-
1
-
-
84859778293
-
MTOR signaling in growth control and disease
-
Laplante M, Sabatini DM. mTOR signaling in growth control and disease. Cell. 2012;149(2):274-293.
-
(2012)
Cell.
, vol.149
, Issue.2
, pp. 274-293
-
-
Laplante, M.1
Sabatini, D.M.2
-
2
-
-
0037623417
-
GbetaL, a positive regulator of the rapamycin-sensitive pathway required for the nutrient-sensitive interaction between raptor and mTOR
-
Kim DH, et al. GbetaL, a positive regulator of the rapamycin-sensitive pathway required for the nutrient-sensitive interaction between raptor and mTOR. Mol Cell. 2003;11(4):895-904.
-
(2003)
Mol Cell.
, vol.11
, Issue.4
, pp. 895-904
-
-
Kim, D.H.1
-
3
-
-
7944235758
-
Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive
-
Jacinto E, et al. Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat Cell Biol. 2004;6(11):1122-1128.
-
(2004)
Nat Cell Biol.
, vol.6
, Issue.11
, pp. 1122-1128
-
-
Jacinto, E.1
-
4
-
-
67349241955
-
DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival
-
Peterson TR, et al. DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival. Cell. 2009;137(5):873-886.
-
(2009)
Cell.
, vol.137
, Issue.5
, pp. 873-886
-
-
Peterson, T.R.1
-
5
-
-
77953800576
-
Tti1 and Tel2 are critical factors in mammalian target of rapamycin complex assembly
-
Kaizuka T, et al. Tti1 and Tel2 are critical factors in mammalian target of rapamycin complex assembly. J Biol Chem. 2010;285(26):20109-20116.
-
(2010)
J Biol Chem.
, vol.285
, Issue.26
, pp. 20109-20116
-
-
Kaizuka, T.1
-
6
-
-
0037178781
-
Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action
-
Hara K, et al. Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell. 2002;110(2):177-189.
-
(2002)
Cell.
, vol.110
, Issue.2
, pp. 177-189
-
-
Hara, K.1
-
7
-
-
0037178786
-
MTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery
-
Kim DH, et al. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell. 2002;110(2):163-175.
-
(2002)
Cell.
, vol.110
, Issue.2
, pp. 163-175
-
-
Kim, D.H.1
-
8
-
-
33947264077
-
PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase
-
Sancak Y, et al. PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase. Mol Cell. 2007;25(6):903-915.
-
(2007)
Mol Cell.
, vol.25
, Issue.6
, pp. 903-915
-
-
Sancak, Y.1
-
9
-
-
33847397874
-
Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40
-
Vander Haar E, Lee SI, Bandhakavi S, Griffin TJ, Kim DH. Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40. Nat Cell Biol. 2007;9(3):316-323.
-
(2007)
Nat Cell Biol.
, vol.9
, Issue.3
, pp. 316-323
-
-
Vander Haar, E.1
Lee, S.I.2
Bandhakavi, S.3
Griffin, T.J.4
Kim, D.H.5
-
10
-
-
43249124698
-
PRAS40 and PRR5-like protein are new mTOR interactors that regulate apoptosis
-
Thedieck K, et al. PRAS40 and PRR5-like protein are new mTOR interactors that regulate apoptosis. PLoS One. 2007;2(11):e1217.
-
(2007)
PLoS One.
, vol.2
, Issue.11
, pp. e1217
-
-
Thedieck, K.1
-
11
-
-
34547099855
-
PRAS40 regulates mTORC1 kinase activity by functioning as a direct inhibitor of substrate binding
-
Wang L, Harris TE, Roth RA, Lawrence JC Jr. PRAS40 regulates mTORC1 kinase activity by functioning as a direct inhibitor of substrate binding. J Biol Chem. 2007;282(27):20036-20044.
-
(2007)
J Biol Chem.
, vol.282
, Issue.27
, pp. 20036-20044
-
-
Wang, L.1
Harris, T.E.2
Roth, R.A.3
Lawrence, Jr.J.C.4
-
12
-
-
3342895823
-
Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton
-
Sarbassov DD, et al. Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr Biol. 2004;14(14):1296-1302.
-
(2004)
Curr Biol.
, vol.14
, Issue.14
, pp. 1296-1302
-
-
Sarbassov, D.D.1
-
13
-
-
33749076673
-
SIN1/MIP1 maintains ric-tor-mTOR complex integrity and regulates Akt phosphorylation and substrate specificity
-
Jacinto E, et al. SIN1/MIP1 maintains ric-tor-mTOR complex integrity and regulates Akt phosphorylation and substrate specificity. Cell. 2006;127(1):125-137.
-
(2006)
Cell.
, vol.127
, Issue.1
, pp. 125-137
-
-
Jacinto, E.1
-
14
-
-
33748471980
-
MSin1 is necessary for Akt/PKB phosphorylation, and its isoforms define three distinct mTORC2s
-
Frias MA, et al. mSin1 is necessary for Akt/PKB phosphorylation, and its isoforms define three distinct mTORC2s. Curr Biol. 2006;16(18):1865-1870.
-
(2006)
Curr Biol.
, vol.16
, Issue.18
, pp. 1865-1870
-
-
Frias, M.A.1
-
15
-
-
34347210090
-
Identification of Protor as a novel Rictor-binding component of mTOR com-plex-2
-
Pearce LR, et al. Identification of Protor as a novel Rictor-binding component of mTOR com-plex-2. Biochem J. 2007;405(3):513-522.
-
(2007)
Biochem J.
, vol.405
, Issue.3
, pp. 513-522
-
-
Pearce, L.R.1
-
16
-
-
33751079895
-
Identification of Sin1 as an essential TORC2 component required for complex formation and kinase activity
-
Yang Q, Inoki K, Ikenoue T, Guan KL. Identification of Sin1 as an essential TORC2 component required for complex formation and kinase activity. Genes Dev. 2006;20(20):2820-2832.
-
(2006)
Genes Dev.
, vol.20
, Issue.20
, pp. 2820-2832
-
-
Yang, Q.1
Inoki, K.2
Ikenoue, T.3
Guan, K.L.4
-
17
-
-
84894523716
-
Making new contacts: The mTOR network in metabolism and signalling crosstalk
-
Shimobayashi M, Hall MN. Making new contacts: the mTOR network in metabolism and signalling crosstalk. Nat Rev Mol Cell Biol. 2014;15(3):155-162.
-
(2014)
Nat Rev Mol Cell Biol.
