dorn, G.W.1
Scorrano, L.2
-
28
-
-
79952265711
-
Mitofusin-2 maintains mitochondrial structure and contributes to stress-induced permeability transition in cardiac myocytes
-
Papanicolaou KN, Khairallah RJ, Ngoh GA, Chikando A, Luptak I, O'Shea KM, Riley DD, Lugus JJ, Colucci WS, Lederer WJ, Stanley WC, Walsh K. Mitofusin-2 maintains mitochondrial structure and contributes to stress-induced permeability transition in cardiac myocytes. Mol Cell Biol. 2011;31:1309-1328. doi: 10.1128/MCB.00911-10.
-
(2011)
Mol Cell Biol.
, vol.31
, pp. 1309-1328
-
-
Papanicolaou, K.N.1
Khairallah, R.J.2
Ngoh, G.A.3
Chikando, A.4
Luptak, I.5
O'Shea, K.M.6
Riley, D.D.7
Lugus, J.J.8
Colucci, W.S.9
Lederer, W.J.10
Stanley, W.C.11
Walsh, K.12
-
29
-
-
84866530818
-
Mitofusin 2-containing mitochondrial-reticular microdomains direct rapid cardiomyocyte bioenergetic responses via interorganelle Ca(2+) crosstalk
-
Chen Y, Csordás G, Jowdy C, Schneider TG, Csordás N, Wang W, Liu Y, Kohlhaas M, Meiser M, Bergem S, Nerbonne JM, Dorn GW II, Maack C. Mitofusin 2-containing mitochondrial-reticular microdomains direct rapid cardiomyocyte bioenergetic responses via interorganelle Ca(2+) crosstalk. Circ Res. 2012;111:863-875. doi: 10.1161/CIRCRESAHA.112.266585.
-
(2012)
Circ Res.
, vol.111
, pp. 863-875
-
-
Chen, Y.1
Csordás, G.2
Jowdy, C.3
Schneider, T.G.4
Csordás, N.5
Wang, W.6
Liu, Y.7
Kohlhaas, M.8
Meiser, M.9
Bergem, S.10
Nerbonne, J.M.11
Dorn, G.W.12
Maack, C.13
-
30
-
-
84872680832
-
SR and mitochondria: Calcium cross-talk between kissing cousins
-
Dorn GW II, Maack C. SR and mitochondria: calcium cross-talk between kissing cousins. J Mol Cell Cardiol. 2013;55:42-49. doi: 10.1016/j. yjmcc.2012.07.015.
-
(2013)
J Mol Cell Cardiol.
, vol.55
, pp. 42-49
-
-
Dorn, G.W.1
Maack, C.2
-
31
-
-
84867722747
-
Physiological roles of the permeability transition pore
-
Brenner C, Moulin M. Physiological roles of the permeability transition pore. Circ Res. 2012;111:1237-1247. doi: 10.1161/CIRCRESAHA.112.265942.
-
(2012)
Circ Res.
, vol.111
, pp. 1237-1247
-
-
Brenner, C.1
Moulin, M.2
-
32
-
-
84864547810
-
Mitofusins and the mitochondrial permeability transition: The potential downside of mitochondrial fusion
-
Papanicolaou KN, Phillippo MM, Walsh K. Mitofusins and the mitochondrial permeability transition: the potential downside of mitochondrial fusion. Am J Physiol Heart Circ Physiol. 2012;303:H243-H255. doi: 10.1152/ajpheart.00185.2012.
-
(2012)
Am J Physiol Heart Circ Physiol.
, vol.303
, pp. H243-H255
-
-
Papanicolaou, K.N.1
Phillippo, M.M.2
Walsh, K.3
-
33
-
-
38349184844
-
Nix-mediated apoptosis links myocardial fibrosis, cardiac remodeling, and hypertrophy decompensation
-
Diwan A, Wansapura J, Syed FM, Matkovich SJ, Lorenz JN, Dorn GW II. Nix-mediated apoptosis links myocardial fibrosis, cardiac remodeling, and hypertrophy decompensation. Circulation. 2008;117:396-404. doi: 10.1161/CIRCULATIONAHA.107.727073.
-
(2008)
Circulation
, vol.117
, pp. 396-404
-
-
Diwan, A.1
Wansapura, J.2
Syed, F.M.3
Matkovich, S.J.4
Lorenz, J.N.5
Dorn, G.W.6
-
34
-
-
10644269378
-
Physiological growth synergizes with pathological genes in experimental cardiomyopathy
-
Syed F, Odley A, Hahn HS, Brunskill EW, Lynch RA, Marreez Y, Sanbe A, Robbins J, Dorn GW II. Physiological growth synergizes with pathological genes in experimental cardiomyopathy. Circ Res. 2004;95:1200-1206. doi: 10.1161/01.RES.0000150366.08972.7f.
-
(2004)
Circ Res.
, vol.95
, pp. 1200-1206
-
-
Syed, F.1
Odley, A.2
Hahn, H.S.3
Brunskill, E.W.4
Lynch, R.A.5
Marreez, Y.6
Sanbe, A.7
Robbins, J.8
Dorn, G.W.9
-
35
-
-
0036061644
-
Mitochondrial death protein Nix is induced in cardiac hypertrophy and triggers apoptotic cardiomyopathy
-
Yussman MG, Toyokawa T, Odley A, Lynch RA, Wu G, Colbert MC, Aronow BJ, Lorenz JN, Dorn GW II. Mitochondrial death protein Nix is induced in cardiac hypertrophy and triggers apoptotic cardiomyopathy. Nat Med. 2002;8:725-730. doi: 10.1038/nm719.
-
(2002)
Nat Med.
, vol.8
, pp. 725-730
-
-
Yussman, M.G.1
Toyokawa, T.2
Odley, A.3
Lynch, R.A.4
Wu, G.5
Colbert, M.C.6
Aronow, B.J.7
Lorenz, J.N.8
Dorn, G.W.9
-
36
-
-
61749087672
-
Endoplasmic reticulum-mitochondria crosstalk in NIX-mediated murine cell death
-
Diwan A, Matkovich SJ, Yuan Q, Zhao W, Yatani A, Brown JH, Molkentin JD, Kranias EG, Dorn GW II. Endoplasmic reticulum-mitochondria crosstalk in NIX-mediated murine cell death. J Clin Invest. 2009;119:203-212. doi: 10.1172/JCI36445.
-
(2009)
J Clin Invest.
, vol.119
, pp. 203-212
-
-
Diwan, A.1
Matkovich, S.J.2
Yuan, Q.3
Zhao, W.4
Yatani, A.5
Brown, J.H.6
Molkentin, J.D.7
Kranias, E.G.8
Dorn, G.W.9
-
37
-
-
77952683069
-
Dual autonomous mitochondrial cell death pathways are activated by Nix/BNip3L and induce cardiomyopathy
-
Chen Y, Lewis W, Diwan A, Cheng EH, Matkovich SJ, Dorn GW II. Dual autonomous mitochondrial cell death pathways are activated by Nix/BNip3L and induce cardiomyopathy. Proc Natl Acad Sci U S A. 2010;107:9035-9042. doi: 10.1073/pnas.0914013107.
