메뉴 건너뛰기




Volumn 125, Issue 1, 2015, Pages 25-32

MTOR: A pharmacologic target for autophagy regulation

Author keywords

[No Author keywords available]

Indexed keywords

5 [2 (2,6 DIMETHYLMORPHOLINO) 4 MORPHOLINOPYRIDO[2,3 D]PYRIMIDIN 7 YL] 2 METHOXYBENZENEMETHANOL; AZD 8055; BAFILOMYCIN A1; EVEROLIMUS; HYDROXYCHLOROQUINE; MAMMALIAN TARGET OF RAPAMYCIN; MAMMALIAN TARGET OF RAPAMYCIN COMPLEX 1; MAMMALIAN TARGET OF RAPAMYCIN COMPLEX 2; MAMMALIAN TARGET OF RAPAMYCIN INHIBITOR; METFORMIN; RAPAMYCIN; RAPAMYCIN DERIVATIVE; TEMSIROLIMUS; TORIN 1; UNCLASSIFIED DRUG; WYE 354; MTOR PROTEIN, HUMAN; TARGET OF RAPAMYCIN KINASE;

EID: 84920504512     PISSN: 00219738     EISSN: 15588238     Source Type: Journal    
DOI: 10.1172/JCI73939     Document Type: Review
Times cited : (1584)

References (121)
  • 1
    • 84859778293 scopus 로고    scopus 로고
    • MTOR signaling in growth control and disease
    • Laplante M, Sabatini DM. mTOR signaling in growth control and disease. Cell. 2012;149(2):274-293.
    • (2012) Cell. , vol.149 , Issue.2 , pp. 274-293
    • Laplante, M.1    Sabatini, D.M.2
  • 2
    • 0037623417 scopus 로고    scopus 로고
    • GbetaL, a positive regulator of the rapamycin-sensitive pathway required for the nutrient-sensitive interaction between raptor and mTOR
    • Kim DH, et al. GbetaL, a positive regulator of the rapamycin-sensitive pathway required for the nutrient-sensitive interaction between raptor and mTOR. Mol Cell. 2003;11(4):895-904.
    • (2003) Mol Cell. , vol.11 , Issue.4 , pp. 895-904
    • Kim, D.H.1
  • 3
    • 7944235758 scopus 로고    scopus 로고
    • Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive
    • Jacinto E, et al. Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat Cell Biol. 2004;6(11):1122-1128.
    • (2004) Nat Cell Biol. , vol.6 , Issue.11 , pp. 1122-1128
    • Jacinto, E.1
  • 4
    • 67349241955 scopus 로고    scopus 로고
    • DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival
    • Peterson TR, et al. DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival. Cell. 2009;137(5):873-886.
    • (2009) Cell. , vol.137 , Issue.5 , pp. 873-886
    • Peterson, T.R.1
  • 5
    • 77953800576 scopus 로고    scopus 로고
    • Tti1 and Tel2 are critical factors in mammalian target of rapamycin complex assembly
    • Kaizuka T, et al. Tti1 and Tel2 are critical factors in mammalian target of rapamycin complex assembly. J Biol Chem. 2010;285(26):20109-20116.
    • (2010) J Biol Chem. , vol.285 , Issue.26 , pp. 20109-20116
    • Kaizuka, T.1
  • 6
    • 0037178781 scopus 로고    scopus 로고
    • Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action
    • Hara K, et al. Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell. 2002;110(2):177-189.
    • (2002) Cell. , vol.110 , Issue.2 , pp. 177-189
    • Hara, K.1
  • 7
    • 0037178786 scopus 로고    scopus 로고
    • MTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery
    • Kim DH, et al. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell. 2002;110(2):163-175.
    • (2002) Cell. , vol.110 , Issue.2 , pp. 163-175
    • Kim, D.H.1
  • 8
    • 33947264077 scopus 로고    scopus 로고
    • PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase
    • Sancak Y, et al. PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase. Mol Cell. 2007;25(6):903-915.
    • (2007) Mol Cell. , vol.25 , Issue.6 , pp. 903-915
    • Sancak, Y.1
  • 10
    • 43249124698 scopus 로고    scopus 로고
    • PRAS40 and PRR5-like protein are new mTOR interactors that regulate apoptosis
    • Thedieck K, et al. PRAS40 and PRR5-like protein are new mTOR interactors that regulate apoptosis. PLoS One. 2007;2(11):e1217.
    • (2007) PLoS One. , vol.2 , Issue.11 , pp. e1217
    • Thedieck, K.1
  • 11
    • 34547099855 scopus 로고    scopus 로고
    • PRAS40 regulates mTORC1 kinase activity by functioning as a direct inhibitor of substrate binding
    • Wang L, Harris TE, Roth RA, Lawrence JC Jr. PRAS40 regulates mTORC1 kinase activity by functioning as a direct inhibitor of substrate binding. J Biol Chem. 2007;282(27):20036-20044.
    • (2007) J Biol Chem. , vol.282 , Issue.27 , pp. 20036-20044
    • Wang, L.1    Harris, T.E.2    Roth, R.A.3    Lawrence, Jr.J.C.4
  • 12
    • 3342895823 scopus 로고    scopus 로고
    • Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton
    • Sarbassov DD, et al. Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr Biol. 2004;14(14):1296-1302.
    • (2004) Curr Biol. , vol.14 , Issue.14 , pp. 1296-1302
    • Sarbassov, D.D.1
  • 13
    • 33749076673 scopus 로고    scopus 로고
    • SIN1/MIP1 maintains ric-tor-mTOR complex integrity and regulates Akt phosphorylation and substrate specificity
    • Jacinto E, et al. SIN1/MIP1 maintains ric-tor-mTOR complex integrity and regulates Akt phosphorylation and substrate specificity. Cell. 2006;127(1):125-137.
    • (2006) Cell. , vol.127 , Issue.1 , pp. 125-137
    • Jacinto, E.1
  • 14
    • 33748471980 scopus 로고    scopus 로고
    • MSin1 is necessary for Akt/PKB phosphorylation, and its isoforms define three distinct mTORC2s
    • Frias MA, et al. mSin1 is necessary for Akt/PKB phosphorylation, and its isoforms define three distinct mTORC2s. Curr Biol. 2006;16(18):1865-1870.
    • (2006) Curr Biol. , vol.16 , Issue.18 , pp. 1865-1870
    • Frias, M.A.1
  • 15
    • 34347210090 scopus 로고    scopus 로고
    • Identification of Protor as a novel Rictor-binding component of mTOR com-plex-2
    • Pearce LR, et al. Identification of Protor as a novel Rictor-binding component of mTOR com-plex-2. Biochem J. 2007;405(3):513-522.