, vol.15
, Issue.3
, pp. 155-162
-
-
Shimobayashi, M.1
Hall, M.N.2
-
18
-
-
84877965001
-
Regulation of mTORC1 and its impact on gene expression at a glance
-
Laplante M, Sabatini DM. Regulation of mTORC1 and its impact on gene expression at a glance. J Cell Sci. 2013;126(pt 8):1713-1719.
-
(2013)
J Cell Sci.
, vol.126
, pp. 1713-1719
-
-
Laplante, M.1
Sabatini, D.M.2
-
19
-
-
0036713778
-
TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling
-
Inoki K, Li Y, Zhu T, Wu J, Guan KL. TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol. 2002;4(9):648-657.
-
(2002)
Nat Cell Biol.
, vol.4
, Issue.9
, pp. 648-657
-
-
Inoki, K.1
Li, Y.2
Zhu, T.3
Wu, J.4
Guan, K.L.5
-
20
-
-
0036342294
-
Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/akt pathway
-
Manning BD, Tee AR, Logsdon MN, Blenis J, Cantley LC. Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/akt pathway. Mol Cell. 2002;10(1):151-162.
-
(2002)
Mol Cell.
, vol.10
, Issue.1
, pp. 151-162
-
-
Manning, B.D.1
Tee, A.R.2
Logsdon, M.N.3
Blenis, J.4
Cantley, L.C.5
-
21
-
-
0036714127
-
Akt regulates growth by directly phosphorylating Tsc2
-
Potter CJ, Pedraza LG, Xu T. Akt regulates growth by directly phosphorylating Tsc2. Nat Cell Biol. 2002;4(9):658-665.
-
(2002)
Nat Cell Biol.
, vol.4
, Issue.9
, pp. 658-665
-
-
Potter, C.J.1
Pedraza, L.G.2
Xu, T.3
-
22
-
-
0043127125
-
Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling
-
Inoki K, Li Y, Xu T, Guan KL. Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes Dev. 2003;17(15):1829-1834.
-
(2003)
Genes Dev.
, vol.17
, Issue.15
, pp. 1829-1834
-
-
Inoki, K.1
Li, Y.2
Xu, T.3
Guan, K.L.4
-
23
-
-
0042701991
-
Tuberous sclerosis complex gene products, Tuberin and Hamartin, control mTOR signaling by acting as a GTPase-activating protein complex toward Rheb
-
Tee AR, Manning BD, Roux PP, Cantley LC, Blenis J. Tuberous sclerosis complex gene products, Tuberin and Hamartin, control mTOR signaling by acting as a GTPase-activating protein complex toward Rheb. Curr Biol. 2003;13(15):1259-1268.
-
(2003)
Curr Biol.
, vol.13
, Issue.15
, pp. 1259-1268
-
-
Tee, A.R.1
Manning, B.D.2
Roux, P.P.3
Cantley, L.C.4
Blenis, J.5
-
24
-
-
84894114029
-
Spatial control of the TSC complex integrates insulin and nutrient regulation of mTORC1 at the lysosome
-
Menon S, et al. Spatial control of the TSC complex integrates insulin and nutrient regulation of mTORC1 at the lysosome. Cell. 2014;156(4):771-785.
-
(2014)
Cell.
, vol.156
, Issue.4
, pp. 771-785
-
-
Menon, S.1
-
25
-
-
0038643484
-
Rheb promotes cell growth as a component of the insulin/TOR signalling network
-
Saucedo LJ, Gao X, Chiarelli DA, Li L, Pan D, Edgar BA. Rheb promotes cell growth as a component of the insulin/TOR signalling network. Nat Cell Biol. 2003;5(6):566-571.
-
(2003)
Nat Cell Biol.
, vol.5
, Issue.6
, pp. 566-571
-
-
Saucedo, L.J.1
Gao, X.2
Chiarelli, D.A.3
Li, L.4
Pan, D.5
Edgar, B.A.6
-
26
-
-
0038304516
-
Rheb is an essential regulator of S6K in controlling cell growth in Drosophila
-
Stocker H, et al. Rheb is an essential regulator of S6K in controlling cell growth in Drosophila. Nat Cell Biol. 2003;5(6):559-565.
-
(2003)
Nat Cell Biol.
, vol.5
, Issue.6
, pp. 559-565
-
-
Stocker, H.1
-
27
-
-
4544384577
-
Tumor-promoting phorbol esters and activated Ras inactivate the tuberous sclerosis tumor suppressor complex via p90 ribosomal S6 kinase
-
Roux PP, Ballif BA, Anjum R, Gygi SP, Blenis J. Tumor-promoting phorbol esters and activated Ras inactivate the tuberous sclerosis tumor suppressor complex via p90 ribosomal S6 kinase. Proc Natl Acad Sci U S A. 2004;101(37):13489-13494.
-
(2004)
Proc Natl Acad Sci U S A.
, vol.101
, Issue.37
, pp. 13489-13494
-
-
Roux, P.P.1
Ballif, B.A.2
Anjum, R.3
Gygi, S.P.4
Blenis, J.5
-
28
-
-
17444431201
-
Phosphorylation and functional inactivation of TSC2 by Erk implications for tuberous sclerosis and cancer pathogenesis
-
Ma L, Chen Z, Erdjument-Bromage H, Tempst P, Pandolfi PP. Phosphorylation and functional inactivation of TSC2 by Erk implications for tuberous sclerosis and cancer pathogenesis. Cell. 2005;121(2):179-193.
-
(2005)
Cell.
, vol.121
, Issue.2
, pp. 179-193
-
-
Ma, L.1
Chen, Z.2
Erdjument-Bromage, H.3
Tempst, P.4
Pandolfi, P.P.5
-
29
-
-
0345167800
-
TSC2 mediates cellular energy response to control cell growth and survival
-
Inoki K, Zhu T, Guan KL. TSC2 mediates cellular energy response to control cell growth and survival. Cell. 2003;115(5):577-590.
-
(2003)
Cell.
, vol.115
, Issue.5
, pp. 577-590
-
-
Inoki, K.1
Zhu, T.2
Guan, K.L.3
-
30
-
-
42949139481
-
AMPK phosphorylation of raptor mediates a metabolic checkpoint
-
Gwinn DM, et al. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell. 2008;30(2):214-226.
-
(2008)
Mol Cell.
, vol.30
, Issue.2
, pp. 214-226
-
-
Gwinn, D.M.1
-
31
-
-
10044276783
-
Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex
-
Brugarolas J, et al. Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex. Genes Dev. 2004;18(23):2893-2904.
-
(2004)
Genes Dev.
