메뉴 건너뛰기




Volumn 38, Issue 12, 2013, Pages 621-639

SET for life: Biochemical activities and biological functions of SET domain-containing proteins

Author keywords

Histone lysine methylation; Non histone substrates; SET domain containing proteins

Indexed keywords

HISTONE H3; HISTONE METHYLTRANSFERASE; HOX PROTEIN; LYSINE; POLYCOMB REPRESSIVE COMPLEX 2; PROTEIN KINASE B; PROTEIN RKM1; PROTEIN RKM2; PROTEIN RKM3; PROTEIN RKM4; PROTEIN SET1; PROTEIN SET2; PROTEIN SET7; PROTEIN SET9; PROTEIN SETD6; PROTEIN SETD7; PROTEIN SETD8; PROTEIN SMYD2; PROTEIN SMYD3; SET DOMAIN CONTAINING PROTEIN; TRANSCRIPTION FACTOR; TRANSCRIPTION FACTOR EZH2; UNCLASSIFIED DRUG;

EID: 84888132934     PISSN: 09680004     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.tibs.2013.09.004     Document Type: Review
Times cited : (235)

References (331)
  • 1
    • 84861870951 scopus 로고    scopus 로고
    • The COMPASS family of histone H3K4 methylases: mechanisms of regulation in development and disease pathogenesis
    • Shilatifard A. The COMPASS family of histone H3K4 methylases: mechanisms of regulation in development and disease pathogenesis. Annu. Rev. Biochem. 2012, 81:65-95.
    • (2012) Annu. Rev. Biochem. , vol.81 , pp. 65-95
    • Shilatifard, A.1
  • 2
    • 24944520025 scopus 로고    scopus 로고
    • Molecular regulation of histone H3 trimethylation by COMPASS and the regulation of gene expression
    • Schneider J., et al. Molecular regulation of histone H3 trimethylation by COMPASS and the regulation of gene expression. Mol. Cell 2005, 19:849-856.
    • (2005) Mol. Cell , vol.19 , pp. 849-856
    • Schneider, J.1
  • 3
    • 81855195123 scopus 로고    scopus 로고
    • The COMPASS family of H3K4 methylases in Drosophila
    • Mohan M., et al. The COMPASS family of H3K4 methylases in Drosophila. Mol. Cell. Biol. 2011, 31:4310-4318.
    • (2011) Mol. Cell. Biol. , vol.31 , pp. 4310-4318
    • Mohan, M.1
  • 4
    • 79960643838 scopus 로고    scopus 로고
    • Drosophila Set1 is the major histone H3 lysine 4 trimethyltransferase with role in transcription
    • Ardehali M.B., et al. Drosophila Set1 is the major histone H3 lysine 4 trimethyltransferase with role in transcription. EMBO J. 2011, 30:2817-2828.
    • (2011) EMBO J. , vol.30 , pp. 2817-2828
    • Ardehali, M.B.1
  • 5
    • 84855435681 scopus 로고    scopus 로고
    • DSet1 is the main H3K4 di- and tri-methyltransferase throughout Drosophila development
    • Hallson G., et al. dSet1 is the main H3K4 di- and tri-methyltransferase throughout Drosophila development. Genetics 2012, 190:91-100.
    • (2012) Genetics , vol.190 , pp. 91-100
    • Hallson, G.1
  • 6
    • 57349124451 scopus 로고    scopus 로고
    • Molecular regulation of H3K4 trimethylation by Wdr82, a component of human Set1/COMPASS
    • Wu M., et al. Molecular regulation of H3K4 trimethylation by Wdr82, a component of human Set1/COMPASS. Mol. Cell. Biol. 2008, 28:7337-7344.
    • (2008) Mol. Cell. Biol. , vol.28 , pp. 7337-7344
    • Wu, M.1
  • 7
    • 77956810338 scopus 로고    scopus 로고
    • MLL2 is required in oocytes for bulk histone 3 lysine 4 trimethylation and transcriptional silencing
    • Andreu-Vieyra C.V., et al. MLL2 is required in oocytes for bulk histone 3 lysine 4 trimethylation and transcriptional silencing. PLoS Biol. 2010, 8:e1000453.
    • (2010) PLoS Biol. , vol.8
    • Andreu-Vieyra, C.V.1
  • 8
    • 71949107301 scopus 로고    scopus 로고
    • Global analysis of H3K4 methylation defines MLL family member targets and points to a role for MLL1-mediated H3K4 methylation in the regulation of transcriptional initiation by RNA polymerase II
    • Wang P., et al. Global analysis of H3K4 methylation defines MLL family member targets and points to a role for MLL1-mediated H3K4 methylation in the regulation of transcriptional initiation by RNA polymerase II. Mol. Cell. Biol. 2009, 29:6074-6085.
    • (2009) Mol. Cell. Biol. , vol.29 , pp. 6074-6085
    • Wang, P.1
  • 9
    • 84870490787 scopus 로고    scopus 로고
    • Enhancer-associated H3K4 monomethylation by Trithorax-related, the Drosophila homolog of mammalian Mll3/Mll4
    • Herz H.M., et al. Enhancer-associated H3K4 monomethylation by Trithorax-related, the Drosophila homolog of mammalian Mll3/Mll4. Genes Dev. 2012, 26:2604-2620.
    • (2012) Genes Dev. , vol.26 , pp. 2604-2620
    • Herz, H.M.1
  • 10
    • 84860768766 scopus 로고    scopus 로고
    • Histone recognition and nuclear receptor co-activator functions of Drosophila Cara Mitad, a homolog of the N-terminal portion of mammalian MLL2 and MLL3
    • Chauhan C., et al. Histone recognition and nuclear receptor co-activator functions of Drosophila Cara Mitad, a homolog of the N-terminal portion of mammalian MLL2 and MLL3. Development 2012, 139:1997-2008.
    • (2012) Development , vol.139 , pp. 1997-2008
    • Chauhan, C.1
  • 11
    • 0033016615 scopus 로고    scopus 로고
    • Molecular genetic analysis of the Drosophila trithorax-related gene which encodes a novel SET domain protein
    • Sedkov Y., et al. Molecular genetic analysis of the Drosophila trithorax-related gene which encodes a novel SET domain protein. Mech. Dev. 1999, 82:171-179.
    • (1999) Mech. Dev. , vol.82 , pp. 171-179
    • Sedkov, Y.1
  • 12
    • 0025247728 scopus 로고
    • The trithorax gene, a trans-acting regulator of the bithorax complex in Drosophila, encodes a protein with zinc-binding domains
    • Mazo A.M., et al. The trithorax gene, a trans-acting regulator of the bithorax complex in Drosophila, encodes a protein with zinc-binding domains. Proc. Natl. Acad. Sci. U.S.A. 1990, 87:2112-2116.
    • (1990) Proc. Natl. Acad. Sci. U.S.A. , vol.87 , pp. 2112-2116
    • Mazo, A.M.1
  • 13
    • 0028869112 scopus 로고
    • Altered Hox expression and segmental identity in Mll-mutant mice
    • Yu B.D., et al. Altered Hox expression and segmental identity in Mll-mutant mice. Nature 1995, 378:505-508.
    • (1995) Nature , vol.378 , pp. 505-508
    • Yu, B.D.1
  • 14
    • 33646681035 scopus 로고    scopus 로고
    • Multiple epigenetic maintenance factors implicated by the loss of Mll2 in mouse development
    • Glaser S., et al. Multiple epigenetic maintenance factors implicated by the loss of Mll2 in mouse development. Development 2006, 133:1423-1432.
    • (2006) Development , vol.133 , pp. 1423-1432
    • Glaser, S.1
  • 15
    • 33646230318 scopus 로고    scopus 로고
    • Histone and DNA methylation defects at Hox genes in mice expressing a SET domain-truncated form of Mll
    • Terranova R., et al. Histone and DNA methylation defects at Hox genes in mice expressing a SET domain-truncated form of Mll. Proc. Natl. Acad. Sci. U.S.A. 2006, 103:6629-6634.
    • (2006) Proc. Natl. Acad. Sci. U.S.A. , vol.103 , pp. 6629-6634
    • Terranova, R.1
  • 16
    • 80052591715 scopus 로고    scopus 로고
    • Substrate and product specificities of SET domain methyltransferases
    • Del Rizzo P.A., Trievel R.C. Substrate and product specificities of SET domain methyltransferases. Epigenetics 2011, 6:1059-1067.
    • (2011) Epigenetics , vol.6 , pp. 1059-1067
    • Del Rizzo, P.A.1    Trievel, R.C.2
  • 17
    • 67349189942 scopus 로고    scopus 로고
    • GlcNAcylation of a histone methyltransferase in retinoic-acid-induced granulopoiesis
    • Fujiki R., et al. GlcNAcylation of a histone methyltransferase in retinoic-acid-induced granulopoiesis. Nature 2009, 459:455-459.
    • (2009) Nature , vol.459 , pp. 455-459
    • Fujiki, R.1
  • 18
    • 0037167839 scopus 로고    scopus 로고
    • Histone methylation by the Drosophila epigenetic transcriptional regulator Ash1
    • Beisel C., et al. Histone methylation by the Drosophila epigenetic transcriptional regulator Ash1. Nature 2002, 419:857-862.
    • (2002) Nature , vol.419 , pp. 857-862
    • Beisel, C.1
  • 19
    • 0141816768 scopus 로고    scopus 로고
    • ASH1, a Drosophila trithorax group protein, is required for methylation of lysine 4 residues on histone H3
    • Byrd K.N., Shearn A. ASH1, a Drosophila trithorax group protein, is required for methylation of lysine 4 residues on histone H3. Proc. Natl. Acad. Sci. U.S.A. 2003, 100:11535-11540.
    • (2003) Proc. Natl. Acad. Sci. U.S.A. , vol.100 , pp. 11535-11540
    • Byrd, K.N.1    Shearn, A.2
  • 20
    • 63849264001 scopus 로고    scopus 로고
    • MLL5, a trithorax homolog, indirectly regulates H3K4 methylation, represses cyclin A2 expression, and promotes myogenic differentiation
    • Sebastian S., et al. MLL5, a trithorax homolog, indirectly regulates H3K4 methylation, represses cyclin A2 expression, and promotes myogenic differentiation. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:4719-4724.