    • (2007) Biochem J. , vol.405 , Issue.3 , pp. 513-522
    • Pearce, L.R.1
  • 16
    • 33751079895 scopus 로고    scopus 로고
    • Identification of Sin1 as an essential TORC2 component required for complex formation and kinase activity
    • Yang Q, Inoki K, Ikenoue T, Guan KL. Identification of Sin1 as an essential TORC2 component required for complex formation and kinase activity. Genes Dev. 2006;20(20):2820-2832.
    • (2006) Genes Dev. , vol.20 , Issue.20 , pp. 2820-2832
    • Yang, Q.1    Inoki, K.2    Ikenoue, T.3    Guan, K.L.4
  • 17
    • 84894523716 scopus 로고    scopus 로고
    • Making new contacts: The mTOR network in metabolism and signalling crosstalk
    • Shimobayashi M, Hall MN. Making new contacts: the mTOR network in metabolism and signalling crosstalk. Nat Rev Mol Cell Biol. 2014;15(3):155-162.
    • (2014) Nat Rev Mol Cell Biol. , vol.15 , Issue.3 , pp. 155-162
    • Shimobayashi, M.1    Hall, M.N.2
  • 18
    • 84877965001 scopus 로고    scopus 로고
    • Regulation of mTORC1 and its impact on gene expression at a glance
    • Laplante M, Sabatini DM. Regulation of mTORC1 and its impact on gene expression at a glance. J Cell Sci. 2013;126(pt 8):1713-1719.
    • (2013) J Cell Sci. , vol.126 , pp. 1713-1719
    • Laplante, M.1    Sabatini, D.M.2
  • 19
    • 0036713778 scopus 로고    scopus 로고
    • TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling
    • Inoki K, Li Y, Zhu T, Wu J, Guan KL. TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol. 2002;4(9):648-657.
    • (2002) Nat Cell Biol. , vol.4 , Issue.9 , pp. 648-657
    • Inoki, K.1    Li, Y.2    Zhu, T.3    Wu, J.4    Guan, K.L.5
  • 20
    • 0036342294 scopus 로고    scopus 로고
    • Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/akt pathway
    • Manning BD, Tee AR, Logsdon MN, Blenis J, Cantley LC. Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/akt pathway. Mol Cell. 2002;10(1):151-162.
    • (2002) Mol Cell. , vol.10 , Issue.1 , pp. 151-162
    • Manning, B.D.1    Tee, A.R.2    Logsdon, M.N.3    Blenis, J.4    Cantley, L.C.5
  • 21
    • 0036714127 scopus 로고    scopus 로고
    • Akt regulates growth by directly phosphorylating Tsc2
    • Potter CJ, Pedraza LG, Xu T. Akt regulates growth by directly phosphorylating Tsc2. Nat Cell Biol. 2002;4(9):658-665.
    • (2002) Nat Cell Biol. , vol.4 , Issue.9 , pp. 658-665
    • Potter, C.J.1    Pedraza, L.G.2    Xu, T.3
  • 22
    • 0043127125 scopus 로고    scopus 로고
    • Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling
    • Inoki K, Li Y, Xu T, Guan KL. Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes Dev. 2003;17(15):1829-1834.
    • (2003) Genes Dev. , vol.17 , Issue.15 , pp. 1829-1834
    • Inoki, K.1    Li, Y.2    Xu, T.3    Guan, K.L.4
  • 23
    • 0042701991 scopus 로고    scopus 로고
    • Tuberous sclerosis complex gene products, Tuberin and Hamartin, control mTOR signaling by acting as a GTPase-activating protein complex toward Rheb
    • Tee AR, Manning BD, Roux PP, Cantley LC, Blenis J. Tuberous sclerosis complex gene products, Tuberin and Hamartin, control mTOR signaling by acting as a GTPase-activating protein complex toward Rheb. Curr Biol. 2003;13(15):1259-1268.
    • (2003) Curr Biol. , vol.13 , Issue.15 , pp. 1259-1268
    • Tee, A.R.1    Manning, B.D.2    Roux, P.P.3    Cantley, L.C.4    Blenis, J.5
  • 24
    • 84894114029 scopus 로고    scopus 로고
    • Spatial control of the TSC complex integrates insulin and nutrient regulation of mTORC1 at the lysosome
    • Menon S, et al. Spatial control of the TSC complex integrates insulin and nutrient regulation of mTORC1 at the lysosome. Cell. 2014;156(4):771-785.
    • (2014) Cell. , vol.156 , Issue.4 , pp. 771-785
    • Menon, S.1
  • 25
    • 0038643484 scopus 로고    scopus 로고
    • Rheb promotes cell growth as a component of the insulin/TOR signalling network
    • Saucedo LJ, Gao X, Chiarelli DA, Li L, Pan D, Edgar BA. Rheb promotes cell growth as a component of the insulin/TOR signalling network. Nat Cell Biol. 2003;5(6):566-571.
    • (2003) Nat Cell Biol. , vol.5 , Issue.6 , pp. 566-571
    • Saucedo, L.J.1    Gao, X.2    Chiarelli, D.A.3    Li, L.4    Pan, D.5    Edgar, B.A.6
  • 26
    • 0038304516 scopus 로고    scopus 로고
    • Rheb is an essential regulator of S6K in controlling cell growth in Drosophila
    • Stocker H, et al. Rheb is an essential regulator of S6K in controlling cell growth in Drosophila. Nat Cell Biol. 2003;5(6):559-565.
    • (2003) Nat Cell Biol. , vol.5 , Issue.6 , pp. 559-565
    • Stocker, H.1
  • 27
    • 4544384577 scopus 로고    scopus 로고
    • Tumor-promoting phorbol esters and activated Ras inactivate the tuberous sclerosis tumor suppressor complex via p90 ribosomal S6 kinase
    • Roux PP, Ballif BA, Anjum R, Gygi SP, Blenis J. Tumor-promoting phorbol esters and activated Ras inactivate the tuberous sclerosis tumor suppressor complex via p90 ribosomal S6 kinase. Proc Natl Acad Sci U S A. 2004;101(37):13489-13494.
    • (2004) Proc Natl Acad Sci U S A. , vol.101 , Issue.37 , pp. 13489-13494
    • Roux, P.P.1    Ballif, B.A.2    Anjum, R.3    Gygi, S.P.4    Blenis, J.5
  • 28
    • 17444431201 scopus 로고    scopus 로고
    • Phosphorylation and functional inactivation of TSC2 by Erk implications for tuberous sclerosis and cancer pathogenesis
    • Ma L, Chen Z, Erdjument-Bromage H, Tempst P, Pandolfi PP. Phosphorylation and functional inactivation of TSC2 by Erk implications for tuberous sclerosis and cancer pathogenesis. Cell. 2005;121(2):179-193.