-
(2010)
Proc Natl Acad Sci USA
, vol.107
, pp. 9035-9042
-
-
Chen, Y.1
Lewis, W.2
Diwan, A.3
Cheng, E.H.4
Matkovich, S.J.5
Dorn, G.W.6
-
38
-
-
34948816749
-
Inhibition of ischemic cardiomyocyte apoptosis through targeted ablation of Bnip3 restrains postinfarction remodeling in mice
-
Diwan A, Krenz M, Syed FM, Wansapura J, Ren X, Koesters AG, Li H, Kirshenbaum LA, Hahn HS, Robbins J, Jones WK, Dorn GW. Inhibition of ischemic cardiomyocyte apoptosis through targeted ablation of Bnip3 restrains postinfarction remodeling in mice. J Clin Invest. 2007;117: 2825-2833. doi: 10.1172/JCI32490.
-
(2007)
J Clin Invest.
, vol.117
, pp. 2825-2833
-
-
Diwan, A.1
Krenz, M.2
Syed, F.M.3
Wansapura, J.4
Ren, X.5
Koesters, A.G.6
Li, H.7
Kirshenbaum, L.A.8
Hahn, H.S.9
Robbins, J.10
Jones, W.K.11
Dorn, G.W.12
-
39
-
-
84879240043
-
Potential role of BNIP3 in cardiac remodeling, myocardial stiffness, and endoplasmic reticulum: Mitochondrial calcium homeostasis in diastolic and systolic heart failure
-
Chaanine AH, Gordon RE, Kohlbrenner E, Benard L, Jeong D, Hajjar RJ. Potential role of BNIP3 in cardiac remodeling, myocardial stiffness, and endoplasmic reticulum: mitochondrial calcium homeostasis in diastolic and systolic heart failure. Circ Heart Fail. 2013;6:572-583. doi: 10.1161/CIRCHEARTFAILURE.112.000200.
-
(2013)
Circ Heart Fail.
, vol.6
, pp. 572-583
-
-
Chaanine, A.H.1
Gordon, R.E.2
Kohlbrenner, E.3
Benard, L.4
Jeong, D.5
Hajjar, R.J.6
-
40
-
-
70349668309
-
BNIP3 mediates cell death by different pathways following localization to endoplasmic reticulum and mitochondrion
-
Zhang L, Li L, Liu H, Borowitz JL, Isom GE. BNIP3 mediates cell death by different pathways following localization to endoplasmic reticulum and mitochondrion. FASEB J. 2009;23:3405-3414. doi: 10.1096/fj.08-124354.
-
(2009)
FASEB J.
, vol.23
, pp. 3405-3414
-
-
Zhang, L.1
Li, L.2
Liu, H.3
Borowitz, J.L.4
Isom, G.E.5
-
41
-
-
33749337778
-
Calcification of myocardial necrosis is common in mice
-
Korff S, Riechert N, Schoensiegel F, Weichenhan D, Autschbach F, Katus HA, Ivandic BT. Calcification of myocardial necrosis is common in mice. Virchows Arch. 2006;448:630-638. doi: 10.1007/s00428-005-0071-7.
-
(2006)
Virchows Arch.
, vol.448
, pp. 630-638
-
-
Korff, S.1
Riechert, N.2
Schoensiegel, F.3
Weichenhan, D.4
Autschbach, F.5
Katus, H.A.6
Ivandic, B.T.7
-
42
-
-
33747586139
-
Mitochondrial buffering of calcium in the heart: Potential mechanism for linking cyclic energetic cost with energy supply?
-
Sullivan PG, Balke CW, Esser KA. Mitochondrial buffering of calcium in the heart: potential mechanism for linking cyclic energetic cost with energy supply? Circ Res. 2006;99:109-110. doi: 10.1161/01. RES.0000234949.61052.9f.
-
(2006)
Circ Res.
, vol.99
, pp. 109-110
-
-
Sullivan, P.G.1
Balke, C.W.2
Esser, K.A.3
-
43
-
-
0033835494
-
Serrate and Notch specify cell fates in the heart field by suppressing cardiomyogenesis
-
Rones MS, McLaughlin KA, Raffin M, Mercola M. Serrate and Notch specify cell fates in the heart field by suppressing cardiomyogenesis. Development. 2000;127:3865-3876.
-
(2000)
Development
, vol.127
, pp. 3865-3876
-
-
Rones, M.S.1
McLaughlin, K.A.2
Raffin, M.3
Mercola, M.4
-
44
-
-
33746517512
-
Induction of cardiogenesis in embryonic stem cells via downregulation of Notch1 signaling
-
Nemir M, Croquelois A, Pedrazzini T, Radtke F. Induction of cardiogenesis in embryonic stem cells via downregulation of Notch1 signaling. Circ Res. 2006;98:1471-1478. doi: 10.1161/01.RES.0000226497.52052.2a.
-
(2006)
Circ Res.
, vol.98
, pp. 1471-1478
-
-
Nemir, M.1
Croquelois, A.2
Pedrazzini, T.3
Radtke, F.4
-
45
-
-
84876531457
-
PINK1-phosphorylated mitofusin 2 is a Parkin receptor for culling damaged mitochondria
-
Chen Y, Dorn GW II. PINK1-phosphorylated mitofusin 2 is a Parkin receptor for culling damaged mitochondria. Science. 2013;340:471-475. doi: 10.1126/science.1231031.
-
(2013)
Science
, vol.340
, pp. 471-475
-
-
Chen, Y.1
Dorn, G.W.2
-
46
-
-
80054787664
-
What genetics tells us about the causes and mechanisms of Parkinson's disease
-
Corti O, Lesage S, Brice A. What genetics tells us about the causes and mechanisms of Parkinson's disease. Physiol Rev. 2011;91:1161-1218. doi: 10.1152/physrev.00022.2010.
-
(2011)
Physiol Rev.
, vol.91
, pp. 1161-1218
-
-
Corti, O.1
Lesage, S.2
Brice, A.3
-
47
-
-
66949152096
-
Parkinson's disease
-
Lees AJ, Hardy J, Revesz T. Parkinson's disease. Lancet. 2009;373:2055-2066. doi: 10.1016/S0140-6736(09)60492-X.
-
(2009)
Lancet.
, vol.373
, pp. 2055-2066
-
-
Lees, A.J.1
Hardy, J.2
Revesz, T.3
-
49
-
-
67649399288
-
Loss of PINK1 function promotes mitophagy through effects on oxidative stress and mitochondrial fission
-
Dagda RK, Cherra SJ III, Kulich SM, Tandon A, Park D, Chu CT. Loss of PINK1 function promotes mitophagy through effects on oxidative stress and mitochondrial fission. J Biol Chem. 2009;284:13843-13855. doi: 10.1074/jbc.M808515200.
-
(2009)
J Biol Chem.
, vol.284
, pp. 13843-13855
-
-
Dagda, R.K.1
Cherra, S.J.2
Kulich, S.M.3
Tandon, A.4
Park, D.5
Chu, C.T.6
-
50
-
-
0016772917
-
Ultrastructure of skeletal muscle in patients with Parkinson's disease and upper motor lesions
-
Ahlqvist G, Landin S, Wroblewski R. Ultrastructure of skeletal muscle in patients with Parkinson's disease and upper motor lesions. Lab Invest. 1975;32:673-679.
-
(1975)
Lab Invest.