    • (2009) Proc. Natl. Acad. Sci. U.S.A. , vol.106 , pp. 4719-4724
    • Sebastian, S.1
  • 21
    • 34250820481 scopus 로고    scopus 로고
    • Trithorax-group protein ASH1 methylates histone H3 lysine 36
    • Tanaka Y., et al. Trithorax-group protein ASH1 methylates histone H3 lysine 36. Gene 2007, 397:161-168.
    • (2007) Gene , vol.397 , pp. 161-168
    • Tanaka, Y.1
  • 22
    • 84870870691 scopus 로고    scopus 로고
    • UpSET recruits HDAC complexes and restricts chromatin accessibility and acetylation at promoter regions
    • Rincon-Arano H., et al. UpSET recruits HDAC complexes and restricts chromatin accessibility and acetylation at promoter regions. Cell 2012, 151:1214-1228.
    • (2012) Cell , vol.151 , pp. 1214-1228
    • Rincon-Arano, H.1
  • 23
    • 79953139091 scopus 로고    scopus 로고
    • Crystal structure of the human histone methyltransferase ASH1L catalytic domain and its implications for the regulatory mechanism
    • An S., et al. Crystal structure of the human histone methyltransferase ASH1L catalytic domain and its implications for the regulatory mechanism. J. Biol. Chem. 2011, 286:8369-8374.
    • (2011) J. Biol. Chem. , vol.286 , pp. 8369-8374
    • An, S.1
  • 24
    • 4143074854 scopus 로고    scopus 로고
    • SMYD3 encodes a histone methyltransferase involved in the proliferation of cancer cells
    • Hamamoto R., et al. SMYD3 encodes a histone methyltransferase involved in the proliferation of cancer cells. Nat. Cell Biol. 2004, 6:731-740.
    • (2004) Nat. Cell Biol. , vol.6 , pp. 731-740
    • Hamamoto, R.1
  • 25
    • 79960295875 scopus 로고    scopus 로고
    • Structural and functional profiling of the human histone methyltransferase SMYD3
    • Foreman K.W., et al. Structural and functional profiling of the human histone methyltransferase SMYD3. PLoS ONE 2011, 6:e22290.
    • (2011) PLoS ONE , vol.6
    • Foreman, K.W.1
  • 26
    • 84860549203 scopus 로고    scopus 로고
    • Smyd3 regulates cancer cell phenotypes and catalyzes histone H4 lysine 5 methylation
    • Van Aller G.S., et al. Smyd3 regulates cancer cell phenotypes and catalyzes histone H4 lysine 5 methylation. Epigenetics 2012, 7:340-343.
    • (2012) Epigenetics , vol.7 , pp. 340-343
    • Van Aller, G.S.1
  • 27
    • 36348996694 scopus 로고    scopus 로고
    • The lysine 831 of vascular endothelial growth factor receptor 1 is a novel target of methylation by SMYD3
    • Kunizaki M., et al. The lysine 831 of vascular endothelial growth factor receptor 1 is a novel target of methylation by SMYD3. Cancer Res. 2007, 67:10759-10765.
    • (2007) Cancer Res. , vol.67 , pp. 10759-10765
    • Kunizaki, M.1
  • 28
    • 84855488676 scopus 로고    scopus 로고
    • Structural analysis of the core COMPASS family of histone H3K4 methylases from yeast to human
    • Takahashi Y.H., et al. Structural analysis of the core COMPASS family of histone H3K4 methylases from yeast to human. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:20526-20531.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 20526-20531
    • Takahashi, Y.H.1
  • 29
    • 58649110597 scopus 로고    scopus 로고
    • Structural basis for the requirement of additional factors for MLL1 SET domain activity and recognition of epigenetic marks
    • Southall S.M., et al. Structural basis for the requirement of additional factors for MLL1 SET domain activity and recognition of epigenetic marks. Mol. Cell 2009, 33:181-191.
    • (2009) Mol. Cell , vol.33 , pp. 181-191
    • Southall, S.M.1
  • 30
    • 57749108294 scopus 로고    scopus 로고
    • A conserved arginine-containing motif crucial for the assembly and enzymatic activity of the mixed lineage leukemia protein-1 core complex
    • Patel A., et al. A conserved arginine-containing motif crucial for the assembly and enzymatic activity of the mixed lineage leukemia protein-1 core complex. J. Biol. Chem. 2008, 283:32162-32175.
    • (2008) J. Biol. Chem. , vol.283 , pp. 32162-32175
    • Patel, A.1
  • 31
    • 58049201719 scopus 로고    scopus 로고
    • WDR5 interacts with mixed lineage leukemia (MLL) protein via the histone H3-binding pocket
    • Song J.J., Kingston R.E. WDR5 interacts with mixed lineage leukemia (MLL) protein via the histone H3-binding pocket. J. Biol. Chem. 2008, 283:35258-35264.
    • (2008) J. Biol. Chem. , vol.283 , pp. 35258-35264
    • Song, J.J.1    Kingston, R.E.2
  • 32
    • 84861357093 scopus 로고    scopus 로고
    • The plasticity of WDR5 peptide-binding cleft enables the binding of the SET1 family of histone methyltransferases
    • Zhang P., et al. The plasticity of WDR5 peptide-binding cleft enables the binding of the SET1 family of histone methyltransferases. Nucleic Acids Res. 2012, 40:4237-4246.
    • (2012) Nucleic Acids Res. , vol.40 , pp. 4237-4246
    • Zhang, P.1
  • 33
    • 84856068282 scopus 로고    scopus 로고
    • Charge-based interaction conserved within histone H3 lysine 4 (H3K4) methyltransferase complexes is needed for protein stability, histone methylation, and gene expression
    • Mersman D.P., et al. Charge-based interaction conserved within histone H3 lysine 4 (H3K4) methyltransferase complexes is needed for protein stability, histone methylation, and gene expression. J. Biol. Chem. 2012, 287:2652-2665.
    • (2012) J. Biol. Chem. , vol.287 , pp. 2652-2665
    • Mersman, D.P.1
  • 34
    • 77958477957 scopus 로고    scopus 로고
    • Characterization of a novel WDR5-binding site that recruits RbBP5 through a conserved motif to enhance methylation of histone H3 lysine 4 by mixed lineage leukemia protein-1
    • Odho Z., et al. Characterization of a novel WDR5-binding site that recruits RbBP5 through a conserved motif to enhance methylation of histone H3 lysine 4 by mixed lineage leukemia protein-1. J. Biol. Chem. 2010, 285:32967-32976.
    • (2010) J. Biol. Chem. , vol.285 , pp. 32967-32976
    • Odho, Z.1
  • 35
    • 78651240842 scopus 로고    scopus 로고
    • Structural and biochemical insights into MLL1 core complex assembly
    • Avdic V., et al. Structural and biochemical insights into MLL1 core complex assembly. Structure 2011, 19:101-108.
    • (2011) Structure , vol.19 , pp. 101-108
    • Avdic, V.1
  • 36
    • 78649509903 scopus 로고    scopus 로고
    • An Ash2L/RbBP5 heterodimer stimulates the MLL1 methyltransferase activity through coordinated substrate interactions with the MLL1 SET domain
    • Cao F., et al. An Ash2L/RbBP5 heterodimer stimulates the MLL1 methyltransferase activity through coordinated substrate interactions with the MLL1 SET domain. PLoS ONE 2010, 5:e14102.
    • (2010) PLoS ONE , vol.5
    • Cao, F.1
  • 37
    • 79961027510 scopus 로고    scopus 로고
    • Crystal structure of the N-terminal region of human Ash2L shows a winged-helix motif involved in DNA binding
    • Chen Y., et al. Crystal structure of the N-terminal region of human Ash2L shows a winged-helix motif involved in DNA binding. EMBO Rep. 2011, 12:797-803.
    • (2011) EMBO Rep. , vol.12 , pp. 797-803
    • Chen, Y.1
  • 38
    • 79960059319 scopus 로고    scopus 로고
    • Crystal structure of the trithorax group protein ASH2L reveals a forkhead-like DNA binding domain
    • Sarvan S., et al. Crystal structure of the trithorax group protein ASH2L reveals a forkhead-like DNA binding domain. Nat. Struct. Mol. Biol. 2011, 18:857-859.
    • (2011) Nat. Struct. Mol. Biol. , vol.18 , pp. 857-859
    • Sarvan, S.1
  • 39
    • 36849046285 scopus 로고    scopus 로고
    • Histone crosstalk between H2B monoubiquitination and H3 methylation mediated by COMPASS
    • Lee J.S., et al. Histone crosstalk between H2B monoubiquitination and H3 methylation mediated by COMPASS. Cell 2007, 131:1084-1096.
    • (2007) Cell , vol.131 , pp. 1084-1096
    • Lee, J.S.1
  • 40
    • 55549101555 scopus 로고    scopus 로고
    • Ubiquitylation of the COMPASS component Swd2 links H2B ubiquitylation to H3K4 trimethylation
    • Vitaliano-Prunier A., et al. Ubiquitylation of the COMPASS component Swd2 links H2B ubiquitylation to H3K4 trimethylation. Nat. Cell Biol. 2008, 10:1365-1371.
    • (2008) Nat. Cell Biol. , vol.10 , pp. 1365-1371
    • Vitaliano-Prunier, A.1
  • 41
    • 77954371390 scopus 로고    scopus 로고
    • Novel trans-tail regulation of H2B ubiquitylation and H3K4 methylation by the N terminus of histone H2A
    • Zheng S., et al. Novel trans-tail regulation of H2B ubiquitylation and H3K4 methylation by the N terminus of histone H2A. Mol. Cell. Biol. 2010, 30:3635-3645.
    • (2010) Mol. Cell. Biol. , vol.30 , pp. 3635-3645
    • Zheng, S.1
  • 42
    • 84860848751 scopus 로고    scopus 로고
    • Yeast Swd2 is essential because of antagonism between Set1 histone methyltransferase complex and APT (associated with Pta1) termination factor
    • Soares L.M., Buratowski S. Yeast Swd2 is essential because of antagonism between Set1 histone methyltransferase complex and APT (associated with Pta1) termination factor. J. Biol. Chem. 2012, 287:15219-15231.
    • (2012) J. Biol. Chem. , vol.287 , pp. 15219-15231
    • Soares, L.M.1    Buratowski, S.2
  • 43
    • 35348986412 scopus 로고    scopus 로고
    • Arginine methylation at histone H3R2 controls deposition of H3K4 trimethylation
    • Kirmizis A., et al. Arginine methylation at histone H3R2 controls deposition of H3K4 trimethylation. Nature 2007, 449:928-932.