    • (2005) Cell. , vol.121 , Issue.2 , pp. 179-193
    • Ma, L.1    Chen, Z.2    Erdjument-Bromage, H.3    Tempst, P.4    Pandolfi, P.P.5
  • 29
    • 0345167800 scopus 로고    scopus 로고
    • TSC2 mediates cellular energy response to control cell growth and survival
    • Inoki K, Zhu T, Guan KL. TSC2 mediates cellular energy response to control cell growth and survival. Cell. 2003;115(5):577-590.
    • (2003) Cell. , vol.115 , Issue.5 , pp. 577-590
    • Inoki, K.1    Zhu, T.2    Guan, K.L.3
  • 30
    • 42949139481 scopus 로고    scopus 로고
    • AMPK phosphorylation of raptor mediates a metabolic checkpoint
    • Gwinn DM, et al. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell. 2008;30(2):214-226.
    • (2008) Mol Cell. , vol.30 , Issue.2 , pp. 214-226
    • Gwinn, D.M.1
  • 31
    • 10044276783 scopus 로고    scopus 로고
    • Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex
    • Brugarolas J, et al. Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex. Genes Dev. 2004;18(23):2893-2904.
    • (2004) Genes Dev. , vol.18 , Issue.23 , pp. 2893-2904
    • Brugarolas, J.1
  • 32
    • 38349056675 scopus 로고    scopus 로고
    • Hypoxia regulates TSC1/2-mTOR signaling and tumor suppression through REDD1-mediated 14-3-3 shuttling
    • DeYoung MP, Horak P, Sofer A, Sgroi D, Ellisen LW. Hypoxia regulates TSC1/2-mTOR signaling and tumor suppression through REDD1-mediated 14-3-3 shuttling. Genes Dev. 2008;22(2):239-251.
    • (2008) Genes Dev. , vol.22 , Issue.2 , pp. 239-251
    • Deyoung, M.P.1    Horak, P.2    Sofer, A.3    Sgroi, D.4    Ellisen, L.W.5
  • 34
    • 84903158167 scopus 로고    scopus 로고
    • Regulation of mTORC1 by amino acids
    • Bar-Peled L, Sabatini DM. Regulation of mTORC1 by amino acids. Trends Cell Biol. 2014;24(7):400-406.
    • (2014) Trends Cell Biol. , vol.24 , Issue.7 , pp. 400-406
    • Bar-Peled, L.1    Sabatini, D.M.2
  • 36
    • 45849105156 scopus 로고    scopus 로고
    • The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1
    • Sancak Y, et al. The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science. 2008;320(5882):1496-1501.
    • (2008) Science. , vol.320 , Issue.5882 , pp. 1496-1501
    • Sancak, Y.1
  • 37
    • 0035831451 scopus 로고    scopus 로고
    • Novel G proteins, Rag C and Rag D, interact with GTP-binding proteins, Rag A and Rag B
    • Sekiguchi T, Hirose E, Nakashima N, Ii M, Nish-imoto T. Novel G proteins, Rag C and Rag D, interact with GTP-binding proteins, Rag A and Rag B. J Biol Chem. 2001;276(10):7246-7257.
    • (2001) J Biol Chem. , vol.276 , Issue.10 , pp. 7246-7257
    • Sekiguchi, T.1    Hirose, E.2    Nakashima, N.3    Ii, M.4    Nish-Imoto, T.5
  • 38
    • 77951768486 scopus 로고    scopus 로고
    • Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids
    • Sancak Y, Bar-Peled L, Zoncu R, Markhard AL, Nada S, Sabatini DM. Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell. 2010;141(2):290-303.
    • (2010) Cell. , vol.141 , Issue.2 , pp. 290-303
    • Sancak, Y.1    Bar-Peled, L.2    Zoncu, R.3    Markhard, A.L.4    Nada, S.5    Sabatini, D.M.6
  • 39
    • 84882800242 scopus 로고    scopus 로고
    • Inhibition of mTORC1 by astrin and stress granules prevents apoptosis in cancer cells
    • Thedieck K, et al. Inhibition of mTORC1 by astrin and stress granules prevents apoptosis in cancer cells. Cell. 2013;154(4):859-874.
    • (2013) Cell. , vol.154 , Issue.4 , pp. 859-874
    • Thedieck, K.1
  • 40
    • 84885105969 scopus 로고    scopus 로고
    • A tuberous sclerosis complex signalling node at the peroxisome regulates mTORC1 and autophagy in response to ROS
    • Zhang J, et al. A tuberous sclerosis complex signalling node at the peroxisome regulates mTORC1 and autophagy in response to ROS. Nat Cell Biol. 2013;15(10):1186-1196.
    • (2013) Nat Cell Biol. , vol.15 , Issue.10 , pp. 1186-1196
    • Zhang, J.1
  • 41
    • 84866431363 scopus 로고    scopus 로고
    • Ragulator is a GEF for the rag GTPases that signal amino acid levels to mTORC1
    • Bar-Peled L, Schweitzer LD, Zoncu R, Sabatini DM. Ragulator is a GEF for the rag GTPases that signal amino acid levels to mTORC1. Cell. 2012;150(6):1196-1208.
    • (2012) Cell. , vol.150 , Issue.6 , pp. 1196-1208
    • Bar-Peled, L.1    Schweitzer, L.D.2    Zoncu, R.3    Sabatini, D.M.4
  • 42
    • 84878357685 scopus 로고    scopus 로고
    • A Tumor suppressor complex with GAP activity for the Rag GTPases that signal amino acid sufficiency to mTORC1
    • Bar-Peled L, et al. A Tumor suppressor complex with GAP activity for the Rag GTPases that signal amino acid sufficiency to mTORC1. Science. 2013;340(6136):1100-1106.
    • (2013) Science. , vol.340 , Issue.6136 , pp. 1100-1106
    • Bar-Peled, L.1
  • 43
    • 84888200442 scopus 로고    scopus 로고
    • The folliculin tumor suppressor is a GAP for the RagC/D GTPases that signal amino acid levels to mTORC1
    • Tsun ZY, et al. The folliculin tumor suppressor is a GAP for the RagC/D GTPases that signal amino acid levels to mTORC1. Mol Cell. 2013;52(4):495-505.
    • (2013) Mol Cell. , vol.52 , Issue.4 , pp. 495-505
    • Tsun, Z.Y.1
  • 44
    • 80555143078 scopus 로고    scopus 로고
    • MTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase
    • Zoncu R, Bar-Peled L, Efeyan A, Wang S, Sancak Y, Sabatini DM. mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase. Science. 2011;334(6056):678-683.