, vol.18
, Issue.23
, pp. 2893-2904
-
-
Brugarolas, J.1
-
32
-
-
38349056675
-
Hypoxia regulates TSC1/2-mTOR signaling and tumor suppression through REDD1-mediated 14-3-3 shuttling
-
DeYoung MP, Horak P, Sofer A, Sgroi D, Ellisen LW. Hypoxia regulates TSC1/2-mTOR signaling and tumor suppression through REDD1-mediated 14-3-3 shuttling. Genes Dev. 2008;22(2):239-251.
-
(2008)
Genes Dev.
, vol.22
, Issue.2
, pp. 239-251
-
-
Deyoung, M.P.1
Horak, P.2
Sofer, A.3
Sgroi, D.4
Ellisen, L.W.5
-
34
-
-
84903158167
-
Regulation of mTORC1 by amino acids
-
Bar-Peled L, Sabatini DM. Regulation of mTORC1 by amino acids. Trends Cell Biol. 2014;24(7):400-406.
-
(2014)
Trends Cell Biol.
, vol.24
, Issue.7
, pp. 400-406
-
-
Bar-Peled, L.1
Sabatini, D.M.2
-
35
-
-
48649085816
-
Regulation of TORC1 by Rag GTPases in nutrient response
-
Kim E, Goraksha-Hicks P, Li L, Neufeld TP, Guan KL. Regulation of TORC1 by Rag GTPases in nutrient response. Nat Cell Biol. 2008;10(8):935-945.
-
(2008)
Nat Cell Biol.
, vol.10
, Issue.8
, pp. 935-945
-
-
Kim, E.1
Goraksha-Hicks, P.2
Li, L.3
Neufeld, T.P.4
Guan, K.L.5
-
36
-
-
45849105156
-
The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1
-
Sancak Y, et al. The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science. 2008;320(5882):1496-1501.
-
(2008)
Science.
, vol.320
, Issue.5882
, pp. 1496-1501
-
-
Sancak, Y.1
-
37
-
-
0035831451
-
Novel G proteins, Rag C and Rag D, interact with GTP-binding proteins, Rag A and Rag B
-
Sekiguchi T, Hirose E, Nakashima N, Ii M, Nish-imoto T. Novel G proteins, Rag C and Rag D, interact with GTP-binding proteins, Rag A and Rag B. J Biol Chem. 2001;276(10):7246-7257.
-
(2001)
J Biol Chem.
, vol.276
, Issue.10
, pp. 7246-7257
-
-
Sekiguchi, T.1
Hirose, E.2
Nakashima, N.3
Ii, M.4
Nish-Imoto, T.5
-
38
-
-
77951768486
-
Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids
-
Sancak Y, Bar-Peled L, Zoncu R, Markhard AL, Nada S, Sabatini DM. Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell. 2010;141(2):290-303.
-
(2010)
Cell.
, vol.141
, Issue.2
, pp. 290-303
-
-
Sancak, Y.1
Bar-Peled, L.2
Zoncu, R.3
Markhard, A.L.4
Nada, S.5
Sabatini, D.M.6
-
39
-
-
84882800242
-
Inhibition of mTORC1 by astrin and stress granules prevents apoptosis in cancer cells
-
Thedieck K, et al. Inhibition of mTORC1 by astrin and stress granules prevents apoptosis in cancer cells. Cell. 2013;154(4):859-874.
-
(2013)
Cell.
, vol.154
, Issue.4
, pp. 859-874
-
-
Thedieck, K.1
-
40
-
-
84885105969
-
A tuberous sclerosis complex signalling node at the peroxisome regulates mTORC1 and autophagy in response to ROS
-
Zhang J, et al. A tuberous sclerosis complex signalling node at the peroxisome regulates mTORC1 and autophagy in response to ROS. Nat Cell Biol. 2013;15(10):1186-1196.
-
(2013)
Nat Cell Biol.
, vol.15
, Issue.10
, pp. 1186-1196
-
-
Zhang, J.1
-
41
-
-
84866431363
-
Ragulator is a GEF for the rag GTPases that signal amino acid levels to mTORC1
-
Bar-Peled L, Schweitzer LD, Zoncu R, Sabatini DM. Ragulator is a GEF for the rag GTPases that signal amino acid levels to mTORC1. Cell. 2012;150(6):1196-1208.
-
(2012)
Cell.
, vol.150
, Issue.6
, pp. 1196-1208
-
-
Bar-Peled, L.1
Schweitzer, L.D.2
Zoncu, R.3
Sabatini, D.M.4
-
42
-
-
84878357685
-
A Tumor suppressor complex with GAP activity for the Rag GTPases that signal amino acid sufficiency to mTORC1
-
Bar-Peled L, et al. A Tumor suppressor complex with GAP activity for the Rag GTPases that signal amino acid sufficiency to mTORC1. Science. 2013;340(6136):1100-1106.
-
(2013)
Science.
, vol.340
, Issue.6136
, pp. 1100-1106
-
-
Bar-Peled, L.1
-
43
-
-
84888200442
-
The folliculin tumor suppressor is a GAP for the RagC/D GTPases that signal amino acid levels to mTORC1
-
Tsun ZY, et al. The folliculin tumor suppressor is a GAP for the RagC/D GTPases that signal amino acid levels to mTORC1. Mol Cell. 2013;52(4):495-505.
-
(2013)
Mol Cell.
, vol.52
, Issue.4
, pp. 495-505
-
-
Tsun, Z.Y.1
-
44
-
-
80555143078
-
MTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase
-
Zoncu R, Bar-Peled L, Efeyan A, Wang S, Sancak Y, Sabatini DM. mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase. Science. 2011;334(6056):678-683.
-
(2011)
Science.
, vol.334
, Issue.6056
, pp. 678-683
-
-
Zoncu, R.1
Bar-Peled, L.2
Efeyan, A.3
Wang, S.4
Sancak, Y.5
Sabatini, D.M.6
-
45
-
-
84862777407
-
Leucyl-tRNA synthetase is an intra-cellular leucine sensor for the mTORC1-signal-ing pathway
-
Han JM, et al. Leucyl-tRNA synthetase is an intra-cellular leucine sensor for the mTORC1-signal-ing pathway. Cell. 2012;149(2):410-424.
-
(2012)
Cell.
, vol.149
, Issue.2
, pp. 410-424
-
-
Han, J.M.1
-
46
-
-
84900405146
-
RagA, but not RagB, is essential for embryonic development and adult mice
-
Efeyan A, et al. RagA, but not RagB, is essential for embryonic development and adult mice. Dev Cell. 2014;29(3):321-329.
-
(2014)
Dev Cell.