    • (2007) Nature , vol.449 , pp. 928-932
    • Kirmizis, A.1
  • 44
    • 35349030188 scopus 로고    scopus 로고
    • Methylation of histone H3R2 by PRMT6 and H3K4 by an MLL complex are mutually exclusive
    • Guccione E., et al. Methylation of histone H3R2 by PRMT6 and H3K4 by an MLL complex are mutually exclusive. Nature 2007, 449:933-937.
    • (2007) Nature , vol.449 , pp. 933-937
    • Guccione, E.1
  • 45
    • 37249026306 scopus 로고    scopus 로고
    • PRMT6-mediated methylation of R2 in histone H3 antagonizes H3 K4 trimethylation
    • Hyllus D., et al. PRMT6-mediated methylation of R2 in histone H3 antagonizes H3 K4 trimethylation. Genes Dev. 2007, 21:3369-3380.
    • (2007) Genes Dev. , vol.21 , pp. 3369-3380
    • Hyllus, D.1
  • 46
    • 77951116072 scopus 로고    scopus 로고
    • CpG islands influence chromatin structure via the CpG-binding protein Cfp1
    • Thomson J.P., et al. CpG islands influence chromatin structure via the CpG-binding protein Cfp1. Nature 2010, 464:1082-1086.
    • (2010) Nature , vol.464 , pp. 1082-1086
    • Thomson, J.P.1
  • 47
    • 84864752375 scopus 로고    scopus 로고
    • Cfp1 integrates both CpG content and gene activity for accurate H3K4me3 deposition in embryonic stem cells
    • Clouaire T., et al. Cfp1 integrates both CpG content and gene activity for accurate H3K4me3 deposition in embryonic stem cells. Genes Dev. 2012, 26:1714-1728.
    • (2012) Genes Dev. , vol.26 , pp. 1714-1728
    • Clouaire, T.1
  • 48
    • 0037248944 scopus 로고    scopus 로고
    • Bre1, an E3 ubiquitin ligase required for recruitment and substrate selection of Rad6 at a promoter
    • Wood A., et al. Bre1, an E3 ubiquitin ligase required for recruitment and substrate selection of Rad6 at a promoter. Mol. Cell 2003, 11:267-274.
    • (2003) Mol. Cell , vol.11 , pp. 267-274
    • Wood, A.1
  • 49
    • 0042818412 scopus 로고    scopus 로고
    • The Paf1 complex is essential for histone monoubiquitination by the Rad6-Bre1 complex, which signals for histone methylation by COMPASS and Dot1p
    • Wood A., et al. The Paf1 complex is essential for histone monoubiquitination by the Rad6-Bre1 complex, which signals for histone methylation by COMPASS and Dot1p. J. Biol. Chem. 2003, 278:34739-34742.
    • (2003) J. Biol. Chem. , vol.278 , pp. 34739-34742
    • Wood, A.1
  • 50
    • 77953913196 scopus 로고    scopus 로고
    • Multiple interactions recruit MLL1 and MLL1 fusion proteins to the HOXA9 locus in leukemogenesis
    • Milne T.A., et al. Multiple interactions recruit MLL1 and MLL1 fusion proteins to the HOXA9 locus in leukemogenesis. Mol. Cell 2010, 38:853-863.
    • (2010) Mol. Cell , vol.38 , pp. 853-863
    • Milne, T.A.1
  • 51
    • 77953246813 scopus 로고    scopus 로고
    • The PAF complex synergizes with MLL fusion proteins at HOX loci to promote leukemogenesis
    • Muntean A.G., et al. The PAF complex synergizes with MLL fusion proteins at HOX loci to promote leukemogenesis. Cancer Cell 2010, 17:609-621.
    • (2010) Cancer Cell , vol.17 , pp. 609-621
    • Muntean, A.G.1
  • 52
    • 79953748673 scopus 로고    scopus 로고
    • A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression
    • Wang K.C., et al. A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature 2011, 472:120-124.
    • (2011) Nature , vol.472 , pp. 120-124
    • Wang, K.C.1
  • 53
    • 80052972698 scopus 로고    scopus 로고
    • The noncoding RNA Mistral activates Hoxa6 and Hoxa7 expression and stem cell differentiation by recruiting MLL1 to chromatin
    • Bertani S., et al. The noncoding RNA Mistral activates Hoxa6 and Hoxa7 expression and stem cell differentiation by recruiting MLL1 to chromatin. Mol. Cell 2011, 43:1040-1046.
    • (2011) Mol. Cell , vol.43 , pp. 1040-1046
    • Bertani, S.1
  • 54
    • 79955388677 scopus 로고    scopus 로고
    • Four enzymes cooperate to displace histone H1 during the first minute of hormonal gene activation
    • Vicent G.P., et al. Four enzymes cooperate to displace histone H1 during the first minute of hormonal gene activation. Genes Dev. 2011, 25:845-862.
    • (2011) Genes Dev. , vol.25 , pp. 845-862
    • Vicent, G.P.1
  • 55
    • 70349766918 scopus 로고    scopus 로고
    • ASCOM controls farnesoid X receptor transactivation through its associated histone H3 lysine 4 methyltransferase activity
    • Kim D.H., et al. ASCOM controls farnesoid X receptor transactivation through its associated histone H3 lysine 4 methyltransferase activity. Mol. Endocrinol. 2009, 23:1556-1562.
    • (2009) Mol. Endocrinol. , vol.23 , pp. 1556-1562
    • Kim, D.H.1
  • 56
    • 66649100278 scopus 로고    scopus 로고
    • Crucial roles for interactions between MLL3/4 and INI1 in nuclear receptor transactivation
    • Lee S., et al. Crucial roles for interactions between MLL3/4 and INI1 in nuclear receptor transactivation. Mol. Endocrinol. 2009, 23:610-619.
    • (2009) Mol. Endocrinol. , vol.23 , pp. 610-619
    • Lee, S.1
  • 57
    • 84867908690 scopus 로고    scopus 로고
    • Global identification of MLL2-targeted loci reveals MLL2's role in diverse signaling pathways
    • Guo C., et al. Global identification of MLL2-targeted loci reveals MLL2's role in diverse signaling pathways. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:17603-17608.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. 17603-17608
    • Guo, C.1
  • 58
    • 80053595601 scopus 로고    scopus 로고
    • Ecdysone- and NO-mediated gene regulation by competing EcR/Usp and E75A nuclear receptors during Drosophila development
    • Johnston D.M., et al. Ecdysone- and NO-mediated gene regulation by competing EcR/Usp and E75A nuclear receptors during Drosophila development. Mol. Cell 2011, 44:51-61.
    • (2011) Mol. Cell , vol.44 , pp. 51-61
    • Johnston, D.M.1
  • 59
    • 66649120472 scopus 로고    scopus 로고
    • A tumor suppressive coactivator complex of p53 containing ASC-2 and histone H3-lysine-4 methyltransferase MLL3 or its paralogue MLL4
    • Lee J., et al. A tumor suppressive coactivator complex of p53 containing ASC-2 and histone H3-lysine-4 methyltransferase MLL3 or its paralogue MLL4. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:8513-8518.
    • (2009) Proc. Natl. Acad. Sci. U.S.A. , vol.106 , pp. 8513-8518
    • Lee, J.1
  • 60
    • 81855212627 scopus 로고    scopus 로고
    • Trithorax group proteins: switching genes on and keeping them active
    • Schuettengruber B., et al. Trithorax group proteins: switching genes on and keeping them active. Nat. Rev. Mol. Cell Biol. 2011, 12:799-814.
    • (2011) Nat. Rev. Mol. Cell Biol. , vol.12 , pp. 799-814
    • Schuettengruber, B.1
  • 61
    • 77956944025 scopus 로고    scopus 로고
    • Phosphorylation of MLL by ATR is required for execution of mammalian S-phase checkpoint
    • Liu H., et al. Phosphorylation of MLL by ATR is required for execution of mammalian S-phase checkpoint. Nature 2010, 467:343-346.
    • (2010) Nature , vol.467 , pp. 343-346
    • Liu, H.1
  • 62
    • 72149122408 scopus 로고    scopus 로고
    • A reconfigured pattern of MLL occupancy within mitotic chromatin promotes rapid transcriptional reactivation following mitotic exit
    • Blobel G.A., et al. A reconfigured pattern of MLL occupancy within mitotic chromatin promotes rapid transcriptional reactivation following mitotic exit. Mol. Cell 2009, 36:970-983.
    • (2009) Mol. Cell , vol.36 , pp. 970-983
    • Blobel, G.A.1
  • 63
    • 33847334699 scopus 로고    scopus 로고
    • Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome
    • Heintzman N.D., et al. Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat. Genet. 2007, 39:311-318.
    • (2007) Nat. Genet. , vol.39 , pp. 311-318
    • Heintzman, N.D.1
  • 64
    • 65549104157 scopus 로고    scopus 로고
    • Histone modifications at human enhancers reflect global cell-type-specific gene expression
    • Heintzman N.D., et al. Histone modifications at human enhancers reflect global cell-type-specific gene expression. Nature 2009, 459:108-112.
    • (2009) Nature , vol.459 , pp. 108-112
    • Heintzman, N.D.1
  • 65
    • 77951980558 scopus 로고    scopus 로고
    • The H3K27me3 demethylase dUTX is a suppressor of Notch- and Rb-dependent tumors in Drosophila
    • Herz H.M., et al. The H3K27me3 demethylase dUTX is a suppressor of Notch- and Rb-dependent tumors in Drosophila. Mol. Cell. Biol. 2010, 30:2485-2497.
    • (2010) Mol. Cell. Biol. , vol.30 , pp. 2485-2497
    • Herz, H.M.1
  • 66
    • 79955460159 scopus 로고    scopus 로고
    • H3K9 methyltransferase G9a and the related molecule GLP
    • Shinkai Y., Tachibana M. H3K9 methyltransferase G9a and the related molecule GLP. Genes Dev. 2011, 25:781-788.
    • (2011) Genes Dev. , vol.25 , pp. 781-788
    • Shinkai, Y.1    Tachibana, M.2
  • 67
    • 84870375316 scopus 로고    scopus 로고
    • Histone lysine methylation dynamics: establishment, regulation, and biological impact
    • Black J.C., et al. Histone lysine methylation dynamics: establishment, regulation, and biological impact. Mol. Cell 2012, 48:491-507.