    • (2011) Science. , vol.334 , Issue.6056 , pp. 678-683
    • Zoncu, R.1    Bar-Peled, L.2    Efeyan, A.3    Wang, S.4    Sancak, Y.5    Sabatini, D.M.6
  • 45
    • 84862777407 scopus 로고    scopus 로고
    • Leucyl-tRNA synthetase is an intra-cellular leucine sensor for the mTORC1-signal-ing pathway
    • Han JM, et al. Leucyl-tRNA synthetase is an intra-cellular leucine sensor for the mTORC1-signal-ing pathway. Cell. 2012;149(2):410-424.
    • (2012) Cell. , vol.149 , Issue.2 , pp. 410-424
    • Han, J.M.1
  • 46
    • 84900405146 scopus 로고    scopus 로고
    • RagA, but not RagB, is essential for embryonic development and adult mice
    • Efeyan A, et al. RagA, but not RagB, is essential for embryonic development and adult mice. Dev Cell. 2014;29(3):321-329.
    • (2014) Dev Cell. , vol.29 , Issue.3 , pp. 321-329
    • Efeyan, A.1
  • 47
    • 84903795431 scopus 로고    scopus 로고
    • Rag GTPases are cardioprotective by regulating lysosomal function
    • Kim YC, et al. Rag GTPases are cardioprotective by regulating lysosomal function. Nat Commun. 2014;5:4241.
    • (2014) Nat Commun. , vol.5 , pp. 4241
    • Kim, Y.C.1
  • 48
    • 79952293503 scopus 로고    scopus 로고
    • Activation of mTORC2 by association with the ribosome
    • Zinzalla V, Stracka D, Oppliger W, Hall MN. Activation of mTORC2 by association with the ribosome. Cell. 2011;144(5):757-768.
    • (2011) Cell. , vol.144 , Issue.5 , pp. 757-768
    • Zinzalla, V.1    Stracka, D.2    Oppliger, W.3    Hall, M.N.4
  • 50
    • 13844312400 scopus 로고    scopus 로고
    • Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex
    • Sarbassov DD, Guertin DA, Ali SM, Sabatini DM. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science. 2005;307(5712):1098-1101.
    • (2005) Science. , vol.307 , Issue.5712 , pp. 1098-1101
    • Sarbassov, D.D.1    Guertin, D.A.2    Ali, S.M.3    Sabatini, D.M.4
  • 51
    • 3342958797 scopus 로고    scopus 로고
    • The TSC1-2 tumor suppressor controls insulin-PI3K signaling via regulation of IRS proteins
    • Harrington LS, et al. The TSC1-2 tumor suppressor controls insulin-PI3K signaling via regulation of IRS proteins. J Cell Biol. 2004;166(2):213-223.
    • (2004) J Cell Biol. , vol.166 , Issue.2 , pp. 213-223
    • Harrington, L.S.1
  • 52
    • 4544220704 scopus 로고    scopus 로고
    • Absence of S6K1 protects against age-and diet-induced obesity while enhancing insulin sensitivity
    • Um SH, et al. Absence of S6K1 protects against age-and diet-induced obesity while enhancing insulin sensitivity. Nature. 2004;431(7005):200-205.
    • (2004) Nature. , vol.431 , Issue.7005 , pp. 200-205
    • Um, S.H.1
  • 53
    • 75749105049 scopus 로고    scopus 로고
    • MTORC1-activated S6K1 phosphorylates Rictor on threonine 1135 and regulates mTORC2 signaling
    • Julien LA, Carriere A, Moreau J, Roux PP. mTORC1-activated S6K1 phosphorylates Rictor on threonine 1135 and regulates mTORC2 signaling. Mol Cell Biol. 2010;30(4):908-921.
    • (2010) Mol Cell Biol. , vol.30 , Issue.4 , pp. 908-921
    • Julien, L.A.1    Carriere, A.2    Moreau, J.3    Roux, P.P.4
  • 54
    • 33644886769 scopus 로고    scopus 로고
    • Nutrients suppress phosphatidylinositol 3-kinase/Akt signaling via raptor-dependent mTOR-mediated insulin receptor substrate 1 phosphorylation
    • Tzatsos A, Kandror KV. Nutrients suppress phosphatidylinositol 3-kinase/Akt signaling via raptor-dependent mTOR-mediated insulin receptor substrate 1 phosphorylation. Mol Cell Biol. 2006;26(1):63-76.
    • (2006) Mol Cell Biol. , vol.26 , Issue.1 , pp. 63-76
    • Tzatsos, A.1    Kandror, K.V.2
  • 55
    • 79958696694 scopus 로고    scopus 로고
    • The mTOR-regulated phosphop-roteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling
    • Hsu PP, et al. The mTOR-regulated phosphop-roteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Science. 2011;332(6035):1317-1322.
    • (2011) Science. , vol.332 , Issue.6035 , pp. 1317-1322
    • Hsu, P.P.1
  • 56
    • 79958696336 scopus 로고    scopus 로고
    • Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling
    • Yu Y, et al. Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling. Science. 2011;332(6035):1322-1326.
    • (2011) Science. , vol.332 , Issue.6035 , pp. 1322-1326
    • Yu, Y.1
  • 57
    • 81055144784 scopus 로고    scopus 로고
    • Autophagy: Renovation of cells and tissues
    • Mizushima N, Komatsu M. Autophagy: renovation of cells and tissues. Cell. 2011;147(4):728-741.
    • (2011) Cell. , vol.147 , Issue.4 , pp. 728-741
    • Mizushima, N.1    Komatsu, M.2
  • 58
    • 0000189281 scopus 로고
    • Cellular differentiation in the kidneys of newborn mice studies with the electron microscope
    • Clark SL Jr. Cellular differentiation in the kidneys of newborn mice studies with the electron microscope. J Biophys Biochem Cytol. 1957;3(3):349-362.
    • (1957) J Biophys Biochem Cytol. , vol.3 , Issue.3 , pp. 349-362
    • Clark, Jr.S.L.1
  • 60
    • 0017158118 scopus 로고
    • Cellular autophagocytosis induced by deprivation of serum and amino acids in HeLa cells
    • Mitchener JS, Shelburne JD, Bradford WD, Hawkins HK. Cellular autophagocytosis induced by deprivation of serum and amino acids in HeLa cells. Am J Pathol. 1976;83(3):485-492.
    • (1976) Am J Pathol. , vol.83 , Issue.3 , pp. 485-492
    • Mitchener, J.S.1    Shelburne, J.D.2    Bradford, W.D.3    Hawkins, H.K.4
  • 61
    • 0017697151 scopus 로고
    • Induction of autophagy by amino-acid deprivation in perfused rat liver
    • Mortimore GE, Schworer CM. Induction of autophagy by amino-acid deprivation in perfused rat liver. Nature. 1977;270(5633):174-176.