, vol.32
, pp. 673-679
-
-
Ahlqvist, G.1
Landin, S.2
Wroblewski, R.3
-
51
-
-
79958172986
-
Preconditioning involves selective mitophagy mediated by Parkin and p62/SQSTM1
-
Huang C, Andres AM, Ratliff EP, Hernandez G, Lee P, Gottlieb RA. Preconditioning involves selective mitophagy mediated by Parkin and p62/SQSTM1. PLoS One. 2011;6:e20975. doi: 10.1371/journal. pone.0020975.
-
(2011)
PLoS One.
, vol.6
, pp. e20975
-
-
Huang, C.1
Andres, A.M.2
Ratliff, E.P.3
Hernandez, G.4
Lee, P.5
Gottlieb, R.A.6
-
52
-
-
84899539731
-
PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity
-
Kane LA, Lazarou M, Fogel AI, Li Y, Yamano K, Sarraf SA, Banerjee S, Youle RJ. PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity. J Cell Biol. 2014;205:143-153. doi: 10.1083/jcb.201402104.
-
(2014)
J Cell Biol.
, vol.205
, pp. 143-153
-
-
Kane, L.A.1
Lazarou, M.2
Fogel, A.I.3
Li, Y.4
Yamano, K.5
Sarraf, S.A.6
Banerjee, S.7
Youle, R.J.8
-
53
-
-
84901751574
-
Ubiquitin is phosphorylated by PINK1 to activate parkin
-
Koyano F, Okatsu K, Kosako H, et al. Ubiquitin is phosphorylated by PINK1 to activate parkin. Nature. 2014;510:162-166. doi: 10.1038/nature13392.
-
(2014)
Nature
, vol.510
, pp. 162-166
-
-
Koyano, F.1
Okatsu, K.2
Kosako, H.3
-
54
-
-
84876296881
-
Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization
-
Sarraf SA, Raman M, Guarani-Pereira V, Sowa ME, Huttlin EL, Gygi SP, Harper JW. Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization. Nature. 2013;496:372-376. doi: 10.1038/nature12043.
-
(2013)
Nature
, vol.496
, pp. 372-376
-
-
Sarraf, S.A.1
Raman, M.2
Guarani-Pereira, V.3
Sowa, M.E.4
Huttlin, E.L.5
Gygi, S.P.6
Harper, J.W.7
-
55
-
-
75749156257
-
PINK1 is selectively stabilized on impaired mitochondria to activate Parkin
-
Narendra DP, Jin SM, Tanaka A, Suen DF, Gautier CA, Shen J, Cookson MR, Youle RJ. PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol. 2010;8:e1000298. doi: 10.1371/journal. pbio.1000298.
-
(2010)
PLoS Biol.
, vol.8
, pp. e1000298
-
-
Narendra, D.P.1
Jin, S.M.2
Tanaka, A.3
Suen, D.F.4
Gautier, C.A.5
Shen, J.6
Cookson, M.R.7
Youle, R.J.8
-
56
-
-
75949098487
-
PINK1-dependent recruitment of Parkin to mitochondria in mitophagy
-
Vives-Bauza C, Zhou C, Huang Y, et al. PINK1-dependent recruitment of Parkin to mitochondria in mitophagy. Proc Natl Acad Sci U S A. 2010;107:378-383. doi: 10.1073/pnas.0911187107.
-
(2010)
Proc Natl Acad Sci USA
, vol.107
, pp. 378-383
-
-
Vives-Bauza, C.1
Zhou, C.2
Huang, Y.3
-
57
-
-
79551574736
-
PINK1 cleavage at position A103 by the mitochondrial protease PARL
-
Deas E, Plun-Favreau H, Gandhi S, Desmond H, Kjaer S, Loh SH, Renton AE, Harvey RJ, Whitworth AJ, Martins LM, Abramov AY, Wood NW. PINK1 cleavage at position A103 by the mitochondrial protease PARL. Hum Mol Genet. 2011;20:867-879. doi: 10.1093/hmg/ddq526.
-
(2011)
Hum Mol Genet.
, vol.20
, pp. 867-879
-
-
Deas, E.1
Plun-Favreau, H.2
Gandhi, S.3
Desmond, H.4
Kjaer, S.5
Loh, S.H.6
Renton, A.E.7
Harvey, R.J.8
Whitworth, A.J.9
Martins, L.M.10
Abramov, A.Y.11
Wood, N.W.12
-
58
-
-
78649685455
-
Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL
-
Jin SM, Lazarou M, Wang C, Kane LA, Narendra DP, Youle RJ. Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL. J Cell Biol. 2010;191:933-942. doi: 10.1083/jcb.201008084.
-
(2010)
J Cell Biol.
, vol.191
, pp. 933-942
-
-
Jin, S.M.1
Lazarou, M.2
Wang, C.3
Kane, L.A.4
Narendra, D.P.5
Youle, R.J.6
-
59
-
-
79959344616
-
PTEN-inducible kinase 1 (PINK1)/Park6 is indispensable for normal heart function
-
Billia F, Hauck L, Konecny F, Rao V, Shen J, Mak TW. PTEN-inducible kinase 1 (PINK1)/Park6 is indispensable for normal heart function. Proc Natl Acad Sci U S A. 2011;108:9572-9577. doi: 10.1073/pnas.1106291108.
-
(2011)
Proc Natl Acad Sci USA
, vol.108
, pp. 9572-9577
-
-
Billia, F.1
Hauck, L.2
Konecny, F.3
Rao, V.4
Shen, J.5
Mak, T.W.6
-
60
-
-
84864267876
-
PINK1 is activated by mitochondrial membrane potential depolarization and stimulates Parkin E3 ligase activity by phosphorylating Serine 65
-
Kondapalli C, Kazlauskaite A, Zhang N, Woodroof HI, Campbell DG, Gourlay R, Burchell L, Walden H, Macartney TJ, Deak M, Knebel A, Alessi DR, Muqit MM. PINK1 is activated by mitochondrial membrane potential depolarization and stimulates Parkin E3 ligase activity by phosphorylating Serine 65. Open Biol. 2012;2:120080. doi: 10.1098/rsob.120080.
-
(2012)
Open Biol.
, vol.2
, pp. 120080
-
-
Kondapalli, C.1
Kazlauskaite, A.2
Zhang, N.3
Woodroof, H.I.4
Campbell, D.G.5
Gourlay, R.6
Burchell, L.7
Walden, H.8
MacArtney, T.J.9
Deak, M.10
Knebel, A.11
Alessi, D.R.12
Muqit, M.M.13
-
61
-
-
84871891737
-
PINK1-mediated phosphorylation of the Parkin ubiquitin-like domain primes mitochondrial translocation of Parkin and regulates mitophagy
-
Shiba-Fukushima K, Imai Y, Yoshida S, Ishihama Y, Kanao T, Sato S, Hattori N. PINK1-mediated phosphorylation of the Parkin ubiquitin-like domain primes mitochondrial translocation of Parkin and regulates mitophagy. Sci Rep. 2012;2:1002. doi: 10.1038/srep01002.
-
(2012)
Sci Rep.
, vol.2
, pp. 1002
-
-
Shiba-Fukushima, K.1
Imai, Y.2
Yoshida, S.3
Ishihama, Y.4
Kanao, T.5
Sato, S.6
Hattori, N.7
-
62
-
-
84890429468
-
Highcontent genome-wide RNAi screens identify regulators of parkin upstream of mitophagy
-
Hasson SA, Kane LA, Yamano K, Huang CH, Sliter DA, Buehler E, Wang C, Heman-Ackah SM, Hessa T, Guha R, Martin SE, Youle RJ. Highcontent genome-wide RNAi screens identify regulators of parkin upstream of mitophagy. Nature. 2013;504:291-295. doi: 10.1038/nature12748.