    • (2012) Mol. Cell , vol.48 , pp. 491-507
    • Black, J.C.1
  • 68
    • 0034632829 scopus 로고    scopus 로고
    • Regulation of chromatin structure by site-specific histone H3 methyltransferases
    • Rea S., et al. Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature 2000.
    • (2000) Nature
    • Rea, S.1
  • 69
    • 84861974512 scopus 로고    scopus 로고
    • The Prdm family: expanding roles in stem cells and development
    • Hohenauer T., Moore A.W. The Prdm family: expanding roles in stem cells and development. Development 2012, 139:2267-2282.
    • (2012) Development , vol.139 , pp. 2267-2282
    • Hohenauer, T.1    Moore, A.W.2
  • 70
    • 83455259343 scopus 로고    scopus 로고
    • PRDM proteins: important players in differentiation and disease
    • Fog C.K., et al. PRDM proteins: important players in differentiation and disease. Bioessays 2012, 34:50-60.
    • (2012) Bioessays , vol.34 , pp. 50-60
    • Fog, C.K.1
  • 71
    • 9144268924 scopus 로고    scopus 로고
    • Partitioning and plasticity of repressive histone methylation states in mammalian chromatin
    • Peters A.H., et al. Partitioning and plasticity of repressive histone methylation states in mammalian chromatin. Mol. Cell 2003, 12:1577-1589.
    • (2003) Mol. Cell , vol.12 , pp. 1577-1589
    • Peters, A.H.1
  • 72
    • 0347988045 scopus 로고    scopus 로고
    • Epigenetic regulation of telomere length in mammalian cells by the Suv39h1 and Suv39h2 histone methyltransferases
    • Garcia-Cao M., et al. Epigenetic regulation of telomere length in mammalian cells by the Suv39h1 and Suv39h2 histone methyltransferases. Nat. Genet. 2004, 36:94-99.
    • (2004) Nat. Genet. , vol.36 , pp. 94-99
    • Garcia-Cao, M.1
  • 73
    • 0037099413 scopus 로고    scopus 로고
    • G9a histone methyltransferase plays a dominant role in euchromatic histone H3 lysine 9 methylation and is essential for early embryogenesis
    • Tachibana M., et al. G9a histone methyltransferase plays a dominant role in euchromatic histone H3 lysine 9 methylation and is essential for early embryogenesis. Genes Dev. 2002, 16:1779-1791.
    • (2002) Genes Dev. , vol.16 , pp. 1779-1791
    • Tachibana, M.1
  • 74
    • 20144388930 scopus 로고    scopus 로고
    • Histone methyltransferases G9a and GLP form heteromeric complexes and are both crucial for methylation of euchromatin at H3-K9
    • Tachibana M., et al. Histone methyltransferases G9a and GLP form heteromeric complexes and are both crucial for methylation of euchromatin at H3-K9. Genes Dev. 2005, 19:815-826.
    • (2005) Genes Dev. , vol.19 , pp. 815-826
    • Tachibana, M.1
  • 75
    • 33745999467 scopus 로고    scopus 로고
    • Zinc finger protein Wiz links G9a/GLP histone methyltransferases to the co-repressor molecule CtBP
    • Ueda J., et al. Zinc finger protein Wiz links G9a/GLP histone methyltransferases to the co-repressor molecule CtBP. J. Biol. Chem. 2006, 281:20120-20128.
    • (2006) J. Biol. Chem. , vol.281 , pp. 20120-20128
    • Ueda, J.1
  • 76
    • 0141992115 scopus 로고    scopus 로고
    • MAM facilitates conversion by ESET of dimethyl to trimethyl lysine 9 of histone H3 to cause transcriptional repression
    • Wang H., et al. mAM facilitates conversion by ESET of dimethyl to trimethyl lysine 9 of histone H3 to cause transcriptional repression. Mol. Cell 2003, 12:475-487.
    • (2003) Mol. Cell , vol.12 , pp. 475-487
    • Wang, H.1
  • 77
    • 77953734190 scopus 로고    scopus 로고
    • CLLD8/KMT1F is a lysine methyltransferase that is important for chromosome segregation
    • Falandry C., et al. CLLD8/KMT1F is a lysine methyltransferase that is important for chromosome segregation. J. Biol. Chem. 2010, 285:20234-20241.
    • (2010) J. Biol. Chem. , vol.285 , pp. 20234-20241
    • Falandry, C.1
  • 78
    • 74049135429 scopus 로고    scopus 로고
    • A subset of the histone H3 lysine 9 methyltransferases Suv39h1, G9a, GLP, and SETDB1 participate in a multimeric complex
    • Fritsch L., et al. A subset of the histone H3 lysine 9 methyltransferases Suv39h1, G9a, GLP, and SETDB1 participate in a multimeric complex. Mol. Cell 2010, 37:46-56.
    • (2010) Mol. Cell , vol.37 , pp. 46-56
    • Fritsch, L.1
  • 79
    • 84865680532 scopus 로고    scopus 로고
    • Prdm3 and Prdm16 are H3K9me1 methyltransferases required for mammalian heterochromatin integrity
    • Pinheiro I., et al. Prdm3 and Prdm16 are H3K9me1 methyltransferases required for mammalian heterochromatin integrity. Cell 2012, 150:948-960.
    • (2012) Cell , vol.150 , pp. 948-960
    • Pinheiro, I.1
  • 80
    • 67649800263 scopus 로고    scopus 로고
    • Dynamic histone H1 isotype 4 methylation and demethylation by histone lysine methyltransferase G9a/KMT1C and the Jumonji domain-containing JMJD2/KDM4 proteins
    • Trojer P., et al. Dynamic histone H1 isotype 4 methylation and demethylation by histone lysine methyltransferase G9a/KMT1C and the Jumonji domain-containing JMJD2/KDM4 proteins. J. Biol. Chem. 2009, 284:8395-8405.
    • (2009) J. Biol. Chem. , vol.284 , pp. 8395-8405
    • Trojer, P.1
  • 81
    • 77953411635 scopus 로고    scopus 로고
    • Histone H1 variant-specific lysine methylation by G9a/KMT1C and Glp1/KMT1D
    • Weiss T., et al. Histone H1 variant-specific lysine methylation by G9a/KMT1C and Glp1/KMT1D. Epigenetics Chromatin 2010, 3:7.
    • (2010) Epigenetics Chromatin , vol.3 , pp. 7
    • Weiss, T.1
  • 82
    • 79651471340 scopus 로고    scopus 로고
    • Histone methyltransferase G9a contributes to H3K27 methylation in vivo
    • Wu H., et al. Histone methyltransferase G9a contributes to H3K27 methylation in vivo. Cell Res. 2011, 21:365-367.
    • (2011) Cell Res. , vol.21 , pp. 365-367
    • Wu, H.1
  • 83
    • 84862777220 scopus 로고    scopus 로고
    • Histone H3 lysine 56 methylation regulates DNA replication through its interaction with PCNA
    • Yu Y., et al. Histone H3 lysine 56 methylation regulates DNA replication through its interaction with PCNA. Mol. Cell 2012, 46:7-17.
    • (2012) Mol. Cell , vol.46 , pp. 7-17
    • Yu, Y.1
  • 84
    • 0036499971 scopus 로고    scopus 로고
    • Central role of Drosophila SU(VAR)3-9 in histone H3-K9 methylation and heterochromatic gene silencing
    • Schotta G., et al. Central role of Drosophila SU(VAR)3-9 in histone H3-K9 methylation and heterochromatic gene silencing. EMBO J. 2002, 21:1121-1131.
    • (2002) EMBO J. , vol.21 , pp. 1121-1131
    • Schotta, G.1
  • 85
    • 37249009540 scopus 로고    scopus 로고
    • Drosophila G9a is a nonessential gene
    • Seum C., et al. Drosophila G9a is a nonessential gene. Genetics 2007, 177:1955-1957.
    • (2007) Genetics , vol.177 , pp. 1955-1957
    • Seum, C.1
  • 86
    • 34249741603 scopus 로고    scopus 로고
    • Drosophila SETDB1 is required for chromosome 4 silencing
    • Seum C., et al. Drosophila SETDB1 is required for chromosome 4 silencing. PLoS Genet. 2007, 3:e76.
    • (2007) PLoS Genet. , vol.3
    • Seum, C.1
  • 87
    • 34547887654 scopus 로고    scopus 로고
    • Epigenetic regulation of the Drosophila chromosome 4 by the histone H3K9 methyltransferase dSETDB1
    • Tzeng T.Y., et al. Epigenetic regulation of the Drosophila chromosome 4 by the histone H3K9 methyltransferase dSETDB1. Proc. Natl. Acad. Sci. U.S.A. 2007, 104:12691-12696.
    • (2007) Proc. Natl. Acad. Sci. U.S.A. , vol.104 , pp. 12691-12696
    • Tzeng, T.Y.1
  • 88
    • 33746072542 scopus 로고    scopus 로고
    • Identification of three histone methyltransferases in Drosophila: dG9a is a suppressor of PEV and is required for gene silencing
    • Mis J., et al. Identification of three histone methyltransferases in Drosophila: dG9a is a suppressor of PEV and is required for gene silencing. Mol. Genet. Genomics 2006, 275:513-526.
    • (2006) Mol. Genet. Genomics , vol.275 , pp. 513-526
    • Mis, J.1
  • 89
    • 67650270690 scopus 로고    scopus 로고
    • Multiple SET methyltransferases are required to maintain normal heterochromatin domains in the genome of Drosophila melanogaster
    • Brower-Toland B., et al. Multiple SET methyltransferases are required to maintain normal heterochromatin domains in the genome of Drosophila melanogaster. Genetics 2009, 181:1303-1319.
    • (2009) Genetics , vol.181 , pp. 1303-1319
    • Brower-Toland, B.1
  • 90
    • 0037162794 scopus 로고    scopus 로고
    • Hamlet, a binary genetic switch between single- and multiple-dendrite neuron morphology
    • Moore A.W., et al. hamlet, a binary genetic switch between single- and multiple-dendrite neuron morphology. Science 2002, 297:1355-1358.
    • (2002) Science , vol.297 , pp. 1355-1358
    • Moore, A.W.1
  • 91
    • 17944380227 scopus 로고    scopus 로고
    • Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability
    • Peters A.H., et al. Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell 2001, 107:323-337.