, vol.29
, Issue.3
, pp. 321-329
-
-
Efeyan, A.1
-
47
-
-
84903795431
-
Rag GTPases are cardioprotective by regulating lysosomal function
-
Kim YC, et al. Rag GTPases are cardioprotective by regulating lysosomal function. Nat Commun. 2014;5:4241.
-
(2014)
Nat Commun.
, vol.5
, pp. 4241
-
-
Kim, Y.C.1
-
48
-
-
79952293503
-
Activation of mTORC2 by association with the ribosome
-
Zinzalla V, Stracka D, Oppliger W, Hall MN. Activation of mTORC2 by association with the ribosome. Cell. 2011;144(5):757-768.
-
(2011)
Cell.
, vol.144
, Issue.5
, pp. 757-768
-
-
Zinzalla, V.1
Stracka, D.2
Oppliger, W.3
Hall, M.N.4
-
49
-
-
67649867447
-
MTOR complex 2 in adipose tissue negatively controls whole-body growth
-
Cybulski N, Polak P, Auwerx J, Ruegg MA, Hall MN. mTOR complex 2 in adipose tissue negatively controls whole-body growth. Proc Natl Acad Sci U S A. 2009;106(24):9902-9907.
-
(2009)
Proc Natl Acad Sci U S A.
, vol.106
, Issue.24
, pp. 9902-9907
-
-
Cybulski, N.1
Polak, P.2
Auwerx, J.3
Ruegg, M.A.4
Hall, M.N.5
-
50
-
-
13844312400
-
Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex
-
Sarbassov DD, Guertin DA, Ali SM, Sabatini DM. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science. 2005;307(5712):1098-1101.
-
(2005)
Science.
, vol.307
, Issue.5712
, pp. 1098-1101
-
-
Sarbassov, D.D.1
Guertin, D.A.2
Ali, S.M.3
Sabatini, D.M.4
-
51
-
-
3342958797
-
The TSC1-2 tumor suppressor controls insulin-PI3K signaling via regulation of IRS proteins
-
Harrington LS, et al. The TSC1-2 tumor suppressor controls insulin-PI3K signaling via regulation of IRS proteins. J Cell Biol. 2004;166(2):213-223.
-
(2004)
J Cell Biol.
, vol.166
, Issue.2
, pp. 213-223
-
-
Harrington, L.S.1
-
52
-
-
4544220704
-
Absence of S6K1 protects against age-and diet-induced obesity while enhancing insulin sensitivity
-
Um SH, et al. Absence of S6K1 protects against age-and diet-induced obesity while enhancing insulin sensitivity. Nature. 2004;431(7005):200-205.
-
(2004)
Nature.
, vol.431
, Issue.7005
, pp. 200-205
-
-
Um, S.H.1
-
53
-
-
75749105049
-
MTORC1-activated S6K1 phosphorylates Rictor on threonine 1135 and regulates mTORC2 signaling
-
Julien LA, Carriere A, Moreau J, Roux PP. mTORC1-activated S6K1 phosphorylates Rictor on threonine 1135 and regulates mTORC2 signaling. Mol Cell Biol. 2010;30(4):908-921.
-
(2010)
Mol Cell Biol.
, vol.30
, Issue.4
, pp. 908-921
-
-
Julien, L.A.1
Carriere, A.2
Moreau, J.3
Roux, P.P.4
-
54
-
-
33644886769
-
Nutrients suppress phosphatidylinositol 3-kinase/Akt signaling via raptor-dependent mTOR-mediated insulin receptor substrate 1 phosphorylation
-
Tzatsos A, Kandror KV. Nutrients suppress phosphatidylinositol 3-kinase/Akt signaling via raptor-dependent mTOR-mediated insulin receptor substrate 1 phosphorylation. Mol Cell Biol. 2006;26(1):63-76.
-
(2006)
Mol Cell Biol.
, vol.26
, Issue.1
, pp. 63-76
-
-
Tzatsos, A.1
Kandror, K.V.2
-
55
-
-
79958696694
-
The mTOR-regulated phosphop-roteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling
-
Hsu PP, et al. The mTOR-regulated phosphop-roteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Science. 2011;332(6035):1317-1322.
-
(2011)
Science.
, vol.332
, Issue.6035
, pp. 1317-1322
-
-
Hsu, P.P.1
-
56
-
-
79958696336
-
Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling
-
Yu Y, et al. Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling. Science. 2011;332(6035):1322-1326.
-
(2011)
Science.
, vol.332
, Issue.6035
, pp. 1322-1326
-
-
Yu, Y.1
-
57
-
-
81055144784
-
Autophagy: Renovation of cells and tissues
-
Mizushima N, Komatsu M. Autophagy: renovation of cells and tissues. Cell. 2011;147(4):728-741.
-
(2011)
Cell.
, vol.147
, Issue.4
, pp. 728-741
-
-
Mizushima, N.1
Komatsu, M.2
-
58
-
-
0000189281
-
Cellular differentiation in the kidneys of newborn mice studies with the electron microscope
-
Clark SL Jr. Cellular differentiation in the kidneys of newborn mice studies with the electron microscope. J Biophys Biochem Cytol. 1957;3(3):349-362.
-
(1957)
J Biophys Biochem Cytol.
, vol.3
, Issue.3
, pp. 349-362
-
-
Clark, Jr.S.L.1
-
60
-
-
0017158118
-
Cellular autophagocytosis induced by deprivation of serum and amino acids in HeLa cells
-
Mitchener JS, Shelburne JD, Bradford WD, Hawkins HK. Cellular autophagocytosis induced by deprivation of serum and amino acids in HeLa cells. Am J Pathol. 1976;83(3):485-492.
-
(1976)
Am J Pathol.
, vol.83
, Issue.3
, pp. 485-492
-
-
Mitchener, J.S.1
Shelburne, J.D.2
Bradford, W.D.3
Hawkins, H.K.4
-
61
-
-
0017697151
-
Induction of autophagy by amino-acid deprivation in perfused rat liver
-
Mortimore GE, Schworer CM. Induction of autophagy by amino-acid deprivation in perfused rat liver. Nature. 1977;270(5633):174-176.
-
(1977)
Nature.
, vol.270
, Issue.5633
, pp. 174-176
-
-
Mortimore, G.E.1
Schworer, C.M.2
-
62
-
-
0032512636
-
Tor, a phosphatidylinositol kinase homologue, controls autophagy in yeast
-
Noda T, Ohsumi Y. Tor, a phosphatidylinositol kinase homologue, controls autophagy in yeast. J Biol Chem. 1998;273(7):3963-3966.
-
(1998)
J Biol Chem.