    • (1977) Nature. , vol.270 , Issue.5633 , pp. 174-176
    • Mortimore, G.E.1    Schworer, C.M.2
  • 62
    • 0032512636 scopus 로고    scopus 로고
    • Tor, a phosphatidylinositol kinase homologue, controls autophagy in yeast
    • Noda T, Ohsumi Y. Tor, a phosphatidylinositol kinase homologue, controls autophagy in yeast. J Biol Chem. 1998;273(7):3963-3966.
    • (1998) J Biol Chem. , vol.273 , Issue.7 , pp. 3963-3966
    • Noda, T.1    Ohsumi, Y.2
  • 63
    • 4344563878 scopus 로고    scopus 로고
    • Role and regulation of starvation-induced autoph-agy in the Drosophila fat body
    • Scott RC, Schuldiner O, Neufeld TP. Role and regulation of starvation-induced autoph-agy in the Drosophila fat body. Dev Cell. 2004;7(2):167-178.
    • (2004) Dev Cell. , vol.7 , Issue.2 , pp. 167-178
    • Scott, R.C.1    Schuldiner, O.2    Neufeld, T.P.3
  • 65
    • 84891745585 scopus 로고    scopus 로고
    • Autophagy regulation by nutrient signaling
    • Russell RC, Yuan HX, Guan KL. Autophagy regulation by nutrient signaling. Cell Res. 2014;24(1):42-57.
    • (2014) Cell Res. , vol.24 , Issue.1 , pp. 42-57
    • Russell, R.C.1    Yuan, H.X.2    Guan, K.L.3
  • 66
    • 66449083078 scopus 로고    scopus 로고
    • ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy
    • Ganley IG, Lam du H, Wang J, Ding X, Chen S, Jiang X. ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy. J Biol Chem. 2009;284(18):12297-12305.
    • (2009) J Biol Chem. , vol.284 , Issue.18 , pp. 12297-12305
    • Ganley, I.G.1    Lam Du, H.2    Wang, J.3    Ding, X.4    Chen, S.5    Jiang, X.6
  • 67
    • 65249119430 scopus 로고    scopus 로고
    • Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy
    • Hosokawa N, et al. Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol Biol Cell. 2009;20(7):1981-1991.
    • (2009) Mol Biol Cell. , vol.20 , Issue.7 , pp. 1981-1991
    • Hosokawa, N.1
  • 68
    • 65249176304 scopus 로고    scopus 로고
    • ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery
    • Jung CH, et al. ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol Biol Cell. 2009;20(7):1992-2003.
    • (2009) Mol Biol Cell. , vol.20 , Issue.7 , pp. 1992-2003
    • Jung, C.H.1
  • 70
    • 79551598347 scopus 로고    scopus 로고
    • AMPK and mTOR regulate autophagy through direct phospho-rylation of Ulk1
    • Kim J, Kundu M, Viollet B, Guan KL. AMPK and mTOR regulate autophagy through direct phospho-rylation of Ulk1. Nat Cell Biol. 2011;13(2):132-141.
    • (2011) Nat Cell Biol. , vol.13 , Issue.2 , pp. 132-141
    • Kim, J.1    Kundu, M.2    Viollet, B.3    Guan, K.L.4
  • 71
    • 84876488191 scopus 로고    scopus 로고
    • MTOR inhibits autophagy by controlling ULK1 ubiquitylation, self-association and function through AMBRA1 and TRAF6
    • Nazio F, et al. mTOR inhibits autophagy by controlling ULK1 ubiquitylation, self-association and function through AMBRA1 and TRAF6. Nat Cell Biol. 2013;15(4):406-416.
    • (2013) Nat Cell Biol. , vol.15 , Issue.4 , pp. 406-416
    • Nazio, F.1
  • 72
    • 84872586081 scopus 로고    scopus 로고
    • Differential regulation of distinct Vps34 complexes by AMPK in nutrient stress and autophagy
    • Kim J, et al. Differential regulation of distinct Vps34 complexes by AMPK in nutrient stress and autophagy. Cell. 2013;152(1-2):290-303.
    • (2013) Cell. , vol.152 , Issue.1-2 , pp. 290-303
    • Kim, J.1
  • 73
    • 84890848742 scopus 로고    scopus 로고
    • Regulation of PIK3C3/VPS34 complexes by MTOR in nutrient stress-induced autophagy
    • Yuan HX, Russell RC, Guan KL. Regulation of PIK3C3/VPS34 complexes by MTOR in nutrient stress-induced autophagy. Autophagy. 2013;9(12):1983-1995.
    • (2013) Autophagy. , vol.9 , Issue.12 , pp. 1983-1995
    • Yuan, H.X.1    Russell, R.C.2    Guan, K.L.3
  • 74
    • 84876812269 scopus 로고    scopus 로고
    • Signals from the lysosome: A control centre for cellular clearance and energy metabolism
    • Settembre C, Fraldi A, Medina DL, Ballabio A. Signals from the lysosome: a control centre for cellular clearance and energy metabolism. Nat Rev Mol Cell Biol. 2013;14(5):283-296.
    • (2013) Nat Rev Mol Cell Biol. , vol.14 , Issue.5 , pp. 283-296
    • Settembre, C.1    Fraldi, A.2    Medina, D.L.3    Ballabio, A.4
  • 75
    • 80955177196 scopus 로고    scopus 로고
    • TFEB links autoph-agy to lysosomal biogenesis
    • Settembre C, et al. TFEB links autoph-agy to lysosomal biogenesis. Science. 2011;332(6036):1429-1433.
    • (2011) Science. , vol.332 , Issue.6036 , pp. 1429-1433
    • Settembre, C.1
  • 76
    • 84857997408 scopus 로고    scopus 로고
    • A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB
    • Settembre C, et al. A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB. EMBO J. 2012;31(5):1095-1108.
    • (2012) EMBO J. , vol.31 , Issue.5 , pp. 1095-1108
    • Settembre, C.1
  • 77
    • 84864874958 scopus 로고    scopus 로고
    • MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB
    • Martina JA, Chen Y, Gucek M, Puertollano R. MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB. Autophagy. 2012;8(6):903-914.
    • (2012) Autophagy. , vol.8 , Issue.6 , pp. 903-914
    • Martina, J.A.1    Chen, Y.2    Gucek, M.3    Puertollano, R.4
  • 78
    • 84874352229 scopus 로고    scopus 로고
    • Rag GTPases mediate amino acid-dependent recruitment of TFEB and MITF to lysosomes
    • Martina JA, Puertollano R. Rag GTPases mediate amino acid-dependent recruitment of TFEB and MITF to lysosomes. J Cell Biol. 2013;200(4):475-491.