    • (2001) Cell , vol.107 , pp. 323-337
    • Peters, A.H.1
  • 92
    • 1542314243 scopus 로고    scopus 로고
    • Histone H3-K9 methyltransferase ESET is essential for early development
    • Dodge J.E., et al. Histone H3-K9 methyltransferase ESET is essential for early development. Mol. Cell. Biol. 2004, 24:2478-2486.
    • (2004) Mol. Cell. Biol. , vol.24 , pp. 2478-2486
    • Dodge, J.E.1
  • 93
    • 0031173051 scopus 로고    scopus 로고
    • The Evi1 proto-oncogene is required at midgestation for neural, heart, and paraxial mesenchyme development
    • Hoyt P.R., et al. The Evi1 proto-oncogene is required at midgestation for neural, heart, and paraxial mesenchyme development. Mech. Dev. 1997, 65:55-70.
    • (1997) Mech. Dev. , vol.65 , pp. 55-70
    • Hoyt, P.R.1
  • 94
    • 79955974326 scopus 로고    scopus 로고
    • Prdm16 is a physiologic regulator of hematopoietic stem cells
    • Aguilo F., et al. Prdm16 is a physiologic regulator of hematopoietic stem cells. Blood 2011, 117:5057-5066.
    • (2011) Blood , vol.117 , pp. 5057-5066
    • Aguilo, F.1
  • 95
    • 0037089626 scopus 로고    scopus 로고
    • SETDB1: a novel KAP-1-associated histone H3, lysine 9-specific methyltransferase that contributes to HP1-mediated silencing of euchromatic genes by KRAB zinc-finger proteins
    • Schultz D.C., et al. SETDB1: a novel KAP-1-associated histone H3, lysine 9-specific methyltransferase that contributes to HP1-mediated silencing of euchromatic genes by KRAB zinc-finger proteins. Genes Dev. 2002, 16:919-932.
    • (2002) Genes Dev. , vol.16 , pp. 919-932
    • Schultz, D.C.1
  • 96
    • 0041624239 scopus 로고    scopus 로고
    • Regulated recruitment of HP1 to a euchromatic gene induces mitotically heritable, epigenetic gene silencing: a mammalian cell culture model of gene variegation
    • Ayyanathan K., et al. Regulated recruitment of HP1 to a euchromatic gene induces mitotically heritable, epigenetic gene silencing: a mammalian cell culture model of gene variegation. Genes Dev. 2003, 17:1855-1869.
    • (2003) Genes Dev. , vol.17 , pp. 1855-1869
    • Ayyanathan, K.1
  • 97
    • 36749009119 scopus 로고    scopus 로고
    • PHD domain-mediated E3 ligase activity directs intramolecular sumoylation of an adjacent bromodomain required for gene silencing
    • Ivanov A.V., et al. PHD domain-mediated E3 ligase activity directs intramolecular sumoylation of an adjacent bromodomain required for gene silencing. Mol. Cell 2007, 28:823-837.
    • (2007) Mol. Cell , vol.28 , pp. 823-837
    • Ivanov, A.V.1
  • 98
    • 4344685735 scopus 로고    scopus 로고
    • Methyl-CpG binding protein MBD1 couples histone H3 methylation at lysine 9 by SETDB1 to DNA replication and chromatin assembly
    • Sarraf S.A., Stancheva I. Methyl-CpG binding protein MBD1 couples histone H3 methylation at lysine 9 by SETDB1 to DNA replication and chromatin assembly. Mol. Cell 2004, 15:595-605.
    • (2004) Mol. Cell , vol.15 , pp. 595-605
    • Sarraf, S.A.1    Stancheva, I.2
  • 99
    • 67650096728 scopus 로고    scopus 로고
    • The HP1α-CAF1-SetDB1-containing complex provides H3K9me1 for Suv39-mediated K9me3 in pericentric heterochromatin
    • Loyola A., et al. The HP1α-CAF1-SetDB1-containing complex provides H3K9me1 for Suv39-mediated K9me3 in pericentric heterochromatin. EMBO Rep. 2009, 10:769-775.
    • (2009) EMBO Rep. , vol.10 , pp. 769-775
    • Loyola, A.1
  • 100
    • 78650081714 scopus 로고    scopus 로고
    • ZNF274 recruits the histone methyltransferase SETDB1 to the 3' ends of ZNF genes
    • Frietze S., et al. ZNF274 recruits the histone methyltransferase SETDB1 to the 3' ends of ZNF genes. PLoS ONE 2010, 5:e15082.
    • (2010) PLoS ONE , vol.5
    • Frietze, S.1
  • 101
    • 17144392514 scopus 로고    scopus 로고
    • Transcriptional repression and heterochromatin formation by MBD1 and MCAF/AM family proteins
    • Ichimura T., et al. Transcriptional repression and heterochromatin formation by MBD1 and MCAF/AM family proteins. J. Biol. Chem. 2005, 280:13928-13935.
    • (2005) J. Biol. Chem. , vol.280 , pp. 13928-13935
    • Ichimura, T.1
  • 102
    • 63449109369 scopus 로고    scopus 로고
    • Heterochromatic genome stability requires regulators of histone H3 K9 methylation
    • Peng J.C., Karpen G.H. Heterochromatic genome stability requires regulators of histone H3 K9 methylation. PLoS Genet. 2009, 5:e1000435.
    • (2009) PLoS Genet. , vol.5
    • Peng, J.C.1    Karpen, G.H.2
  • 103
    • 47849084055 scopus 로고    scopus 로고
    • A novel interaction between the proto-oncogene Evi1 and histone methyltransferases, SUV39H1 and G9a
    • Spensberger D., Delwel R. A novel interaction between the proto-oncogene Evi1 and histone methyltransferases, SUV39H1 and G9a. FEBS Lett. 2008, 582:2761-2767.
    • (2008) FEBS Lett. , vol.582 , pp. 2761-2767
    • Spensberger, D.1    Delwel, R.2
  • 104
    • 54849406772 scopus 로고    scopus 로고
    • EVI1 recruits the histone methyltransferase SUV39H1 for transcription repression
    • Cattaneo F., Nucifora G. EVI1 recruits the histone methyltransferase SUV39H1 for transcription repression. J. Cell. Biochem. 2008, 105:344-352.
    • (2008) J. Cell. Biochem. , vol.105 , pp. 344-352
    • Cattaneo, F.1    Nucifora, G.2
  • 105
    • 74249110211 scopus 로고    scopus 로고
    • EVI-1 interacts with histone methyltransferases SUV39H1 and G9a for transcriptional repression and bone marrow immortalization
    • Goyama S., et al. EVI-1 interacts with histone methyltransferases SUV39H1 and G9a for transcriptional repression and bone marrow immortalization. Leukemia 2010, 24:81-88.
    • (2010) Leukemia , vol.24 , pp. 81-88
    • Goyama, S.1
  • 106
    • 84865687580 scopus 로고    scopus 로고
    • Step-wise methylation of histone H3K9 positions heterochromatin at the nuclear periphery
    • Towbin B.D., et al. Step-wise methylation of histone H3K9 positions heterochromatin at the nuclear periphery. Cell 2012, 150:934-947.
    • (2012) Cell , vol.150 , pp. 934-947
    • Towbin, B.D.1
  • 107
    • 45149084413 scopus 로고    scopus 로고
    • Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions
    • Guelen L., et al. Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions. Nature 2008, 453:948-951.
    • (2008) Nature , vol.453 , pp. 948-951
    • Guelen, L.1
  • 108
    • 59149083658 scopus 로고    scopus 로고
    • Large histone H3 lysine 9 dimethylated chromatin blocks distinguish differentiated from embryonic stem cells
    • Wen B., et al. Large histone H3 lysine 9 dimethylated chromatin blocks distinguish differentiated from embryonic stem cells. Nat. Genet. 2009, 41:246-250.
    • (2009) Nat. Genet. , vol.41 , pp. 246-250
    • Wen, B.1
  • 109
    • 73349139918 scopus 로고    scopus 로고
    • G9a selectively represses a class of late-replicating genes at the nuclear periphery
    • Yokochi T., et al. G9a selectively represses a class of late-replicating genes at the nuclear periphery. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:19363-19368.
    • (2009) Proc. Natl. Acad. Sci. U.S.A. , vol.106 , pp. 19363-19368
    • Yokochi, T.1
  • 110
    • 34547751917 scopus 로고    scopus 로고
    • Methylation of a histone mimic within the histone methyltransferase G9a regulates protein complex assembly
    • Sampath S.C., et al. Methylation of a histone mimic within the histone methyltransferase G9a regulates protein complex assembly. Mol. Cell 2007, 27:596-608.
    • (2007) Mol. Cell , vol.27 , pp. 596-608
    • Sampath, S.C.1
  • 111
    • 37548998570 scopus 로고    scopus 로고
    • Automethylation of G9a and its implication in wider substrate specificity and HP1 binding
    • Chin H.G., et al. Automethylation of G9a and its implication in wider substrate specificity and HP1 binding. Nucleic Acids Res. 2007, 35:7313-7323.
    • (2007) Nucleic Acids Res. , vol.35 , pp. 7313-7323
    • Chin, H.G.1
  • 112
    • 40949148102 scopus 로고    scopus 로고
    • The ankyrin repeats of G9a and GLP histone methyltransferases are mono- and dimethyllysine binding modules
    • Collins R.E., et al. The ankyrin repeats of G9a and GLP histone methyltransferases are mono- and dimethyllysine binding modules. Nat. Struct. Mol. Biol. 2008, 15:245-250.
    • (2008) Nat. Struct. Mol. Biol. , vol.15 , pp. 245-250
    • Collins, R.E.1
  • 113
    • 34547743163 scopus 로고    scopus 로고
    • Activation of RNA polymerase I transcription by cockayne syndrome group B protein and histone methyltransferase G9a
    • Yuan X., et al. Activation of RNA polymerase I transcription by cockayne syndrome group B protein and histone methyltransferase G9a. Mol. Cell 2007, 27:585-595.
    • (2007) Mol. Cell , vol.27 , pp. 585-595
    • Yuan, X.1
  • 114
    • 77955497653 scopus 로고    scopus 로고
    • Human LSD2/KDM1b/AOF1 regulates gene transcription by modulating intragenic H3K4me2 methylation
    • Fang R., et al. Human LSD2/KDM1b/AOF1 regulates gene transcription by modulating intragenic H3K4me2 methylation. Mol. Cell 2010, 39:222-233.