, vol.273
, Issue.7
, pp. 3963-3966
-
-
Noda, T.1
Ohsumi, Y.2
-
63
-
-
4344563878
-
Role and regulation of starvation-induced autoph-agy in the Drosophila fat body
-
Scott RC, Schuldiner O, Neufeld TP. Role and regulation of starvation-induced autoph-agy in the Drosophila fat body. Dev Cell. 2004;7(2):167-178.
-
(2004)
Dev Cell.
, vol.7
, Issue.2
, pp. 167-178
-
-
Scott, R.C.1
Schuldiner, O.2
Neufeld, T.P.3
-
64
-
-
77950501014
-
MTOR regulation of autophagy
-
Jung CH, Ro SH, Cao J, Otto NM, Kim DH. mTOR regulation of autophagy. FEBS Lett. 2010;584(7):1287-1295.
-
(2010)
FEBS Lett.
, vol.584
, Issue.7
, pp. 1287-1295
-
-
Jung, C.H.1
Ro, S.H.2
Cao, J.3
Otto, N.M.4
Kim, D.H.5
-
65
-
-
84891745585
-
Autophagy regulation by nutrient signaling
-
Russell RC, Yuan HX, Guan KL. Autophagy regulation by nutrient signaling. Cell Res. 2014;24(1):42-57.
-
(2014)
Cell Res.
, vol.24
, Issue.1
, pp. 42-57
-
-
Russell, R.C.1
Yuan, H.X.2
Guan, K.L.3
-
66
-
-
66449083078
-
ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy
-
Ganley IG, Lam du H, Wang J, Ding X, Chen S, Jiang X. ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy. J Biol Chem. 2009;284(18):12297-12305.
-
(2009)
J Biol Chem.
, vol.284
, Issue.18
, pp. 12297-12305
-
-
Ganley, I.G.1
Lam Du, H.2
Wang, J.3
Ding, X.4
Chen, S.5
Jiang, X.6
-
67
-
-
65249119430
-
Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy
-
Hosokawa N, et al. Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol Biol Cell. 2009;20(7):1981-1991.
-
(2009)
Mol Biol Cell.
, vol.20
, Issue.7
, pp. 1981-1991
-
-
Hosokawa, N.1
-
68
-
-
65249176304
-
ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery
-
Jung CH, et al. ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol Biol Cell. 2009;20(7):1992-2003.
-
(2009)
Mol Biol Cell.
, vol.20
, Issue.7
, pp. 1992-2003
-
-
Jung, C.H.1
-
69
-
-
0034683568
-
Tor-mediated induction of autophagy via an Apg1 protein kinase complex
-
Kamada Y, Funakoshi T, Shintani T, Nagano K, Ohsumi M, Ohsumi Y. Tor-mediated induction of autophagy via an Apg1 protein kinase complex. J Cell Biol. 2000;150(6):1507-1513.
-
(2000)
J Cell Biol.
, vol.150
, Issue.6
, pp. 1507-1513
-
-
Kamada, Y.1
Funakoshi, T.2
Shintani, T.3
Nagano, K.4
Ohsumi, M.5
Ohsumi, Y.6
-
70
-
-
79551598347
-
AMPK and mTOR regulate autophagy through direct phospho-rylation of Ulk1
-
Kim J, Kundu M, Viollet B, Guan KL. AMPK and mTOR regulate autophagy through direct phospho-rylation of Ulk1. Nat Cell Biol. 2011;13(2):132-141.
-
(2011)
Nat Cell Biol.
, vol.13
, Issue.2
, pp. 132-141
-
-
Kim, J.1
Kundu, M.2
Viollet, B.3
Guan, K.L.4
-
71
-
-
84876488191
-
MTOR inhibits autophagy by controlling ULK1 ubiquitylation, self-association and function through AMBRA1 and TRAF6
-
Nazio F, et al. mTOR inhibits autophagy by controlling ULK1 ubiquitylation, self-association and function through AMBRA1 and TRAF6. Nat Cell Biol. 2013;15(4):406-416.
-
(2013)
Nat Cell Biol.
, vol.15
, Issue.4
, pp. 406-416
-
-
Nazio, F.1
-
72
-
-
84872586081
-
Differential regulation of distinct Vps34 complexes by AMPK in nutrient stress and autophagy
-
Kim J, et al. Differential regulation of distinct Vps34 complexes by AMPK in nutrient stress and autophagy. Cell. 2013;152(1-2):290-303.
-
(2013)
Cell.
, vol.152
, Issue.1-2
, pp. 290-303
-
-
Kim, J.1
-
73
-
-
84890848742
-
Regulation of PIK3C3/VPS34 complexes by MTOR in nutrient stress-induced autophagy
-
Yuan HX, Russell RC, Guan KL. Regulation of PIK3C3/VPS34 complexes by MTOR in nutrient stress-induced autophagy. Autophagy. 2013;9(12):1983-1995.
-
(2013)
Autophagy.
, vol.9
, Issue.12
, pp. 1983-1995
-
-
Yuan, H.X.1
Russell, R.C.2
Guan, K.L.3
-
74
-
-
84876812269
-
Signals from the lysosome: A control centre for cellular clearance and energy metabolism
-
Settembre C, Fraldi A, Medina DL, Ballabio A. Signals from the lysosome: a control centre for cellular clearance and energy metabolism. Nat Rev Mol Cell Biol. 2013;14(5):283-296.
-
(2013)
Nat Rev Mol Cell Biol.
, vol.14
, Issue.5
, pp. 283-296
-
-
Settembre, C.1
Fraldi, A.2
Medina, D.L.3
Ballabio, A.4
-
75
-
-
80955177196
-
TFEB links autoph-agy to lysosomal biogenesis
-
Settembre C, et al. TFEB links autoph-agy to lysosomal biogenesis. Science. 2011;332(6036):1429-1433.
-
(2011)
Science.
, vol.332
, Issue.6036
, pp. 1429-1433
-
-
Settembre, C.1
-
76
-
-
84857997408
-
A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB
-
Settembre C, et al. A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB. EMBO J. 2012;31(5):1095-1108.
-
(2012)
EMBO J.
, vol.31
, Issue.5
, pp. 1095-1108
-
-
Settembre, C.1
-
77
-
-
84864874958
-
MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB
-
Martina JA, Chen Y, Gucek M, Puertollano R. MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB. Autophagy. 2012;8(6):903-914.
-
(2012)
Autophagy.