-
(2013)
Nature
, vol.504
, pp. 291-295
-
-
Hasson, S.A.1
Kane, L.A.2
Yamano, K.3
Huang, C.H.4
Sliter, D.A.5
Buehler, E.6
Wang, C.7
Heman-Ackah, S.M.8
Hessa, T.9
Guha, R.10
Martin, S.E.11
Youle, R.J.12
-
63
-
-
84868110583
-
Mitofusin 2 is necessary for striatal axonal projections of midbrain dopamine neurons
-
Lee S, Sterky FH, Mourier A, Terzioglu M, Cullheim S, Olson L, Larsson NG. Mitofusin 2 is necessary for striatal axonal projections of midbrain dopamine neurons. Hum Mol Genet. 2012;21:4827-4835. doi: 10.1093/hmg/dds352.
-
(2012)
Hum Mol Genet.
, vol.21
, pp. 4827-4835
-
-
Lee, S.1
Sterky, F.H.2
Mourier, A.3
Terzioglu, M.4
Cullheim, S.5
Olson, L.6
Larsson, N.G.7
-
64
-
-
84868127674
-
Loss of Mfn2 results in progressive, retrograde degeneration of dopaminergic neurons in the nigrostriatal circuit
-
Pham AH, Meng S, Chu QN, Chan DC. Loss of Mfn2 results in progressive, retrograde degeneration of dopaminergic neurons in the nigrostriatal circuit. Hum Mol Genet. 2012;21:4817-4826. doi: 10.1093/hmg/dds311.
-
(2012)
Hum Mol Genet.
, vol.21
, pp. 4817-4826
-
-
Pham, A.H.1
Meng, S.2
Chu, Q.N.3
Chan, D.C.4
-
65
-
-
84859448265
-
Mitofusin 2 (Mfn2) links mitochondrial and endoplasmic reticulum function with insulin signaling and is essential for normal glucose homeostasis
-
Sebastián D, Hernández-Alvarez MI, Segalés J, Sorianello E, Muñoz JP, Sala D, Waget A, Liesa M, Paz JC, Gopalacharyulu P, Orešič M, Pich S, Burcelin R, Palacín M, Zorzano A. Mitofusin 2 (Mfn2) links mitochondrial and endoplasmic reticulum function with insulin signaling and is essential for normal glucose homeostasis. Proc Natl Acad Sci U S A. 2012;109:5523-5528. doi: 10.1073/pnas.1108220109.
-
(2012)
Proc Natl Acad Sci USA
, vol.109
, pp. 5523-5528
-
-
Sebastián, D.1
Hernández-Alvarez, M.I.2
Segalés, J.3
Sorianello, E.4
Muñoz, J.P.5
Sala, D.6
Waget, A.7
Liesa, M.8
Paz, J.C.9
Gopalacharyulu, P.10
Orešič, M.11
Pich, S.12
Burcelin, R.13
Palacín, M.14
Zorzano, A.15
-
66
-
-
79954520907
-
Broad activation of the ubiquitin-proteasome system by Parkin is critical for mitophagy
-
Chan NC, Salazar AM, Pham AH, Sweredoski MJ, Kolawa NJ, Graham RL, Hess S, Chan DC. Broad activation of the ubiquitin-proteasome system by Parkin is critical for mitophagy. Hum Mol Genet. 2011;20:1726-1737. doi: 10.1093/hmg/ddr048.
-
(2011)
Hum Mol Genet.
, vol.20
, pp. 1726-1737
-
-
Chan, N.C.1
Salazar, A.M.2
Pham, A.H.3
Sweredoski, M.J.4
Kolawa, N.J.5
Graham, R.L.6
Hess, S.7
Chan, D.C.8
-
67
-
-
84878118233
-
Parkin overexpression during aging reduces proteotoxicity, alters mitochondrial dynamics, and extends lifespan
-
Rana A, Rera M, Walker DW. Parkin overexpression during aging reduces proteotoxicity, alters mitochondrial dynamics, and extends lifespan. Proc Natl Acad Sci U S A. 2013;110:8638-8643. doi: 10.1073/pnas.1216197110.
-
(2013)
Proc Natl Acad Sci USA
, vol.110
, pp. 8638-8643
-
-
Rana, A.1
Rera, M.2
Walker, D.W.3
-
68
-
-
84871453443
-
Parkin induces apoptotic cell death in TNF-α-treated cervical cancer cells
-
Lee K, Lee MH, Kang YW, Rhee KJ, Kim TU, Kim YS. Parkin induces apoptotic cell death in TNF-α-treated cervical cancer cells. BMB Rep. 2012;45:526-531.
-
(2012)
BMB Rep.
, vol.45
, pp. 526-531
-
-
Lee, K.1
Lee, M.H.2
Kang, Y.W.3
Rhee, K.J.4
Kim, T.U.5
Kim, Y.S.6
-
69
-
-
84862295360
-
Guidelines for the use and interpretation of assays for monitoring autophagy
-
Klionsky DJ, Abdalla FC, Abeliovich H, et al. Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy. 2012;8:445-544.
-
(2012)
Autophagy.
, vol.8
, pp. 445-544
-
-
Klionsky, D.J.1
Abdalla, F.C.2
Abeliovich, H.3
-
70
-
-
33947401472
-
Autophagosome-lysosome fusion depends on the pH in acidic compartments in CHO cells
-
Kawai A, Uchiyama H, Takano S, Nakamura N, Ohkuma S. Autophagosome-lysosome fusion depends on the pH in acidic compartments in CHO cells. Autophagy. 2007;3:154-157.
-
(2007)
Autophagy.
, vol.3
, pp. 154-157
-
-
Kawai, A.1
Uchiyama, H.2
Takano, S.3
Nakamura, N.4
Ohkuma, S.5
-
71
-
-
77949623516
-
Reduced basal autophagy and impaired mitochondrial dynamics due to loss of Parkinson's disease-associated protein DJ-1
-
Krebiehl G, Ruckerbauer S, Burbulla LF, Kieper N, Maurer B, Waak J, Wolburg H, Gizatullina Z, Gellerich FN, Woitalla D, Riess O, Kahle PJ, Proikas-Cezanne T, Krüger R. Reduced basal autophagy and impaired mitochondrial dynamics due to loss of Parkinson's disease-associated protein DJ-1. PLoS One. 2010;5:e9367. doi: 10.1371/journal.pone.0009367.
-
(2010)
PLoS One.
, vol.5
, pp. e9367
-
-
Krebiehl, G.1
Ruckerbauer, S.2
Burbulla, L.F.3
Kieper, N.4
Maurer, B.5
Waak, J.6
Wolburg, H.7
Gizatullina, Z.8
Gellerich, F.N.9
Woitalla, D.10
Riess, O.11
Kahle, P.J.12
Proikas-Cezanne, T.13
Krüger, R.14
-
72
-
-
61949346360
-
LPS-induced autophagy is mediated by oxidative signaling in cardiomyocytes and is associated with cytoprotection
-
Yuan H, Perry CN, Huang C, Iwai-Kanai E, Carreira RS, Glembotski CC, Gottlieb RA. LPS-induced autophagy is mediated by oxidative signaling in cardiomyocytes and is associated with cytoprotection. Am J Physiol Heart Circ Physiol. 2009;296:H470-H479. doi: 10.1152/ajpheart.01051.2008.