    • (2010) Mol. Cell , vol.39 , pp. 222-233
    • Fang, R.1
  • 115
    • 82755163097 scopus 로고    scopus 로고
    • A distinct mechanism for coactivator versus corepressor function by histone methyltransferase G9a in transcriptional regulation
    • Purcell D.J., et al. A distinct mechanism for coactivator versus corepressor function by histone methyltransferase G9a in transcriptional regulation. J. Biol. Chem. 2011, 286:41963-41971.
    • (2011) J. Biol. Chem. , vol.286 , pp. 41963-41971
    • Purcell, D.J.1
  • 116
    • 70349464819 scopus 로고    scopus 로고
    • P21(WAF1) gene promoter is epigenetically silenced by CTIP2 and SUV39H1
    • Cherrier T., et al. p21(WAF1) gene promoter is epigenetically silenced by CTIP2 and SUV39H1. Oncogene 2009, 28:3380-3389.
    • (2009) Oncogene , vol.28 , pp. 3380-3389
    • Cherrier, T.1
  • 117
    • 59649127791 scopus 로고    scopus 로고
    • UHRF1 binds G9a and participates in p21 transcriptional regulation in mammalian cells
    • Kim J.K., et al. UHRF1 binds G9a and participates in p21 transcriptional regulation in mammalian cells. Nucleic Acids Res. 2009, 37:493-505.
    • (2009) Nucleic Acids Res. , vol.37 , pp. 493-505
    • Kim, J.K.1
  • 118
    • 77955415488 scopus 로고    scopus 로고
    • MDM2 recruitment of lysine methyltransferases regulates p53 transcriptional output
    • Chen L., et al. MDM2 recruitment of lysine methyltransferases regulates p53 transcriptional output. EMBO J. 2010, 29:2538-2552.
    • (2010) EMBO J. , vol.29 , pp. 2538-2552
    • Chen, L.1
  • 119
    • 78149440189 scopus 로고    scopus 로고
    • Polycomb CBX7 directly controls trimethylation of histone H3 at lysine 9 at the p16 locus
    • Li Q., et al. Polycomb CBX7 directly controls trimethylation of histone H3 at lysine 9 at the p16 locus. PLoS ONE 2010, 5:e13732.
    • (2010) PLoS ONE , vol.5
    • Li, Q.1
  • 120
    • 78751662908 scopus 로고    scopus 로고
    • The Polycomb complex PRC2 and its mark in life
    • Margueron R., Reinberg D. The Polycomb complex PRC2 and its mark in life. Nature 2011, 469:343-349.
    • (2011) Nature , vol.469 , pp. 343-349
    • Margueron, R.1    Reinberg, D.2
  • 121
    • 0026503711 scopus 로고
    • Ten different Polycomb group genes are required for spatial control of the abdA and AbdB homeotic products
    • Simon J., et al. Ten different Polycomb group genes are required for spatial control of the abdA and AbdB homeotic products. Development 1992, 114:493-505.
    • (1992) Development , vol.114 , pp. 493-505
    • Simon, J.1
  • 122
    • 70349469565 scopus 로고    scopus 로고
    • Mechanisms of polycomb gene silencing: knowns and unknowns
    • Simon J.A., Kingston R.E. Mechanisms of polycomb gene silencing: knowns and unknowns. Nat. Rev. Mol. Cell Biol. 2009, 10:697-708.
    • (2009) Nat. Rev. Mol. Cell Biol. , vol.10 , pp. 697-708
    • Simon, J.A.1    Kingston, R.E.2
  • 123
    • 10044244766 scopus 로고    scopus 로고
    • Su(var) genes regulate the balance between euchromatin and heterochromatin in Drosophila
    • Ebert A., et al. Su(var) genes regulate the balance between euchromatin and heterochromatin in Drosophila. Genes Dev. 2004, 18:2973-2983.
    • (2004) Genes Dev. , vol.18 , pp. 2973-2983
    • Ebert, A.1
  • 124
    • 1942502862 scopus 로고    scopus 로고
    • Different EZH2-containing complexes target methylation of histone H1 or nucleosomal histone H3
    • Kuzmichev A., et al. Different EZH2-containing complexes target methylation of histone H1 or nucleosomal histone H3. Mol. Cell 2004, 14:183-193.
    • (2004) Mol. Cell , vol.14 , pp. 183-193
    • Kuzmichev, A.1
  • 125
    • 55949132133 scopus 로고    scopus 로고
    • Ezh1 and Ezh2 maintain repressive chromatin through different mechanisms
    • Margueron R., et al. Ezh1 and Ezh2 maintain repressive chromatin through different mechanisms. Mol. Cell 2008, 32:503-518.
    • (2008) Mol. Cell , vol.32 , pp. 503-518
    • Margueron, R.1
  • 126
    • 55949124844 scopus 로고    scopus 로고
    • EZH1 mediates methylation on histone H3 lysine 27 and complements EZH2 in maintaining stem cell identity and executing pluripotency
    • Shen X., et al. EZH1 mediates methylation on histone H3 lysine 27 and complements EZH2 in maintaining stem cell identity and executing pluripotency. Mol. Cell 2008, 32:491-502.
    • (2008) Mol. Cell , vol.32 , pp. 491-502
    • Shen, X.1
  • 127
    • 0034977239 scopus 로고    scopus 로고
    • The polycomb-group gene Ezh2 is required for early mouse development
    • O'Carroll D., et al. The polycomb-group gene Ezh2 is required for early mouse development. Mol. Cell. Biol. 2001, 21:4330-4336.
    • (2001) Mol. Cell. Biol. , vol.21 , pp. 4330-4336
    • O'Carroll, D.1
  • 128
    • 0025149495 scopus 로고
    • Genetic analysis of the enhancer of zeste locus and its role in gene regulation in Drosophila melanogaster
    • Jones R.S., Gelbart W.M. Genetic analysis of the enhancer of zeste locus and its role in gene regulation in Drosophila melanogaster. Genetics 1990, 126:185-199.
    • (1990) Genetics , vol.126 , pp. 185-199
    • Jones, R.S.1    Gelbart, W.M.2
  • 129
    • 70349952171 scopus 로고    scopus 로고
    • Role of the polycomb protein EED in the propagation of repressive histone marks
    • Margueron R., et al. Role of the polycomb protein EED in the propagation of repressive histone marks. Nature 2009, 461:762-767.
    • (2009) Nature , vol.461 , pp. 762-767
    • Margueron, R.1
  • 130
    • 78650613168 scopus 로고    scopus 로고
    • Binding of different histone marks differentially regulates the activity and specificity of polycomb repressive complex 2 (PRC2)
    • Xu C., et al. Binding of different histone marks differentially regulates the activity and specificity of polycomb repressive complex 2 (PRC2). Proc. Natl. Acad. Sci. U.S.A. 2010, 107:19266-19271.
    • (2010) Proc. Natl. Acad. Sci. U.S.A. , vol.107 , pp. 19266-19271
    • Xu, C.1
  • 131
    • 79955494277 scopus 로고    scopus 로고
    • Histone methylation by PRC2 is inhibited by active chromatin marks
    • Schmitges F.W., et al. Histone methylation by PRC2 is inhibited by active chromatin marks. Mol. Cell 2011, 42:330-341.
    • (2011) Mol. Cell , vol.42 , pp. 330-341
    • Schmitges, F.W.1
  • 132
    • 84867009687 scopus 로고    scopus 로고
    • Asymmetrically modified nucleosomes
    • Voigt P., et al. Asymmetrically modified nucleosomes. Cell 2012, 151:181-193.
    • (2012) Cell , vol.151 , pp. 181-193
    • Voigt, P.1
  • 133
    • 84865292901 scopus 로고    scopus 로고
    • Dense chromatin activates Polycomb repressive complex 2 to regulate H3 lysine 27 methylation
    • Yuan W., et al. Dense chromatin activates Polycomb repressive complex 2 to regulate H3 lysine 27 methylation. Science 2012, 337:971-975.
    • (2012) Science , vol.337 , pp. 971-975
    • Yuan, W.1
  • 134
    • 84881497258 scopus 로고    scopus 로고
    • Molecular architecture of human polycomb repressive complex 2
    • Ciferri C., et al. Molecular architecture of human polycomb repressive complex 2. eLife 2012, 1:e00005.
    • (2012) eLife , vol.1
    • Ciferri, C.1
  • 135
    • 84861365971 scopus 로고    scopus 로고
    • Polycomb repressive complex 2-dependent and -independent functions of Jarid2 in transcriptional regulation in Drosophila
    • Herz H.M., et al. Polycomb repressive complex 2-dependent and -independent functions of Jarid2 in transcriptional regulation in Drosophila. Mol. Cell. Biol. 2012, 32:1683-1693.
    • (2012) Mol. Cell. Biol. , vol.32 , pp. 1683-1693
    • Herz, H.M.1
  • 136
    • 42149149344 scopus 로고    scopus 로고
    • Recruitment of Drosophila Polycomb-group proteins by Polycomblike, a component of a novel protein complex in larvae
    • Savla U., et al. Recruitment of Drosophila Polycomb-group proteins by Polycomblike, a component of a novel protein complex in larvae. Development 2008, 135:813-817.
    • (2008) Development , vol.135 , pp. 813-817
    • Savla, U.1
  • 137
    • 34648834735 scopus 로고    scopus 로고
    • Pcl-PRC2 is needed to generate high levels of H3-K27 trimethylation at Polycomb target genes
    • Nekrasov M., et al. Pcl-PRC2 is needed to generate high levels of H3-K27 trimethylation at Polycomb target genes. EMBO J. 2007, 26:4078-4088.
    • (2007) EMBO J. , vol.26 , pp. 4078-4088
    • Nekrasov, M.1
  • 138
    • 77951871731 scopus 로고    scopus 로고
    • The JARID2-PRC2 duality
    • Herz H.M., Shilatifard A. The JARID2-PRC2 duality. Genes Dev. 2010, 24:857-861.
    • (2010) Genes Dev. , vol.24 , pp. 857-861
    • Herz, H.M.1    Shilatifard, A.2
  • 139
    • 75349104610 scopus 로고    scopus 로고
    • Polycomb-like 2 associates with PRC2 and regulates transcriptional networks during mouse embryonic stem cell self-renewal and differentiation
    • Walker E., et al. Polycomb-like 2 associates with PRC2 and regulates transcriptional networks during mouse embryonic stem cell self-renewal and differentiation. Cell Stem Cell 2010, 6:153-166.