, vol.8
, Issue.6
, pp. 903-914
-
-
Martina, J.A.1
Chen, Y.2
Gucek, M.3
Puertollano, R.4
-
78
-
-
84874352229
-
Rag GTPases mediate amino acid-dependent recruitment of TFEB and MITF to lysosomes
-
Martina JA, Puertollano R. Rag GTPases mediate amino acid-dependent recruitment of TFEB and MITF to lysosomes. J Cell Biol. 2013;200(4):475-491.
-
(2013)
J Cell Biol.
, vol.200
, Issue.4
, pp. 475-491
-
-
Martina, J.A.1
Puertollano, R.2
-
79
-
-
77953699711
-
Termination of autophagy and reformation of lysosomes regulated by mTOR
-
Yu L, et al. Termination of autophagy and reformation of lysosomes regulated by mTOR. Nature. 2010;465(7300):942-946.
-
(2010)
Nature.
, vol.465
, Issue.7300
, pp. 942-946
-
-
Yu, L.1
-
80
-
-
78649712949
-
MTORC2 can associate with ribo-somes to promote cotranslational phosphory-lation and stability of nascent Akt polypeptide
-
Oh WJ, et al. mTORC2 can associate with ribo-somes to promote cotranslational phosphory-lation and stability of nascent Akt polypeptide. EMBO J. 2010;29(23):3939-3951.
-
(2010)
EMBO J.
, vol.29
, Issue.23
, pp. 3939-3951
-
-
Oh, W.J.1
-
81
-
-
84866122688
-
Autoph-agy modulation as a potential therapeutic target for diverse diseases
-
Rubinsztein DC, Codogno P, Levine B. Autoph-agy modulation as a potential therapeutic target for diverse diseases. Nat Rev Drug Discov. 2012;11(9):709-730.
-
(2012)
Nat Rev Drug Discov.
, vol.11
, Issue.9
, pp. 709-730
-
-
Rubinsztein, D.C.1
Codogno, P.2
Levine, B.3
-
82
-
-
84877628647
-
Autophagy in human health and disease
-
Choi AM, Ryter SW, Levine B. Autophagy in human health and disease. N Engl J Med. 2013;368(7):651-662.
-
(2013)
N Engl J Med.
, vol.368
, Issue.7
, pp. 651-662
-
-
Choi, A.M.1
Ryter, S.W.2
Levine, B.3
-
83
-
-
79953298958
-
Next-generation mTOR inhibitors in clinical oncology: How pathway complexity informs therapeutic strategy
-
Wander SA, Hennessy BT, Slingerland JM. Next-generation mTOR inhibitors in clinical oncology: how pathway complexity informs therapeutic strategy. J Clin Invest. 2011;121(4):1231-1241.
-
(2011)
J Clin Invest.
, vol.121
, Issue.4
, pp. 1231-1241
-
-
Wander, S.A.1
Hennessy, B.T.2
Slingerland, J.M.3
-
84
-
-
80155142474
-
Rapamycin passes the torch: A new generation of mTOR inhibitors
-
Benjamin D, Colombi M, Moroni C, Hall MN. Rapamycin passes the torch: a new generation of mTOR inhibitors. Nat Rev Drug Discov. 2011;10(11):868-880.
-
(2011)
Nat Rev Drug Discov.
, vol.10
, Issue.11
, pp. 868-880
-
-
Benjamin, D.1
Colombi, M.2
Moroni, C.3
Hall, M.N.4
-
85
-
-
84874611570
-
Rap-alogs and mTOR inhibitors as anti-aging therapeutics
-
Lamming DW, Ye L, Sabatini DM, Baur JA. Rap-alogs and mTOR inhibitors as anti-aging therapeutics. J Clin Invest. 2013;123(3):980-989.
-
(2013)
J Clin Invest.
, vol.123
, Issue.3
, pp. 980-989
-
-
Lamming, D.W.1
Ye, L.2
Sabatini, D.M.3
Baur, J.A.4
-
86
-
-
84896692038
-
Rapamycin: One drug, many effects
-
Li J, Kim SG, Blenis J. Rapamycin: one drug, many effects. Cell Metab. 2014;19(3):373-379.
-
(2014)
Cell Metab.
, vol.19
, Issue.3
, pp. 373-379
-
-
Li, J.1
Kim, S.G.2
Blenis, J.3
-
87
-
-
0025776523
-
Targets for cell cycle arrest by the immunosuppressant rapamy-cin in yeast
-
Heitman J, Movva NR, Hall MN. Targets for cell cycle arrest by the immunosuppressant rapamy-cin in yeast. Science. 1991;253(5022):905-909.
-
(1991)
Science.
, vol.253
, Issue.5022
, pp. 905-909
-
-
Heitman, J.1
Movva, N.R.2
Hall, M.N.3
-
88
-
-
0028360374
-
A mammalian protein targeted by G1-arresting rapamycin-receptor complex
-
Brown EJ, et al. A mammalian protein targeted by G1-arresting rapamycin-receptor complex. Nature. 1994;369(6483):756-758.
-
(1994)
Nature.
, vol.369
, Issue.6483
, pp. 756-758
-
-
Brown, E.J.1
-
89
-
-
0028239893
-
RAFT1: A mammalian protein that binds to FKBP12 in a rapamycin-depen-dent fashion and is homologous to yeast TORs
-
Sabatini DM, Erdjument-Bromage H, Lui M, Tempst P, Snyder SH. RAFT1: a mammalian protein that binds to FKBP12 in a rapamycin-depen-dent fashion and is homologous to yeast TORs. Cell. 1994;78(1):35-43.
-
(1994)
Cell.
, vol.78
, Issue.1
, pp. 35-43
-
-
Sabatini, D.M.1
Erdjument-Bromage, H.2
Lui, M.3
Tempst, P.4
Snyder, S.H.5
-
90
-
-
0028598672
-
RAPT1, a mammalian homolog of yeast Tor, interacts with the FKBP12/rapamycin complex
-
Chiu MI, Katz H, Berlin V. RAPT1, a mammalian homolog of yeast Tor, interacts with the FKBP12/rapamycin complex. Proc Natl Acad Sci U S A. 1994;91(26):12574-12578.
-
(1994)
Proc Natl Acad Sci U S A.
, vol.91
, Issue.26
, pp. 12574-12578
-
-
Chiu, M.I.1
Katz, H.2
Berlin, V.3
-
91
-
-
0028950217
-
Isolation of a protein target of the FKBP12-rapamycin complex in mammalian cells
-
Sabers CJ, et al. Isolation of a protein target of the FKBP12-rapamycin complex in mammalian cells. J Biol Chem. 1995;270(2):815-822.
-
(1995)
J Biol Chem.