-
(2009)
Am J Physiol Heart Circ Physiol.
, vol.296
, pp. H470-H479
-
-
Yuan, H.1
Perry, C.N.2
Huang, C.3
Iwai-Kanai, E.4
Carreira, R.S.5
Glembotski, C.C.6
Gottlieb, R.A.7
-
73
-
-
84894165975
-
Cardiac mitochondria and reactive oxygen species generation
-
Chen YR, Zweier JL. Cardiac mitochondria and reactive oxygen species generation. Circ Res. 2014;114:524-537. doi: 10.1161/CIRCRESAHA.114.300559.
-
(2014)
Circ Res.
, vol.114
, pp. 524-537
-
-
Chen, Y.R.1
Zweier, J.L.2
-
74
-
-
84860196585
-
Cardiac aging: From molecular mechanisms to significance in human health and disease
-
Dai DF, Chen T, Johnson SC, Szeto H, Rabinovitch PS. Cardiac aging: from molecular mechanisms to significance in human health and disease. Antioxid Redox Signal. 2012;16:1492-1526. doi: 10.1089/ars.2011.4179.
-
(2012)
Antioxid Redox Signal.
, vol.16
, pp. 1492-1526
-
-
Dai, D.F.1
Chen, T.2
Johnson, S.C.3
Szeto, H.4
Rabinovitch, P.S.5
-
75
-
-
0038411479
-
Redox regulation of protein tyrosine phosphatase 1B involves a sulphenyl-amide intermediate
-
Salmeen A, Andersen JN, Myers MP, Meng TC, Hinks JA, Tonks NK, Barford D. Redox regulation of protein tyrosine phosphatase 1B involves a sulphenyl-amide intermediate. Nature. 2003;423:769-773. doi: 10.1038/nature01680.
-
(2003)
Nature
, vol.423
, pp. 769-773
-
-
Salmeen, A.1
Andersen, J.N.2
Myers, M.P.3
Meng, T.C.4
Hinks, J.A.5
Tonks, N.K.6
Barford, D.7
-
76
-
-
84904734344
-
Super-suppression of mitochondrial reactive oxygen species signaling impairs compensatory autophagy in primary mitophagic cardiomyopathy
-
Song M, Chen Y, Gong G, Murphy E, Rabinovitch PS, Dorn GW II. Super-suppression of mitochondrial reactive oxygen species signaling impairs compensatory autophagy in primary mitophagic cardiomyopathy. Circ Res. 2014;115:348-353. doi: 10.1161/CIRCRESAHA.115.304384.
-
(2014)
Circ Res.
, vol.115
, pp. 348-353
-
-
Song, M.1
Chen, Y.2
Gong, G.3
Murphy, E.4
Rabinovitch, P.S.5
Dorn, G.W.6
-
77
-
-
79954694973
-
Mitochondrial oxidative stress mediates angiotensin II-induced cardiac hypertrophy and Galphaq overexpression-induced heart failure
-
Dai DF, Johnson SC, Villarin JJ, Chin MT, Nieves-Cintrón M, Chen T, Marcinek DJ, Dorn GW II, Kang YJ, Prolla TA, Santana LF, Rabinovitch PS. Mitochondrial oxidative stress mediates angiotensin II-induced cardiac hypertrophy and Galphaq overexpression-induced heart failure. Circ Res. 2011;108:837-846. doi: 10.1161/CIRCRESAHA.110.232306.
-
(2011)
Circ Res.
, vol.108
, pp. 837-846
-
-
Dai, D.F.1
Johnson, S.C.2
Villarin, J.J.3
Chin, M.T.4
Nieves-Cintrón, M.5
Chen, T.6
Marcinek, D.J.7
Dorn, G.W.8
Kang, Y.J.9
Prolla, T.A.10
Santana, L.F.11
Rabinovitch, P.S.12
-
79
-
-
75949105922
-
The BCL-2 family reunion
-
Chipuk JE, Moldoveanu T, Llambi F, Parsons MJ, Green DR. The BCL-2 family reunion. Mol Cell. 2010;37:299-310. doi: 10.1016/j. molcel.2010.01.025.
-
(2010)
Mol Cell.
, vol.37
, pp. 299-310
-
-
Chipuk, J.E.1
Moldoveanu, T.2
Llambi, F.3
Parsons, M.J.4
Green, D.R.5
-
80
-
-
33644973657
-
Distinct pathways regulate proapoptotic Nix and BNip3 in cardiac stress
-
Gálvez AS, Brunskill EW, Marreez Y, Benner BJ, Regula KM, Kirschenbaum LA, Dorn GW II. Distinct pathways regulate proapoptotic Nix and BNip3 in cardiac stress. J Biol Chem. 2006;281:1442-1448. doi: 10.1074/jbc.M509056200.
-
(2006)
J Biol Chem.
, vol.281
, pp. 1442-1448
-
-
Gálvez, A.S.1
Brunskill, E.W.2
Marreez, Y.3
Benner, B.J.4
Regula, K.M.5
Kirschenbaum, L.A.6
Dorn, G.W.7
-
81
-
-
77955514158
-
Mitochondrial pruning by Nix and BNip3: An essential function for cardiac-expressed death factors
-
Dorn GW II. Mitochondrial pruning by Nix and BNip3: an essential function for cardiac-expressed death factors. J Cardiovasc Transl Res. 2010;3:374-383. doi: 10.1007/s12265-010-9174-x.
-
(2010)
J Cardiovasc Transl Res.
, vol.3
, pp. 374-383
-
-
Dorn, G.W.1
-
82
-
-
67650219052
-
Nix directly binds to GABARAP: A possible crosstalk between apoptosis and autophagy
-
Schwarten M, Mohrlüder J, Ma P, Stoldt M, Thielmann Y, Stangler T, Hersch N, Hoffmann B, Merkel R, Willbold D. Nix directly binds to GABARAP: a possible crosstalk between apoptosis and autophagy. Autophagy. 2009;5:690-698.
-
(2009)
Autophagy.
, vol.5
, pp. 690-698
-
-
Schwarten, M.1
Mohrlüder, J.2
Ma, P.3
Stoldt, M.4
Thielmann, Y.5
Stangler, T.6
Hersch, N.7
Hoffmann, B.8
Merkel, R.9
Willbold, D.10
-
83
-
-
77953122645
-
LC3 and GATE-16/GABARAP subfamilies are both essential yet act differently in autophagosome biogenesis
-
Weidberg H, Shvets E, Shpilka T, Shimron F, Shinder V, Elazar Z. LC3 and GATE-16/GABARAP subfamilies are both essential yet act differently in autophagosome biogenesis. EMBO J. 2010;29:1792-1802. doi: 10.1038/emboj.2010.74.
-
(2010)
EMBO J.