    • (2010) Cell Stem Cell , vol.6 , pp. 153-166
    • Walker, E.1
  • 140
    • 66249121737 scopus 로고    scopus 로고
    • AEBP2 as a potential targeting protein for Polycomb Repression Complex PRC2
    • Kim H., et al. AEBP2 as a potential targeting protein for Polycomb Repression Complex PRC2. Nucleic Acids Res. 2009, 37:2940-2950.
    • (2009) Nucleic Acids Res. , vol.37 , pp. 2940-2950
    • Kim, H.1
  • 141
    • 42149149895 scopus 로고    scopus 로고
    • Ezh2 requires PHF1 to efficiently catalyze H3 lysine 27 trimethylation in vivo
    • Sarma K., et al. Ezh2 requires PHF1 to efficiently catalyze H3 lysine 27 trimethylation in vivo. Mol. Cell. Biol. 2008, 28:2718-2731.
    • (2008) Mol. Cell. Biol. , vol.28 , pp. 2718-2731
    • Sarma, K.1
  • 142
    • 84870833161 scopus 로고    scopus 로고
    • Phf19 links methylated Lys36 of histone H3 to regulation of Polycomb activity
    • Ballare C., et al. Phf19 links methylated Lys36 of histone H3 to regulation of Polycomb activity. Nat. Struct. Mol. Biol. 2012, 19:1257-1265.
    • (2012) Nat. Struct. Mol. Biol. , vol.19 , pp. 1257-1265
    • Ballare, C.1
  • 143
    • 77953973940 scopus 로고    scopus 로고
    • Characterization of an antagonistic switch between histone H3 lysine 27 methylation and acetylation in the transcriptional regulation of Polycomb group target genes
    • Pasini D., et al. Characterization of an antagonistic switch between histone H3 lysine 27 methylation and acetylation in the transcriptional regulation of Polycomb group target genes. Nucleic Acids Res. 2010, 38:4958-4969.
    • (2010) Nucleic Acids Res. , vol.38 , pp. 4958-4969
    • Pasini, D.1
  • 144
    • 70350031643 scopus 로고    scopus 로고
    • CBP-mediated acetylation of histone H3 lysine 27 antagonizes Drosophila Polycomb silencing
    • Tie F., et al. CBP-mediated acetylation of histone H3 lysine 27 antagonizes Drosophila Polycomb silencing. Development 2009, 136:3131-3141.
    • (2009) Development , vol.136 , pp. 3131-3141
    • Tie, F.1
  • 145
    • 76749164914 scopus 로고    scopus 로고
    • Alternative epigenetic chromatin states of polycomb target genes
    • Schwartz Y.B., et al. Alternative epigenetic chromatin states of polycomb target genes. PLoS Genet. 2010, 6:e1000805.
    • (2010) PLoS Genet. , vol.6
    • Schwartz, Y.B.1
  • 146
    • 77956919550 scopus 로고    scopus 로고
    • Polycomb group protein displacement and gene activation through MSK-dependent H3K27me3S28 phosphorylation
    • Gehani S.S., et al. Polycomb group protein displacement and gene activation through MSK-dependent H3K27me3S28 phosphorylation. Mol. Cell 2010, 39:886-900.
    • (2010) Mol. Cell , vol.39 , pp. 886-900
    • Gehani, S.S.1
  • 147
    • 79952612932 scopus 로고    scopus 로고
    • Histone code pathway involving H3 S28 phosphorylation and K27 acetylation activates transcription and antagonizes polycomb silencing
    • Lau P.N., Cheung P. Histone code pathway involving H3 S28 phosphorylation and K27 acetylation activates transcription and antagonizes polycomb silencing. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:2801-2806.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 2801-2806
    • Lau, P.N.1    Cheung, P.2
  • 148
    • 69449086947 scopus 로고    scopus 로고
    • A vertebrate Polycomb response element governs segmentation of the posterior hindbrain
    • Sing A., et al. A vertebrate Polycomb response element governs segmentation of the posterior hindbrain. Cell 2009, 138:885-897.
    • (2009) Cell , vol.138 , pp. 885-897
    • Sing, A.1
  • 149
    • 73149111929 scopus 로고    scopus 로고
    • A region of the human HOXD cluster that confers polycomb-group responsiveness
    • Woo C.J., et al. A region of the human HOXD cluster that confers polycomb-group responsiveness. Cell 2010, 140:99-110.
    • (2010) Cell , vol.140 , pp. 99-110
    • Woo, C.J.1
  • 150
    • 33748419671 scopus 로고    scopus 로고
    • Polycomb response elements and targeting of Polycomb group proteins in Drosophila
    • Muller J., Kassis J.A. Polycomb response elements and targeting of Polycomb group proteins in Drosophila. Curr. Opin. Genet. Dev. 2006, 16:476-484.
    • (2006) Curr. Opin. Genet. Dev. , vol.16 , pp. 476-484
    • Muller, J.1    Kassis, J.A.2
  • 151
    • 33846983276 scopus 로고    scopus 로고
    • Polycomb/Trithorax response elements and epigenetic memory of cell identity
    • Ringrose L., Paro R. Polycomb/Trithorax response elements and epigenetic memory of cell identity. Development 2007, 134:223-232.
    • (2007) Development , vol.134 , pp. 223-232
    • Ringrose, L.1    Paro, R.2
  • 152
    • 67650921949 scopus 로고    scopus 로고
    • Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression
    • Khalil A.M., et al. Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:11667-11672.
    • (2009) Proc. Natl. Acad. Sci. U.S.A. , vol.106 , pp. 11667-11672
    • Khalil, A.M.1
  • 153
    • 78650253763 scopus 로고    scopus 로고
    • Genome-wide identification of polycomb-associated RNAs by RIP-seq
    • Zhao J., et al. Genome-wide identification of polycomb-associated RNAs by RIP-seq. Mol. Cell 2010, 40:939-953.
    • (2010) Mol. Cell , vol.40 , pp. 939-953
    • Zhao, J.1
  • 154
    • 55349109963 scopus 로고    scopus 로고
    • Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome
    • Zhao J., et al. Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science 2008, 322:750-756.
    • (2008) Science , vol.322 , pp. 750-756
    • Zhao, J.1
  • 155
    • 75749124997 scopus 로고    scopus 로고
    • 2-D structure of the A region of Xist RNA and its implication for PRC2 association
    • Maenner S., et al. 2-D structure of the A region of Xist RNA and its implication for PRC2 association. PLoS Biol. 2010, 8:e1000276.
    • (2010) PLoS Biol. , vol.8
    • Maenner, S.1
  • 156
    • 34250729138 scopus 로고    scopus 로고
    • Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs
    • Rinn J.L., et al. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 2007, 129:1311-1323.
    • (2007) Cell , vol.129 , pp. 1311-1323
    • Rinn, J.L.1
  • 157
    • 77954572735 scopus 로고    scopus 로고
    • Long noncoding RNA as modular scaffold of histone modification complexes
    • Tsai M.C., et al. Long noncoding RNA as modular scaffold of histone modification complexes. Science 2010, 329:689-693.
    • (2010) Science , vol.329 , pp. 689-693
    • Tsai, M.C.1
  • 158
    • 78649807567 scopus 로고    scopus 로고
    • Phosphorylation of the PRC2 component Ezh2 is cell cycle-regulated and up-regulates its binding to ncRNA
    • Kaneko S., et al. Phosphorylation of the PRC2 component Ezh2 is cell cycle-regulated and up-regulates its binding to ncRNA. Genes Dev. 2010, 24:2615-2620.
    • (2010) Genes Dev. , vol.24 , pp. 2615-2620
    • Kaneko, S.1
  • 159
    • 78149285100 scopus 로고    scopus 로고
    • Cyclin-dependent kinases regulate epigenetic gene silencing through phosphorylation of EZH2
    • Chen S., et al. Cyclin-dependent kinases regulate epigenetic gene silencing through phosphorylation of EZH2. Nat. Cell Biol. 2010, 12:1108-1114.
    • (2010) Nat. Cell Biol. , vol.12 , pp. 1108-1114
    • Chen, S.1
  • 160
    • 78650511231 scopus 로고    scopus 로고
    • CDK1-dependent phosphorylation of EZH2 suppresses methylation of H3K27 and promotes osteogenic differentiation of human mesenchymal stem cells
    • Wei Y., et al. CDK1-dependent phosphorylation of EZH2 suppresses methylation of H3K27 and promotes osteogenic differentiation of human mesenchymal stem cells. Nat. Cell Biol. 2011, 13:87-94.
    • (2011) Nat. Cell Biol. , vol.13 , pp. 87-94
    • Wei, Y.1
  • 161
    • 80051496158 scopus 로고    scopus 로고
    • Cyclin-dependent kinase 1 (CDK1)-mediated phosphorylation of enhancer of zeste 2 (Ezh2) regulates its stability
    • Wu S.C., Zhang Y. Cyclin-dependent kinase 1 (CDK1)-mediated phosphorylation of enhancer of zeste 2 (Ezh2) regulates its stability. J. Biol. Chem. 2011, 286:28511-28519.
    • (2011) J. Biol. Chem. , vol.286 , pp. 28511-28519
    • Wu, S.C.1    Zhang, Y.2
  • 162
    • 77957357566 scopus 로고    scopus 로고
    • TNF/p38α/polycomb signaling to Pax7 locus in satellite cells links inflammation to the epigenetic control of muscle regeneration
    • Palacios D., et al. TNF/p38α/polycomb signaling to Pax7 locus in satellite cells links inflammation to the epigenetic control of muscle regeneration. Cell Stem Cell 2010, 7:455-469.
    • (2010) Cell Stem Cell , vol.7 , pp. 455-469
    • Palacios, D.1
  • 163
    • 26844520965 scopus 로고    scopus 로고
    • Akt-mediated phosphorylation of EZH2 suppresses methylation of lysine 27 in histone H3
    • Cha T.L., et al. Akt-mediated phosphorylation of EZH2 suppresses methylation of lysine 27 in histone H3. Science 2005, 310:306-310.
    • (2005) Science , vol.310 , pp. 306-310
    • Cha, T.L.1
  • 164
    • 70349764482 scopus 로고    scopus 로고
    • Mir-214-dependent regulation of the polycomb protein Ezh2 in skeletal muscle and embryonic stem cells
    • Juan A.H., et al. Mir-214-dependent regulation of the polycomb protein Ezh2 in skeletal muscle and embryonic stem cells. Mol. Cell 2009, 36:61-74.