    • (2013) J Cell Biol. , vol.200 , Issue.4 , pp. 475-491
    • Martina, J.A.1    Puertollano, R.2
  • 79
    • 77953699711 scopus 로고    scopus 로고
    • Termination of autophagy and reformation of lysosomes regulated by mTOR
    • Yu L, et al. Termination of autophagy and reformation of lysosomes regulated by mTOR. Nature. 2010;465(7300):942-946.
    • (2010) Nature. , vol.465 , Issue.7300 , pp. 942-946
    • Yu, L.1
  • 80
    • 78649712949 scopus 로고    scopus 로고
    • MTORC2 can associate with ribo-somes to promote cotranslational phosphory-lation and stability of nascent Akt polypeptide
    • Oh WJ, et al. mTORC2 can associate with ribo-somes to promote cotranslational phosphory-lation and stability of nascent Akt polypeptide. EMBO J. 2010;29(23):3939-3951.
    • (2010) EMBO J. , vol.29 , Issue.23 , pp. 3939-3951
    • Oh, W.J.1
  • 81
    • 84866122688 scopus 로고    scopus 로고
    • Autoph-agy modulation as a potential therapeutic target for diverse diseases
    • Rubinsztein DC, Codogno P, Levine B. Autoph-agy modulation as a potential therapeutic target for diverse diseases. Nat Rev Drug Discov. 2012;11(9):709-730.
    • (2012) Nat Rev Drug Discov. , vol.11 , Issue.9 , pp. 709-730
    • Rubinsztein, D.C.1    Codogno, P.2    Levine, B.3
  • 82
    • 84877628647 scopus 로고    scopus 로고
    • Autophagy in human health and disease
    • Choi AM, Ryter SW, Levine B. Autophagy in human health and disease. N Engl J Med. 2013;368(7):651-662.
    • (2013) N Engl J Med. , vol.368 , Issue.7 , pp. 651-662
    • Choi, A.M.1    Ryter, S.W.2    Levine, B.3
  • 83
    • 79953298958 scopus 로고    scopus 로고
    • Next-generation mTOR inhibitors in clinical oncology: How pathway complexity informs therapeutic strategy
    • Wander SA, Hennessy BT, Slingerland JM. Next-generation mTOR inhibitors in clinical oncology: how pathway complexity informs therapeutic strategy. J Clin Invest. 2011;121(4):1231-1241.
    • (2011) J Clin Invest. , vol.121 , Issue.4 , pp. 1231-1241
    • Wander, S.A.1    Hennessy, B.T.2    Slingerland, J.M.3
  • 84
    • 80155142474 scopus 로고    scopus 로고
    • Rapamycin passes the torch: A new generation of mTOR inhibitors
    • Benjamin D, Colombi M, Moroni C, Hall MN. Rapamycin passes the torch: a new generation of mTOR inhibitors. Nat Rev Drug Discov. 2011;10(11):868-880.
    • (2011) Nat Rev Drug Discov. , vol.10 , Issue.11 , pp. 868-880
    • Benjamin, D.1    Colombi, M.2    Moroni, C.3    Hall, M.N.4
  • 85
    • 84874611570 scopus 로고    scopus 로고
    • Rap-alogs and mTOR inhibitors as anti-aging therapeutics
    • Lamming DW, Ye L, Sabatini DM, Baur JA. Rap-alogs and mTOR inhibitors as anti-aging therapeutics. J Clin Invest. 2013;123(3):980-989.
    • (2013) J Clin Invest. , vol.123 , Issue.3 , pp. 980-989
    • Lamming, D.W.1    Ye, L.2    Sabatini, D.M.3    Baur, J.A.4
  • 86
    • 84896692038 scopus 로고    scopus 로고
    • Rapamycin: One drug, many effects
    • Li J, Kim SG, Blenis J. Rapamycin: one drug, many effects. Cell Metab. 2014;19(3):373-379.
    • (2014) Cell Metab. , vol.19 , Issue.3 , pp. 373-379
    • Li, J.1    Kim, S.G.2    Blenis, J.3
  • 87
    • 0025776523 scopus 로고
    • Targets for cell cycle arrest by the immunosuppressant rapamy-cin in yeast
    • Heitman J, Movva NR, Hall MN. Targets for cell cycle arrest by the immunosuppressant rapamy-cin in yeast. Science. 1991;253(5022):905-909.
    • (1991) Science. , vol.253 , Issue.5022 , pp. 905-909
    • Heitman, J.1    Movva, N.R.2    Hall, M.N.3
  • 88
    • 0028360374 scopus 로고
    • A mammalian protein targeted by G1-arresting rapamycin-receptor complex
    • Brown EJ, et al. A mammalian protein targeted by G1-arresting rapamycin-receptor complex. Nature. 1994;369(6483):756-758.
    • (1994) Nature. , vol.369 , Issue.6483 , pp. 756-758
    • Brown, E.J.1
  • 89
    • 0028239893 scopus 로고
    • RAFT1: A mammalian protein that binds to FKBP12 in a rapamycin-depen-dent fashion and is homologous to yeast TORs
    • Sabatini DM, Erdjument-Bromage H, Lui M, Tempst P, Snyder SH. RAFT1: a mammalian protein that binds to FKBP12 in a rapamycin-depen-dent fashion and is homologous to yeast TORs. Cell. 1994;78(1):35-43.
    • (1994) Cell. , vol.78 , Issue.1 , pp. 35-43
    • Sabatini, D.M.1    Erdjument-Bromage, H.2    Lui, M.3    Tempst, P.4    Snyder, S.H.5
  • 90
    • 0028598672 scopus 로고
    • RAPT1, a mammalian homolog of yeast Tor, interacts with the FKBP12/rapamycin complex
    • Chiu MI, Katz H, Berlin V. RAPT1, a mammalian homolog of yeast Tor, interacts with the FKBP12/rapamycin complex. Proc Natl Acad Sci U S A. 1994;91(26):12574-12578.
    • (1994) Proc Natl Acad Sci U S A. , vol.91 , Issue.26 , pp. 12574-12578
    • Chiu, M.I.1    Katz, H.2    Berlin, V.3
  • 91
    • 0028950217 scopus 로고
    • Isolation of a protein target of the FKBP12-rapamycin complex in mammalian cells
    • Sabers CJ, et al. Isolation of a protein target of the FKBP12-rapamycin complex in mammalian cells. J Biol Chem. 1995;270(2):815-822.
    • (1995) J Biol Chem. , vol.270 , Issue.2 , pp. 815-822
    • Sabers, C.J.1
  • 92
    • 77954235821 scopus 로고    scopus 로고
    • Targeting mTOR: Prospects for mTOR complex 2 inhibitors in cancer therapy
    • Sparks CA, Guertin DA. Targeting mTOR: prospects for mTOR complex 2 inhibitors in cancer therapy. Oncogene. 2010;29(26):3733-3744.