, vol.29
, pp. 1792-1802
-
-
Weidberg, H.1
Shvets, E.2
Shpilka, T.3
Shimron, F.4
Shinder, V.5
Elazar, Z.6
-
84
-
-
77956252454
-
Nix is critical to two distinct phases of mitophagy, reactive oxygen species-mediated autophagy induction and Parkin-ubiquitin-p62-mediated mitochondrial priming
-
Ding WX, Ni HM, Li M, Liao Y, Chen X, Stolz DB, Dorn GW II, Yin XM. Nix is critical to two distinct phases of mitophagy, reactive oxygen species-mediated autophagy induction and Parkin-ubiquitin-p62-mediated mitochondrial priming. J Biol Chem. 2010;285:27879-27890. doi: 10.1074/jbc.M110.119537.
-
(2010)
J Biol Chem.
, vol.285
, pp. 27879-27890
-
-
Ding, W.X.1
Ni, H.M.2
Li, M.3
Liao, Y.4
Chen, X.5
Stolz, D.B.6
Dorn, G.W.7
Yin, X.M.8
-
85
-
-
34249852766
-
Unrestrained erythroblast development in Nix-/- mice reveals a mechanism for apoptotic modulation of erythropoiesis
-
Diwan A, Koesters AG, Odley AM, Pushkaran S, Baines CP, Spike BT, Daria D, Jegga AG, Geiger H, Aronow BJ, Molkentin JD, Macleod KF, Kalfa TA, Dorn GW II. Unrestrained erythroblast development in Nix-/- mice reveals a mechanism for apoptotic modulation of erythropoiesis. Proc Natl Acad Sci U S A. 2007;104:6794-6799. doi: 10.1073/pnas.0610666104.
-
(2007)
Proc Natl Acad Sci USA
, vol.104
, pp. 6794-6799
-
-
Diwan, A.1
Koesters, A.G.2
Odley, A.M.3
Pushkaran, S.4
Baines, C.P.5
Spike, B.T.6
Daria, D.7
Jegga, A.G.8
Geiger, H.9
Aronow, B.J.10
Molkentin, J.D.11
MacLeod, K.F.12
Kalfa, T.A.13
Dorn, G.W.14
-
86
-
-
74049153002
-
Nix is a selective autophagy receptor for mitochondrial clearance
-
Novak I, Kirkin V, McEwan DG, Zhang J, Wild P, Rozenknop A, Rogov V, Löhr F, Popovic D, Occhipinti A, Reichert AS, Terzic J, Dötsch V, Ney PA, Dikic I. Nix is a selective autophagy receptor for mitochondrial clearance. EMBO Rep. 2010;11:45-51. doi: 10.1038/embor.2009.256.
-
(2010)
EMBO Rep.
, vol.11
, pp. 45-51
-
-
Novak, I.1
Kirkin, V.2
McEwan, D.G.3
Zhang, J.4
Wild, P.5
Rozenknop, A.6
Rogov, V.7
Löhr, F.8
Popovic, D.9
Occhipinti, A.10
Reichert, A.S.11
Terzic, J.12
Dötsch, V.13
Ney, P.A.14
Dikic, I.15
-
87
-
-
47049100413
-
Essential role for Nix in autophagic maturation of erythroid cells
-
Sandoval H, Thiagarajan P, Dasgupta SK, Schumacher A, Prchal JT, Chen M, Wang J. Essential role for Nix in autophagic maturation of erythroid cells. Nature. 2008;454:232-235. doi: 10.1038/nature07006.
-
(2008)
Nature
, vol.454
, pp. 232-235
-
-
Sandoval, H.1
Thiagarajan, P.2
Dasgupta, S.K.3
Schumacher, A.4
Prchal, J.T.5
Chen, M.6
Wang, J.7
-
88
-
-
37649017266
-
NIX is required for programmed mitochondrial clearance during reticulocyte maturation
-
Schweers RL, Zhang J, Randall MS, Loyd MR, Li W, Dorsey FC, Kundu M, Opferman JT, Cleveland JL, Miller JL, Ney PA. NIX is required for programmed mitochondrial clearance during reticulocyte maturation. Proc Natl Acad Sci U S A. 2007;104:19500-19505. doi: 10.1073/pnas.0708818104.
-
(2007)
Proc Natl Acad Sci USA
, vol.104
, pp. 19500-19505
-
-
Schweers, R.L.1
Zhang, J.2
Randall, M.S.3
Loyd, M.R.4
Li, W.5
Dorsey, F.C.6
Kundu, M.7
Opferman, J.T.8
Cleveland, J.L.9
Miller, J.L.10
Ney, P.A.11
-
89
-
-
84864015441
-
BNip3 regulates mitochondrial function and lipid metabolism in the liver
-
Glick D, Zhang W, Beaton M, Marsboom G, Gruber M, Simon MC, Hart J, Dorn GW II, Brady MJ, Macleod KF. BNip3 regulates mitochondrial function and lipid metabolism in the liver. Mol Cell Biol. 2012;32:2570-2584. doi: 10.1128/MCB.00167-12.
-
(2012)
Mol Cell Biol.
, vol.32
, pp. 2570-2584
-
-
Glick, D.1
Zhang, W.2
Beaton, M.3
Marsboom, G.4
Gruber, M.5
Simon, M.C.6
Hart, J.7
Dorn, G.W.8
Brady, M.J.9
MacLeod, K.F.10
-
90
-
-
84861733247
-
Microtubule-associated protein 1 light chain 3 (LC3) interacts with Bnip3 protein to selectively remove endoplasmic reticulum and mitochondria via autophagy
-
Hanna RA, Quinsay MN, Orogo AM, Giang K, Rikka S, Gustafsson ÅB. Microtubule-associated protein 1 light chain 3 (LC3) interacts with Bnip3 protein to selectively remove endoplasmic reticulum and mitochondria via autophagy. J Biol Chem. 2012;287:19094-19104. doi: 10.1074/jbc. M111.322933.
-
(2012)
J Biol Chem.
, vol.287
, pp. 19094-19104
-
-
Hanna, R.A.1
Quinsay, M.N.2
Orogo, A.M.3
Giang, K.4
Rikka, S.5
Gustafsson Å., B.6
-
91
-
-
84881619807
-
Sestrin-2 and BNIP3 regulate autophagy and mitophagy in renal tubular cells in acute kidney injury
-
Ishihara M, Urushido M, Hamada K, Matsumoto T, Shimamura Y, Ogata K, Inoue K, Taniguchi Y, Horino T, Fujieda M, Fujimoto S, Terada Y. Sestrin-2 and BNIP3 regulate autophagy and mitophagy in renal tubular cells in acute kidney injury. Am J Physiol Renal Physiol. 2013;305:F495-F509. doi: 10.1152/ajprenal.00642.2012.
-
(2013)
Am J Physiol Renal Physiol.
, vol.305
, pp. F495-F509
-
-
Ishihara, M.1
Urushido, M.2
Hamada, K.3
Matsumoto, T.4
Shimamura, Y.5
Ogata, K.6
Inoue, K.7
Taniguchi, Y.8
Horino, T.9
Fujieda, M.10
Fujimoto, S.11
Terada, Y.12
-
92
-
-
84872291490
-
Modulation of serines 17 and 24 in the LC3-interacting region of Bnip3 determines pro-survival mitophagy versus apoptosis
-
Zhu Y, Massen S, Terenzio M, Lang V, Chen-Lindner S, Eils R, Novak I, Dikic I, Hamacher-Brady A, Brady NR. Modulation of serines 17 and 24 in the LC3-interacting region of Bnip3 determines pro-survival mitophagy versus apoptosis. J Biol Chem. 2013;288:1099-1113. doi: 10.1074/jbc. M112.399345.