, vol.270
, Issue.2
, pp. 815-822
-
-
Sabers, C.J.1
-
92
-
-
77954235821
-
Targeting mTOR: Prospects for mTOR complex 2 inhibitors in cancer therapy
-
Sparks CA, Guertin DA. Targeting mTOR: prospects for mTOR complex 2 inhibitors in cancer therapy. Oncogene. 2010;29(26):3733-3744.
-
(2010)
Oncogene.
, vol.29
, Issue.26
, pp. 3733-3744
-
-
Sparks, C.A.1
Guertin, D.A.2
-
93
-
-
33746637660
-
Current development of mTOR inhibitors as anticancer agents
-
Faivre S, Kroemer G, Raymond E. Current development of mTOR inhibitors as anticancer agents. Nat Rev Drug Discov. 2006;5(8):671-688.
-
(2006)
Nat Rev Drug Discov.
, vol.5
, Issue.8
, pp. 671-688
-
-
Faivre, S.1
Kroemer, G.2
Raymond, E.3
-
94
-
-
17144427728
-
Synergistic augmentation of rapamycin-induced autophagy in malignant glioma cells by phosphatidylinositol 3-kinase/protein kinase B inhibitors
-
Takeuchi H, et al. Synergistic augmentation of rapamycin-induced autophagy in malignant glioma cells by phosphatidylinositol 3-kinase/protein kinase B inhibitors. Cancer Res. 2005;65(8):3336-3346.
-
(2005)
Cancer Res.
, vol.65
, Issue.8
, pp. 3336-3346
-
-
Takeuchi, H.1
-
95
-
-
0036566266
-
Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autoph-agy
-
Ravikumar B, Duden R, Rubinsztein DC. Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autoph-agy. Hum Mol Genet. 2002;11(9):1107-1117.
-
(2002)
Hum Mol Genet.
, vol.11
, Issue.9
, pp. 1107-1117
-
-
Ravikumar, B.1
Duden, R.2
Rubinsztein, D.C.3
-
96
-
-
2642586352
-
Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease
-
Ravikumar B, et al. Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat Genet. 2004;36(6):585-595.
-
(2004)
Nat Genet.
, vol.36
, Issue.6
, pp. 585-595
-
-
Ravikumar, B.1
-
97
-
-
84885574879
-
Prolonged autophagy by MTOR inhibitor leads radioresistant cancer cells into senescence
-
Nam HY, Han MW, Chang HW, Kim SY, Kim SW. Prolonged autophagy by MTOR inhibitor leads radioresistant cancer cells into senescence. Autophagy. 2013;9(10):1631-1632.
-
(2013)
Autophagy.
, vol.9
, Issue.10
, pp. 1631-1632
-
-
Nam, H.Y.1
Han, M.W.2
Chang, H.W.3
Kim, S.Y.4
Kim, S.W.5
-
98
-
-
84855975333
-
Rapamycin causes upregu-lation of autophagy and impairs islets function both in vitro and in vivo
-
Tanemura M, et al. Rapamycin causes upregu-lation of autophagy and impairs islets function both in vitro and in vivo. Am J Transplant. 2012;12(1):102-114.
-
(2012)
Am J Transplant.
, vol.12
, Issue.1
, pp. 102-114
-
-
Tanemura, M.1
-
99
-
-
84889575041
-
Measurement of autophagy flux in the nervous system in vivo
-
Castillo K, et al. Measurement of autophagy flux in the nervous system in vivo. Cell Death Dis. 2013;4:e917.
-
(2013)
Cell Death Dis.
, vol.4
, pp. e917
-
-
Castillo, K.1
-
100
-
-
79961059959
-
Tumorigenesis in tuberous sclerosis complex is autophagy and p62/seques-tosome 1 (SQSTM1)-dependent
-
Parkhitko A, et al. Tumorigenesis in tuberous sclerosis complex is autophagy and p62/seques-tosome 1 (SQSTM1)-dependent. Proc Natl Acad Sci U S A. 2011;108(30):12455-12460.
-
(2011)
Proc Natl Acad Sci U S A.
, vol.108
, Issue.30
, pp. 12455-12460
-
-
Parkhitko, A.1
-
101
-
-
84895432817
-
-
National Cancer Institute Web site Updated July 3, 2013. Accessed September 26, 2014
-
Pazdur R. FDA Approval for Everolimus. National Cancer Institute Web site. http://www.cancer.gov/cancertopics/druginfo/fda-everolimus. Updated July 3, 2013. Accessed September 26, 2014.
-
FDA Approval for Everolimus
-
-
Pazdur, R.1
-
102
-
-
58649114084
-
MTOR complex 2 is required for the development of prostate cancer induced by Pten loss in mice
-
Guertin DA, et al. mTOR complex 2 is required for the development of prostate cancer induced by Pten loss in mice. Cancer Cell. 2009;15(2):148-159.
-
(2009)
Cancer Cell.
, vol.15
, Issue.2
, pp. 148-159
-
-
Guertin, D.A.1
-
103
-
-
56249147509
-
Rapamycin differentially inhibits S6Ks and 4E-BP1 to mediate cell-type-specific repression of mRNA translation
-
Choo AY, Yoon SO, Kim SG, Roux PP, Blenis J. Rapamycin differentially inhibits S6Ks and 4E-BP1 to mediate cell-type-specific repression of mRNA translation. Proc Natl Acad Sci U S A. 2008;105(45):17414-17419.
-
(2008)
Proc Natl Acad Sci U S A.
, vol.105
, Issue.45
, pp. 17414-17419
-
-
Choo, A.Y.1
Yoon, S.O.2
Kim, S.G.3
Roux, P.P.4
Blenis, J.5
-
104
-
-
84880709668
-
MTORC1 phosphorylation sites encode their sensitivity to starvation and rapamycin
-
Kang SA, et al. mTORC1 phosphorylation sites encode their sensitivity to starvation and rapamycin. Science. 2013;341(6144):1236566.
-
(2013)
Science.
, vol.341
, Issue.6144
, pp. 1236566
-
-
Kang, S.A.1
-
105
-
-
68149096799
-
The pharmacology of mTOR inhibition
-
Guertin DA, Sabatini DM. The pharmacology of mTOR inhibition. Sci Signal. 2009;2(67):pe24.
-
(2009)
Sci Signal.
, vol.2
, Issue.67
, pp. pe24
-
-
Guertin, D.A.1
Sabatini, D.M.2
-
106
-
-
65549145048
-
An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamy-cin-resistant functions of mTORC1
-
Thoreen CC, et al. An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamy-cin-resistant functions of mTORC1. J Biol Chem. 2009;284(12):8023-8032.
-
(2009)
J Biol Chem.