    • (2010) Oncogene. , vol.29 , Issue.26 , pp. 3733-3744
    • Sparks, C.A.1    Guertin, D.A.2
  • 93
    • 33746637660 scopus 로고    scopus 로고
    • Current development of mTOR inhibitors as anticancer agents
    • Faivre S, Kroemer G, Raymond E. Current development of mTOR inhibitors as anticancer agents. Nat Rev Drug Discov. 2006;5(8):671-688.
    • (2006) Nat Rev Drug Discov. , vol.5 , Issue.8 , pp. 671-688
    • Faivre, S.1    Kroemer, G.2    Raymond, E.3
  • 94
    • 17144427728 scopus 로고    scopus 로고
    • Synergistic augmentation of rapamycin-induced autophagy in malignant glioma cells by phosphatidylinositol 3-kinase/protein kinase B inhibitors
    • Takeuchi H, et al. Synergistic augmentation of rapamycin-induced autophagy in malignant glioma cells by phosphatidylinositol 3-kinase/protein kinase B inhibitors. Cancer Res. 2005;65(8):3336-3346.
    • (2005) Cancer Res. , vol.65 , Issue.8 , pp. 3336-3346
    • Takeuchi, H.1
  • 95
    • 0036566266 scopus 로고    scopus 로고
    • Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autoph-agy
    • Ravikumar B, Duden R, Rubinsztein DC. Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autoph-agy. Hum Mol Genet. 2002;11(9):1107-1117.
    • (2002) Hum Mol Genet. , vol.11 , Issue.9 , pp. 1107-1117
    • Ravikumar, B.1    Duden, R.2    Rubinsztein, D.C.3
  • 96
    • 2642586352 scopus 로고    scopus 로고
    • Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease
    • Ravikumar B, et al. Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat Genet. 2004;36(6):585-595.
    • (2004) Nat Genet. , vol.36 , Issue.6 , pp. 585-595
    • Ravikumar, B.1
  • 97
    • 84885574879 scopus 로고    scopus 로고
    • Prolonged autophagy by MTOR inhibitor leads radioresistant cancer cells into senescence
    • Nam HY, Han MW, Chang HW, Kim SY, Kim SW. Prolonged autophagy by MTOR inhibitor leads radioresistant cancer cells into senescence. Autophagy. 2013;9(10):1631-1632.
    • (2013) Autophagy. , vol.9 , Issue.10 , pp. 1631-1632
    • Nam, H.Y.1    Han, M.W.2    Chang, H.W.3    Kim, S.Y.4    Kim, S.W.5
  • 98
    • 84855975333 scopus 로고    scopus 로고
    • Rapamycin causes upregu-lation of autophagy and impairs islets function both in vitro and in vivo
    • Tanemura M, et al. Rapamycin causes upregu-lation of autophagy and impairs islets function both in vitro and in vivo. Am J Transplant. 2012;12(1):102-114.
    • (2012) Am J Transplant. , vol.12 , Issue.1 , pp. 102-114
    • Tanemura, M.1
  • 99
    • 84889575041 scopus 로고    scopus 로고
    • Measurement of autophagy flux in the nervous system in vivo
    • Castillo K, et al. Measurement of autophagy flux in the nervous system in vivo. Cell Death Dis. 2013;4:e917.
    • (2013) Cell Death Dis. , vol.4 , pp. e917
    • Castillo, K.1
  • 100
    • 79961059959 scopus 로고    scopus 로고
    • Tumorigenesis in tuberous sclerosis complex is autophagy and p62/seques-tosome 1 (SQSTM1)-dependent
    • Parkhitko A, et al. Tumorigenesis in tuberous sclerosis complex is autophagy and p62/seques-tosome 1 (SQSTM1)-dependent. Proc Natl Acad Sci U S A. 2011;108(30):12455-12460.
    • (2011) Proc Natl Acad Sci U S A. , vol.108 , Issue.30 , pp. 12455-12460
    • Parkhitko, A.1
  • 101
    • 84895432817 scopus 로고    scopus 로고
    • National Cancer Institute Web site Updated July 3, 2013. Accessed September 26, 2014
    • Pazdur R. FDA Approval for Everolimus. National Cancer Institute Web site. http://www.cancer.gov/cancertopics/druginfo/fda-everolimus. Updated July 3, 2013. Accessed September 26, 2014.
    • FDA Approval for Everolimus
    • Pazdur, R.1
  • 102
    • 58649114084 scopus 로고    scopus 로고
    • MTOR complex 2 is required for the development of prostate cancer induced by Pten loss in mice
    • Guertin DA, et al. mTOR complex 2 is required for the development of prostate cancer induced by Pten loss in mice. Cancer Cell. 2009;15(2):148-159.
    • (2009) Cancer Cell. , vol.15 , Issue.2 , pp. 148-159
    • Guertin, D.A.1
  • 103
    • 56249147509 scopus 로고    scopus 로고
    • Rapamycin differentially inhibits S6Ks and 4E-BP1 to mediate cell-type-specific repression of mRNA translation
    • Choo AY, Yoon SO, Kim SG, Roux PP, Blenis J. Rapamycin differentially inhibits S6Ks and 4E-BP1 to mediate cell-type-specific repression of mRNA translation. Proc Natl Acad Sci U S A. 2008;105(45):17414-17419.
    • (2008) Proc Natl Acad Sci U S A. , vol.105 , Issue.45 , pp. 17414-17419
    • Choo, A.Y.1    Yoon, S.O.2    Kim, S.G.3    Roux, P.P.4    Blenis, J.5
  • 104
    • 84880709668 scopus 로고    scopus 로고
    • MTORC1 phosphorylation sites encode their sensitivity to starvation and rapamycin
    • Kang SA, et al. mTORC1 phosphorylation sites encode their sensitivity to starvation and rapamycin. Science. 2013;341(6144):1236566.
    • (2013) Science. , vol.341 , Issue.6144 , pp. 1236566
    • Kang, S.A.1
  • 105
    • 68149096799 scopus 로고    scopus 로고
    • The pharmacology of mTOR inhibition
    • Guertin DA, Sabatini DM. The pharmacology of mTOR inhibition. Sci Signal. 2009;2(67):pe24.
    • (2009) Sci Signal. , vol.2 , Issue.67 , pp. pe24
    • Guertin, D.A.1    Sabatini, D.M.2
  • 106
    • 65549145048 scopus 로고    scopus 로고
    • An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamy-cin-resistant functions of mTORC1
    • Thoreen CC, et al. An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamy-cin-resistant functions of mTORC1. J Biol Chem. 2009;284(12):8023-8032.
    • (2009) J Biol Chem. , vol.284 , Issue.12 , pp. 8023-8032
    • Thoreen, C.C.1
  • 107
    • 79960348203 scopus 로고    scopus 로고
    • Relieving autophagy and 4EBP1 from rapamycin resistance
    • Nyfeler B, et al. Relieving autophagy and 4EBP1 from rapamycin resistance. Mol Cell Biol. 2011;31(14):2867-2876.