-
(2013)
J Biol Chem.
, vol.288
, pp. 1099-1113
-
-
Zhu, Y.1
Massen, S.2
Terenzio, M.3
Lang, V.4
Chen-Lindner, S.5
Eils, R.6
Novak, I.7
Dikic, I.8
Hamacher-Brady, A.9
Brady, N.R.10
-
93
-
-
84885825015
-
Attenuation of doxorubicin-induced cardiotoxicity by mdivi-1: A mitochondrial division/mitophagy inhibitor
-
Gharanei M, Hussain A, Janneh O, Maddock H. Attenuation of doxorubicin-induced cardiotoxicity by mdivi-1: a mitochondrial division/mitophagy inhibitor. PLoS One. 2013;8:e77713. doi: 10.1371/journal. pone.0077713.
-
(2013)
PLoS One.
, vol.8
, pp. e77713
-
-
Gharanei, M.1
Hussain, A.2
Janneh, O.3
Maddock, H.4
-
94
-
-
84858970970
-
Mitochondrial division/mitophagy inhibitor (Mdivi) ameliorates pressure overload induced heart failure
-
Givvimani S, Munjal C, Tyagi N, Sen U, Metreveli N, Tyagi SC. Mitochondrial division/mitophagy inhibitor (Mdivi) ameliorates pressure overload induced heart failure. PLoS One. 2012;7:e32388. doi: 10.1371/journal.pone.0032388.
-
(2012)
PLoS One.
, vol.7
, pp. e32388
-
-
Givvimani, S.1
Munjal, C.2
Tyagi, N.3
Sen, U.4
Metreveli, N.5
Tyagi, S.C.6
-
95
-
-
77952236126
-
Inhibiting mitochondrial fission protects the heart against ischemia/reperfusion injury
-
Ong SB, Subrayan S, Lim SY, Yellon DM, Davidson SM, Hausenloy DJ. Inhibiting mitochondrial fission protects the heart against ischemia/reperfusion injury. Circulation. 2010;121:2012-2022. doi: 10.1161/CIRCULATIONAHA.109.906610.
-
(2010)
Circulation
, vol.121
, pp. 2012-2022
-
-
Ong, S.B.1
Subrayan, S.2
Lim, S.Y.3
Yellon, D.M.4
Davidson, S.M.5
Hausenloy, D.J.6
-
96
-
-
84894535372
-
Dynamin-related protein 1 (Drp1)-mediated diastolic dysfunction in myocardial ischemia-reperfusion injury: Therapeutic benefits of Drp1 inhibition to reduce mitochondrial fission
-
Sharp WW, Fang YH, Han M, Zhang HJ, Hong Z, Banathy A, Morrow E, Ryan JJ, Archer SL. Dynamin-related protein 1 (Drp1)-mediated diastolic dysfunction in myocardial ischemia-reperfusion injury: therapeutic benefits of Drp1 inhibition to reduce mitochondrial fission. FASEB J. 2014;28:316-326. doi: 10.1096/fj.12-226225.
-
(2014)
FASEB J.
, vol.28
, pp. 316-326
-
-
Sharp, W.W.1
Fang, Y.H.2
Han, M.3
Zhang, H.J.4
Hong, Z.5
Banathy, A.6
Morrow, E.7
Ryan, J.J.8
Archer, S.L.9
-
97
-
-
84890317515
-
Acute inhibition of excessive mitochondrial fission after myocardial infarction prevents long-term cardiac dysfunction
-
Disatnik MH, Ferreira JC, Campos JC, Gomes KS, Dourado PM, Qi X, Mochly-Rosen D. Acute inhibition of excessive mitochondrial fission after myocardial infarction prevents long-term cardiac dysfunction. J Am Heart Assoc. 2013;2:e000461. doi: 10.1161/JAHA.113.000461.
-
(2013)
J Am Heart Assoc.
, vol.2
, pp. e000461
-
-
Disatnik, M.H.1
Ferreira, J.C.2
Campos, J.C.3
Gomes, K.S.4
Dourado, P.M.5
Qi, X.6
Mochly-Rosen, D.7
-
98
-
-
34248182897
-
Bax/Bak promote sumoylation of DRP1 and its stable association with mitochondria during apoptotic cell death
-
Wasiak S, Zunino R, McBride HM. Bax/Bak promote sumoylation of DRP1 and its stable association with mitochondria during apoptotic cell death. J Cell Biol. 2007;177:439-450. doi: 10.1083/jcb.200610042.
-
(2007)
J Cell Biol.
, vol.177
, pp. 439-450
-
-
Wasiak, S.1
Zunino, R.2
McBride, H.M.3
-
99
-
-
84883411678
-
Bax and Bak function as the outer membrane component of the mitochondrial permeability pore in regulating necrotic cell death in mice
-
Karch J, Kwong JQ, Burr AR, Sargent MA, Elrod JW, Peixoto PM, Martinez-Caballero S, Osinska H, Cheng EH, Robbins J, Kinnally KW, Molkentin JD. Bax and Bak function as the outer membrane component of the mitochondrial permeability pore in regulating necrotic cell death in mice. Elife. 2013;2:e00772. doi: 10.7554/eLife.00772.
-
(2013)
Elife.
, vol.2
, pp. e00772
-
-
Karch, J.1
Kwong, J.Q.2
Burr, A.R.3
Sargent, M.A.4
Elrod, J.W.5
Peixoto, P.M.6
Martinez-Caballero, S.7
Osinska, H.8
Cheng, E.H.9
Robbins, J.10
Kinnally, K.W.11
Molkentin, J.D.12
-
100
-
-
84860180832
-
Bax regulates primary necrosis through mitochondrial dynamics
-
Whelan RS, Konstantinidis K, Wei AC, Chen Y, Reyna DE, Jha S, Yang Y, Calvert JW, Lindsten T, Thompson CB, Crow MT, Gavathiotis E, Dorn GW II, O'Rourke B, Kitsis RN. Bax regulates primary necrosis through mitochondrial dynamics. Proc Natl Acad Sci U S A. 2012;109:6566-6571. doi: 10.1073/pnas.1201608109.
-
(2012)
Proc Natl Acad Sci USA
, vol.109
, pp. 6566-6571
-
-
Whelan, R.S.1
Konstantinidis, K.2
Wei, A.C.3
Chen, Y.4
Reyna, D.E.5
Jha, S.6
Yang, Y.7
Calvert, J.W.8
Lindsten, T.9
Thompson, C.B.10
Crow, M.T.11
Gavathiotis, E.12
Dorn, G.W.13
O'Rourke, B.14
Kitsis, R.N.15
-
101
-
-
17344375146
-
Bax ablation protects against myocardial ischemia-reperfusion injury in transgenic mice
-
Hochhauser E, Kivity S, Offen D, Maulik N, Otani H, Barhum Y, Pannet H, Shneyvays V, Shainberg A, Goldshtaub V, Tobar A, Vidne BA. Bax ablation protects against myocardial ischemia-reperfusion injury in transgenic mice. Am J Physiol Heart Circ Physiol. 2003;284:H2351-H2359. doi: 10.1152/ajpheart.00783.2002.
-
(2003)
Am J Physiol Heart Circ Physiol.