, vol.284
, Issue.12
, pp. 8023-8032
-
-
Thoreen, C.C.1
-
107
-
-
79960348203
-
Relieving autophagy and 4EBP1 from rapamycin resistance
-
Nyfeler B, et al. Relieving autophagy and 4EBP1 from rapamycin resistance. Mol Cell Biol. 2011;31(14):2867-2876.
-
(2011)
Mol Cell Biol.
, vol.31
, Issue.14
, pp. 2867-2876
-
-
Nyfeler, B.1
-
108
-
-
75149112670
-
AZD8055 is a potent, selective, and orally bioavailable ATP-competitive mammalian target of rapamycin kinase inhibitor with in vitro and in vivo antitumor activity
-
Chresta CM, et al. AZD8055 is a potent, selective, and orally bioavailable ATP-competitive mammalian target of rapamycin kinase inhibitor with in vitro and in vivo antitumor activity. Cancer Res. 2010;70(1):288-298.
-
(2010)
Cancer Res.
, vol.70
, Issue.1
, pp. 288-298
-
-
Chresta, C.M.1
-
109
-
-
81155132211
-
Inhibition of mTOR kinase by AZD8055 can antagonize chemotherapy-induced cell death through autophagy induction and down-reg-ulation of p62/sequestosome 1
-
Huang S, Yang ZJ, Yu C, Sinicrope FA. Inhibition of mTOR kinase by AZD8055 can antagonize chemotherapy-induced cell death through autophagy induction and down-reg-ulation of p62/sequestosome 1. J Biol Chem. 2011;286(46):40002-40012.
-
(2011)
J Biol Chem.
, vol.286
, Issue.46
, pp. 40002-40012
-
-
Huang, S.1
Yang, Z.J.2
Yu, C.3
Sinicrope, F.A.4
-
110
-
-
37349041710
-
Role of AMP-activated protein kinase in the metabolic syndrome and in heart disease
-
Hardie DG. Role of AMP-activated protein kinase in the metabolic syndrome and in heart disease. FEBS Lett. 2008;582(1):81-89.
-
(2008)
FEBS Lett.
, vol.582
, Issue.1
, pp. 81-89
-
-
Hardie, D.G.1
-
111
-
-
36348950449
-
Metformin inhibits mammalian target of rapamycin-dependent translation initiation in breast cancer cells
-
Dowling RJ, Zakikhani M, Fantus IG, Pollak M, Sonenberg N. Metformin inhibits mammalian target of rapamycin-dependent translation initiation in breast cancer cells. Cancer Res. 2007;67(22):10804-10812.
-
(2007)
Cancer Res.
, vol.67
, Issue.22
, pp. 10804-10812
-
-
Dowling, R.J.1
Zakikhani, M.2
Fantus, I.G.3
Pollak, M.4
Sonenberg, N.5
-
112
-
-
77955287742
-
Metformin, independent of AMPK, inhibits mTORC1 in a rag GTPase-depen-dent manner
-
Kalender A, et al. Metformin, independent of AMPK, inhibits mTORC1 in a rag GTPase-depen-dent manner. Cell Metab. 2010;11(5):390-401.
-
(2010)
Cell Metab.
, vol.11
, Issue.5
, pp. 390-401
-
-
Kalender, A.1
-
113
-
-
79959764729
-
Metformin, independent of AMPK, induces mTOR inhibition and cell-cycle arrest through REDD1
-
Ben Sahra I, et al. Metformin, independent of AMPK, induces mTOR inhibition and cell-cycle arrest through REDD1. Cancer Res. 2011;71(13):4366-4372.
-
(2011)
Cancer Res.
, vol.71
, Issue.13
, pp. 4366-4372
-
-
Ben Sahra, I.1
-
114
-
-
34547114031
-
Systemic treatment with the antidiabetic drug metformin selectively impairs p53-deficient tumor cell growth
-
Buzzai M, et al. Systemic treatment with the antidiabetic drug metformin selectively impairs p53-deficient tumor cell growth. Cancer Res. 2007;67(14):6745-6752.
-
(2007)
Cancer Res.
, vol.67
, Issue.14
, pp. 6745-6752
-
-
Buzzai, M.1
-
115
-
-
84859360525
-
Therapeutic metformin/AMPK activation blocked lymphoma cell growth via inhibition of mTOR pathway and induction of autophagy
-
Shi WY, et al. Therapeutic metformin/AMPK activation blocked lymphoma cell growth via inhibition of mTOR pathway and induction of autophagy. Cell Death Dis. 2012;3:e275.
-
(2012)
Cell Death Dis.
, vol.3
, pp. e275
-
-
Shi, W.Y.1
-
116
-
-
80053417028
-
Metformin inhibits melanoma development through autophagy and apoptosis mechanisms
-
Tomic T, et al. Metformin inhibits melanoma development through autophagy and apoptosis mechanisms. Cell Death Dis. 2011;2:e199.
-
(2011)
Cell Death Dis.
, vol.2
, pp. e199
-
-
Tomic, T.1
-
117
-
-
79959385996
-
Improvement of cardiac functions by chronic metformin treatment is associated with enhanced cardiac autophagy in diabetic OVE26 mice
-
Xie Z, et al. Improvement of cardiac functions by chronic metformin treatment is associated with enhanced cardiac autophagy in diabetic OVE26 mice. Diabetes. 2011;60(6):1770-1778.
-
(2011)
Diabetes.
, vol.60
, Issue.6
, pp. 1770-1778
-
-
Xie, Z.1
-
118
-
-
84896776849
-
Metformin promotes autophagy and apoptosis in esophageal squamous cell carcinoma by downregulating Stat3 signaling
-
Feng Y, et al. Metformin promotes autophagy and apoptosis in esophageal squamous cell carcinoma by downregulating Stat3 signaling. Cell Death Dis. 2014;5:e1088.
-
(2014)
Cell Death Dis.
, vol.5
, pp. e1088
-
-
Feng, Y.1
-
119
-
-
84920415711
-
The role for autophagy in cancer
-
White E. The role for autophagy in cancer. J Clin Invest. 2015;125(1):5564-5568.
-
(2015)
J Clin Invest.
, vol.125
, Issue.1
, pp. 5564-5568
-
-
White, E.1
-
120
-
-
84920407208
-
Development of autophagy inducers in clinical medicine
-
Levine B, Packer M, Codogno P. Development of autophagy inducers in clinical medicine. J Clin Invest. 2015;125(1):5536-5546.
-
(2015)
J Clin Invest.
, vol.125
, Issue.1
, pp. 5536-5546
-
-
Levine, B.1
Packer, M.2
Codogno, P.3
|