    • (2011) Mol Cell Biol. , vol.31 , Issue.14 , pp. 2867-2876
    • Nyfeler, B.1
  • 108
    • 75149112670 scopus 로고    scopus 로고
    • AZD8055 is a potent, selective, and orally bioavailable ATP-competitive mammalian target of rapamycin kinase inhibitor with in vitro and in vivo antitumor activity
    • Chresta CM, et al. AZD8055 is a potent, selective, and orally bioavailable ATP-competitive mammalian target of rapamycin kinase inhibitor with in vitro and in vivo antitumor activity. Cancer Res. 2010;70(1):288-298.
    • (2010) Cancer Res. , vol.70 , Issue.1 , pp. 288-298
    • Chresta, C.M.1
  • 109
    • 81155132211 scopus 로고    scopus 로고
    • Inhibition of mTOR kinase by AZD8055 can antagonize chemotherapy-induced cell death through autophagy induction and down-reg-ulation of p62/sequestosome 1
    • Huang S, Yang ZJ, Yu C, Sinicrope FA. Inhibition of mTOR kinase by AZD8055 can antagonize chemotherapy-induced cell death through autophagy induction and down-reg-ulation of p62/sequestosome 1. J Biol Chem. 2011;286(46):40002-40012.
    • (2011) J Biol Chem. , vol.286 , Issue.46 , pp. 40002-40012
    • Huang, S.1    Yang, Z.J.2    Yu, C.3    Sinicrope, F.A.4
  • 110
    • 37349041710 scopus 로고    scopus 로고
    • Role of AMP-activated protein kinase in the metabolic syndrome and in heart disease
    • Hardie DG. Role of AMP-activated protein kinase in the metabolic syndrome and in heart disease. FEBS Lett. 2008;582(1):81-89.
    • (2008) FEBS Lett. , vol.582 , Issue.1 , pp. 81-89
    • Hardie, D.G.1
  • 111
    • 36348950449 scopus 로고    scopus 로고
    • Metformin inhibits mammalian target of rapamycin-dependent translation initiation in breast cancer cells
    • Dowling RJ, Zakikhani M, Fantus IG, Pollak M, Sonenberg N. Metformin inhibits mammalian target of rapamycin-dependent translation initiation in breast cancer cells. Cancer Res. 2007;67(22):10804-10812.
    • (2007) Cancer Res. , vol.67 , Issue.22 , pp. 10804-10812
    • Dowling, R.J.1    Zakikhani, M.2    Fantus, I.G.3    Pollak, M.4    Sonenberg, N.5
  • 112
    • 77955287742 scopus 로고    scopus 로고
    • Metformin, independent of AMPK, inhibits mTORC1 in a rag GTPase-depen-dent manner
    • Kalender A, et al. Metformin, independent of AMPK, inhibits mTORC1 in a rag GTPase-depen-dent manner. Cell Metab. 2010;11(5):390-401.
    • (2010) Cell Metab. , vol.11 , Issue.5 , pp. 390-401
    • Kalender, A.1
  • 113
    • 79959764729 scopus 로고    scopus 로고
    • Metformin, independent of AMPK, induces mTOR inhibition and cell-cycle arrest through REDD1
    • Ben Sahra I, et al. Metformin, independent of AMPK, induces mTOR inhibition and cell-cycle arrest through REDD1. Cancer Res. 2011;71(13):4366-4372.
    • (2011) Cancer Res. , vol.71 , Issue.13 , pp. 4366-4372
    • Ben Sahra, I.1
  • 114
    • 34547114031 scopus 로고    scopus 로고
    • Systemic treatment with the antidiabetic drug metformin selectively impairs p53-deficient tumor cell growth
    • Buzzai M, et al. Systemic treatment with the antidiabetic drug metformin selectively impairs p53-deficient tumor cell growth. Cancer Res. 2007;67(14):6745-6752.
    • (2007) Cancer Res. , vol.67 , Issue.14 , pp. 6745-6752
    • Buzzai, M.1
  • 115
    • 84859360525 scopus 로고    scopus 로고
    • Therapeutic metformin/AMPK activation blocked lymphoma cell growth via inhibition of mTOR pathway and induction of autophagy
    • Shi WY, et al. Therapeutic metformin/AMPK activation blocked lymphoma cell growth via inhibition of mTOR pathway and induction of autophagy. Cell Death Dis. 2012;3:e275.
    • (2012) Cell Death Dis. , vol.3 , pp. e275
    • Shi, W.Y.1
  • 116
    • 80053417028 scopus 로고    scopus 로고
    • Metformin inhibits melanoma development through autophagy and apoptosis mechanisms
    • Tomic T, et al. Metformin inhibits melanoma development through autophagy and apoptosis mechanisms. Cell Death Dis. 2011;2:e199.
    • (2011) Cell Death Dis. , vol.2 , pp. e199
    • Tomic, T.1
  • 117
    • 79959385996 scopus 로고    scopus 로고
    • Improvement of cardiac functions by chronic metformin treatment is associated with enhanced cardiac autophagy in diabetic OVE26 mice
    • Xie Z, et al. Improvement of cardiac functions by chronic metformin treatment is associated with enhanced cardiac autophagy in diabetic OVE26 mice. Diabetes. 2011;60(6):1770-1778.
    • (2011) Diabetes. , vol.60 , Issue.6 , pp. 1770-1778
    • Xie, Z.1
  • 118
    • 84896776849 scopus 로고    scopus 로고
    • Metformin promotes autophagy and apoptosis in esophageal squamous cell carcinoma by downregulating Stat3 signaling
    • Feng Y, et al. Metformin promotes autophagy and apoptosis in esophageal squamous cell carcinoma by downregulating Stat3 signaling. Cell Death Dis. 2014;5:e1088.
    • (2014) Cell Death Dis. , vol.5 , pp. e1088
    • Feng, Y.1
  • 119
    • 84920415711 scopus 로고    scopus 로고
    • The role for autophagy in cancer
    • White E. The role for autophagy in cancer. J Clin Invest. 2015;125(1):5564-5568.
    • (2015) J Clin Invest. , vol.125 , Issue.1 , pp. 5564-5568
    • White, E.1
  • 120
    • 84920407208 scopus 로고    scopus 로고
    • Development of autophagy inducers in clinical medicine
    • Levine B, Packer M, Codogno P. Development of autophagy inducers in clinical medicine. J Clin Invest. 2015;125(1):5536-5546.
    • (2015) J Clin Invest. , vol.125 , Issue.1 , pp. 5536-5546
    • Levine, B.1    Packer, M.2    Codogno, P.3
  • 121


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.