, vol.284
, pp. H2351-H2359
-
-
Hochhauser, E.1
Kivity, S.2
Offen, D.3
Maulik, N.4
Otani, H.5
Barhum, Y.6
Pannet, H.7
Shneyvays, V.8
Shainberg, A.9
Goldshtaub, V.10
Tobar, A.11
Vidne, B.A.12
-
102
-
-
15844375853
-
Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death
-
Baines CP, Kaiser RA, Purcell NH, Blair NS, Osinska H, Hambleton MA, Brunskill EW, Sayen MR, Gottlieb RA, Dorn GW, Robbins J, Molkentin JD. Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature. 2005;434:658-662. doi: 10.1038/nature03434.
-
(2005)
Nature
, vol.434
, pp. 658-662
-
-
Baines, C.P.1
Kaiser, R.A.2
Purcell, N.H.3
Blair, N.S.4
Osinska, H.5
Hambleton, M.A.6
Brunskill, E.W.7
Sayen, M.R.8
Gottlieb, R.A.9
Dorn, G.W.10
Robbins, J.11
Molkentin, J.D.12
-
103
-
-
15844407874
-
Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death
-
Nakagawa T, Shimizu S, Watanabe T, Yamaguchi O, Otsu K, Yamagata H, Inohara H, Kubo T, Tsujimoto Y. Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death. Nature. 2005;434:652-658. doi: 10.1038/nature03317.
-
(2005)
Nature
, vol.434
, pp. 652-658
-
-
Nakagawa, T.1
Shimizu, S.2
Watanabe, T.3
Yamaguchi, O.4
Otsu, K.5
Yamagata, H.6
Inohara, H.7
Kubo, T.8
Tsujimoto, Y.9
-
104
-
-
33749846225
-
Role of Bax and Bak in mitochondrial morphogenesis
-
Karbowski M, Norris KL, Cleland MM, Jeong SY, Youle RJ. Role of Bax and Bak in mitochondrial morphogenesis. Nature. 2006;443:658-662. doi: 10.1038/nature05111.
-
(2006)
Nature
, vol.443
, pp. 658-662
-
-
Karbowski, M.1
Norris, K.L.2
Cleland, M.M.3
Jeong, S.Y.4
Youle, R.J.5
-
105
-
-
78651468702
-
The soluble form of Bax regulates mitochondrial fusion via MFN2 homotypic complexes
-
Hoppins S, Edlich F, Cleland MM, Banerjee S, McCaffery JM, Youle RJ, Nunnari J. The soluble form of Bax regulates mitochondrial fusion via MFN2 homotypic complexes. Mol Cell. 2011;41:150-160. doi: 10.1016/j. molcel.2010.11.030.
-
(2011)
Mol Cell.
, vol.41
, pp. 150-160
-
-
Hoppins, S.1
Edlich, F.2
Cleland, M.M.3
Banerjee, S.4
McCaffery, J.M.5
Youle, R.J.6
Nunnari, J.7
-
106
-
-
4944222095
-
Drp-1-dependent division of the mitochondrial network blocks intraorganellar Ca2+ waves and protects against Ca2+-mediated apoptosis
-
Szabadkai G, Simoni AM, Chami M, Wieckowski MR, Youle RJ, Rizzuto R. Drp-1-dependent division of the mitochondrial network blocks intraorganellar Ca2+ waves and protects against Ca2+-mediated apoptosis. Mol Cell. 2004;16:59-68. doi: 10.1016/j.molcel.2004.09.026.
-
(2004)
Mol Cell.
, vol.16
, pp. 59-68
-
-
Szabadkai, G.1
Simoni, A.M.2
Chami, M.3
Wieckowski, M.R.4
Youle, R.J.5
Rizzuto, R.6
-
107
-
-
84859962717
-
The ubiquitin E3 ligase parkin regulates the proapoptotic function of Bax
-
Johnson BN, Berger AK, Cortese GP, Lavoie MJ. The ubiquitin E3 ligase parkin regulates the proapoptotic function of Bax. Proc Natl Acad Sci U S A. 2012;109:6283-6288. doi: 10.1073/pnas.1113248109.
-
(2012)
Proc Natl Acad Sci USA
, vol.109
, pp. 6283-6288
-
-
Johnson, B.N.1
Berger, A.K.2
Cortese, G.P.3
Lavoie, M.J.4
-
108
-
-
78651302188
-
Bcl-2 family interaction with the mitochondrial morphogenesis machinery
-
Cleland MM, Norris KL, Karbowski M, Wang C, Suen DF, Jiao S, George NM, Luo X, Li Z, Youle RJ. Bcl-2 family interaction with the mitochondrial morphogenesis machinery. Cell Death Differ. 2011;18:235-247. doi: 10.1038/cdd.2010.89.
-
(2011)
Cell Death Differ.
, vol.18
, pp. 235-247
-
-
Cleland, M.M.1
Norris, K.L.2
Karbowski, M.3
Wang, C.4
Suen, D.F.5
Jiao, S.6
George, N.M.7
Luo, X.8
Li, Z.9
Youle, R.J.10
-
109
-
-
0036236634
-
Programmed death phenomena: From organelle to organism
-
Skulachev VP. Programmed death phenomena: from organelle to organism. Ann N Y Acad Sci. 2002;959:214-237.
-
(2002)
Ann N y Acad Sci.
, vol.959
, pp. 214-237
-
-
Skulachev, V.P.1
-
110
-
-
27644575235
-
Macroautophagy versus mitochondrial autophagy: A question of fate?
-
Kundu M, Thompson CB. Macroautophagy versus mitochondrial autophagy: a question of fate? Cell Death Differ. 2005;12 (suppl 2):1484-1489. doi: 10.1038/sj.cdd.4401780.
-
(2005)
Cell Death Differ.
, vol.12
, pp. 1484-1489
-
-
Kundu, M.1
Thompson, C.B.2
-
111
-
-
0037338634
-
Parkin prevents mitochondrial swelling and cytochrome c release in mitochondria-dependent cell death
-
Darios F, Corti O, Lücking CB, Hampe C, Muriel MP, Abbas N, Gu WJ, Hirsch EC, Rooney T, Ruberg M, Brice A. Parkin prevents mitochondrial swelling and cytochrome c release in mitochondria-dependent cell death. Hum Mol Genet. 2003;12:517-526.
-
(2003)
Hum Mol Genet.
, vol.12
, pp. 517-526
-
-
Darios, F.1
Corti, O.2
Lücking, C.B.3
Hampe, C.4
Muriel, M.P.5
Abbas, N.6
Gu, W.J.7
Hirsch, E.C.8
Rooney, T.9
Ruberg, M.10
Brice, A.11
-
112
-
-
77955398958
-
Parkin overexpression selects against a deleterious mtDNA mutation in heteroplasmic cybrid cells
-
Suen DF, Narendra DP, Tanaka A, Manfredi G, Youle RJ. Parkin overexpression selects against a deleterious mtDNA mutation in heteroplasmic cybrid cells. Proc Natl Acad Sci U S A. 2010;107:11835-11840. doi: 10.1073/pnas.0914569107.
-
(2010)
Proc Natl Acad Sci USA
, vol.107
, pp. 11835-11840
-
-
Suen, D.F.1
Narendra, D.P.2
Tanaka, A.3
Manfredi, G.4
Youle, R.J.5
|