    • (2009) Mol. Cell , vol.36 , pp. 61-74
    • Juan, A.H.1
  • 165
    • 79960469058 scopus 로고    scopus 로고
    • FGF-2 regulates cell proliferation, migration, and angiogenesis through an NDY1/KDM2B-miR-101-EZH2 pathway
    • Kottakis F., et al. FGF-2 regulates cell proliferation, migration, and angiogenesis through an NDY1/KDM2B-miR-101-EZH2 pathway. Mol. Cell 2011, 43:285-298.
    • (2011) Mol. Cell , vol.43 , pp. 285-298
    • Kottakis, F.1
  • 166
    • 80053018047 scopus 로고    scopus 로고
    • Lysine-specific demethylase 2B (KDM2B)-let-7-enhancer of zester homolog 2 (EZH2) pathway regulates cell cycle progression and senescence in primary cells
    • Tzatsos A., et al. Lysine-specific demethylase 2B (KDM2B)-let-7-enhancer of zester homolog 2 (EZH2) pathway regulates cell cycle progression and senescence in primary cells. J. Biol. Chem. 2011, 286:33061-33069.
    • (2011) J. Biol. Chem. , vol.286 , pp. 33061-33069
    • Tzatsos, A.1
  • 167
    • 58049191558 scopus 로고    scopus 로고
    • Chromatin signatures in multipotent human hematopoietic stem cells indicate the fate of bivalent genes during differentiation
    • Cui K., et al. Chromatin signatures in multipotent human hematopoietic stem cells indicate the fate of bivalent genes during differentiation. Cell Stem Cell 2009, 4:80-93.
    • (2009) Cell Stem Cell , vol.4 , pp. 80-93
    • Cui, K.1
  • 168
    • 77953809032 scopus 로고    scopus 로고
    • Distinct epigenomic landscapes of pluripotent and lineage-committed human cells
    • Hawkins R.D., et al. Distinct epigenomic landscapes of pluripotent and lineage-committed human cells. Cell Stem Cell 2010, 6:479-491.
    • (2010) Cell Stem Cell , vol.6 , pp. 479-491
    • Hawkins, R.D.1
  • 169
    • 34249026300 scopus 로고    scopus 로고
    • High-resolution profiling of histone methylations in the human genome
    • Barski A., et al. High-resolution profiling of histone methylations in the human genome. Cell 2007, 129:823-837.
    • (2007) Cell , vol.129 , pp. 823-837
    • Barski, A.1
  • 170
    • 79959348134 scopus 로고    scopus 로고
    • The polycomb group mutant esc leads to augmented levels of paused Pol II in the Drosophila embryo
    • Chopra V.S., et al. The polycomb group mutant esc leads to augmented levels of paused Pol II in the Drosophila embryo. Mol. Cell 2011, 42:837-844.
    • (2011) Mol. Cell , vol.42 , pp. 837-844
    • Chopra, V.S.1
  • 171
    • 77953107585 scopus 로고    scopus 로고
    • Short RNAs are transcribed from repressed polycomb target genes and interact with polycomb repressive complex-2
    • Kanhere A., et al. Short RNAs are transcribed from repressed polycomb target genes and interact with polycomb repressive complex-2. Mol. Cell 2010, 38:675-688.
    • (2010) Mol. Cell , vol.38 , pp. 675-688
    • Kanhere, A.1
  • 172
    • 80053217575 scopus 로고    scopus 로고
    • ChIP-seq analysis reveals distinct H3K27me3 profiles that correlate with transcriptional activity
    • Young M.D., et al. ChIP-seq analysis reveals distinct H3K27me3 profiles that correlate with transcriptional activity. Nucleic Acids Res. 2011, 39:7415-7427.
    • (2011) Nucleic Acids Res. , vol.39 , pp. 7415-7427
    • Young, M.D.1
  • 173
    • 34248169728 scopus 로고    scopus 로고
    • The polycomb group protein Suz12 is required for embryonic stem cell differentiation
    • Pasini D., et al. The polycomb group protein Suz12 is required for embryonic stem cell differentiation. Mol. Cell. Biol. 2007, 27:3769-3779.
    • (2007) Mol. Cell. Biol. , vol.27 , pp. 3769-3779
    • Pasini, D.1
  • 174
    • 84856237597 scopus 로고    scopus 로고
    • Polycomb protein Ezh1 promotes RNA polymerase II elongation
    • Mousavi K., et al. Polycomb protein Ezh1 promotes RNA polymerase II elongation. Mol. Cell 2012, 45:255-262.
    • (2012) Mol. Cell , vol.45 , pp. 255-262
    • Mousavi, K.1
  • 175
    • 80052222327 scopus 로고    scopus 로고
    • Context-specific regulation of NF-κB target gene expression by EZH2 in breast cancers
    • Lee S.T., et al. Context-specific regulation of NF-κB target gene expression by EZH2 in breast cancers. Mol. Cell 2011, 43:798-810.
    • (2011) Mol. Cell , vol.43 , pp. 798-810
    • Lee, S.T.1
  • 176
    • 34447544566 scopus 로고    scopus 로고
    • Integration of estrogen and Wnt signaling circuits by the polycomb group protein EZH2 in breast cancer cells
    • Shi B., et al. Integration of estrogen and Wnt signaling circuits by the polycomb group protein EZH2 in breast cancer cells. Mol. Cell. Biol. 2007, 27:5105-5119.
    • (2007) Mol. Cell. Biol. , vol.27 , pp. 5105-5119
    • Shi, B.1
  • 177
    • 84871052080 scopus 로고    scopus 로고
    • EZH2 oncogenic activity in castration-resistant prostate cancer cells is Polycomb-independent
    • Xu K., et al. EZH2 oncogenic activity in castration-resistant prostate cancer cells is Polycomb-independent. Science 2012, 338:1465-1469.
    • (2012) Science , vol.338 , pp. 1465-1469
    • Xu, K.1
  • 178
    • 84856120332 scopus 로고    scopus 로고
    • Understanding the language of Lys36 methylation at histone H3
    • Wagner E.J., Carpenter P.B. Understanding the language of Lys36 methylation at histone H3. Nat. Rev. Mol. Cell Biol. 2012, 13:115-126.
    • (2012) Nat. Rev. Mol. Cell Biol. , vol.13 , pp. 115-126
    • Wagner, E.J.1    Carpenter, P.B.2
  • 179
    • 29144525954 scopus 로고    scopus 로고
    • The SET domain protein Metnase mediates foreign DNA integration and links integration to nonhomologous end-joining repair
    • Lee S.H., et al. The SET domain protein Metnase mediates foreign DNA integration and links integration to nonhomologous end-joining repair. Proc. Natl. Acad. Sci. U.S.A. 2005, 102:18075-18080.
    • (2005) Proc. Natl. Acad. Sci. U.S.A. , vol.102 , pp. 18075-18080
    • Lee, S.H.1
  • 180
    • 37149047905 scopus 로고    scopus 로고
    • Localized H3K36 methylation states define histone H4K16 acetylation during transcriptional elongation in Drosophila
    • Bell O., et al. Localized H3K36 methylation states define histone H4K16 acetylation during transcriptional elongation in Drosophila. EMBO J. 2007, 26:4974-4984.
    • (2007) EMBO J. , vol.26 , pp. 4974-4984
    • Bell, O.1
  • 181
    • 33750463354 scopus 로고    scopus 로고
    • MES-4: an autosome-associated histone methyltransferase that participates in silencing the X chromosomes in the C. elegans germ line
    • Bender L.B., et al. MES-4: an autosome-associated histone methyltransferase that participates in silencing the X chromosomes in the C. elegans germ line. Development 2006, 133:3907-3917.
    • (2006) Development , vol.133 , pp. 3907-3917
    • Bender, L.B.1
  • 182
    • 0034011128 scopus 로고    scopus 로고
    • The bromodomain protein LIN-49 and trithorax-related protein LIN-59 affect development and gene expression in Caenorhabditis elegans
    • Chamberlin H.M., Thomas J.H. The bromodomain protein LIN-49 and trithorax-related protein LIN-59 affect development and gene expression in Caenorhabditis elegans. Development 2000, 127:713-723.
    • (2000) Development , vol.127 , pp. 713-723
    • Chamberlin, H.M.1    Thomas, J.H.2
  • 183
    • 12944262412 scopus 로고    scopus 로고
    • HuASH1 protein, a putative transcription factor encoded by a human homologue of the Drosophila ash1 gene, localizes to both nuclei and cell-cell tight junctions
    • Nakamura T., et al. huASH1 protein, a putative transcription factor encoded by a human homologue of the Drosophila ash1 gene, localizes to both nuclei and cell-cell tight junctions. Proc. Natl. Acad. Sci. U.S.A. 2000, 97:7284-7289.
    • (2000) Proc. Natl. Acad. Sci. U.S.A. , vol.97 , pp. 7284-7289
    • Nakamura, T.1
  • 184
    • 0037979272 scopus 로고    scopus 로고
    • Methylation of histone H3 by Set2 in Saccharomyces cerevisiae is linked to transcriptional elongation by RNA polymerase II
    • Krogan N.J., et al. Methylation of histone H3 by Set2 in Saccharomyces cerevisiae is linked to transcriptional elongation by RNA polymerase II. Mol. Cell. Biol. 2003, 23:4207-4218.
    • (2003) Mol. Cell. Biol. , vol.23 , pp. 4207-4218
    • Krogan, N.J.1
  • 185
    • 0036170767 scopus 로고    scopus 로고
    • Set2 is a nucleosomal histone H3-selective methyltransferase that mediates transcriptional repression
    • Strahl B.D., et al. Set2 is a nucleosomal histone H3-selective methyltransferase that mediates transcriptional repression. Mol. Cell. Biol. 2002, 22:1298-1306.
    • (2002) Mol. Cell. Biol. , vol.22 , pp. 1298-1306
    • Strahl, B.D.1
  • 186
    • 38549139593 scopus 로고    scopus 로고
    • Dynamic histone H3 methylation during gene induction: HYPB/Setd2 mediates all H3K36 trimethylation
    • Edmunds J.W., et al. Dynamic histone H3 methylation during gene induction: HYPB/Setd2 mediates all H3K36 trimethylation. EMBO J. 2008, 27:406-420.
    • (2008) EMBO J. , vol.27 , pp. 406-420
    • Edmunds, J.W.1
  • 187
    • 34948877575 scopus 로고    scopus 로고
    • MSL complex is attracted to genes marked by H3K36 trimethylation using a sequence-independent mechanism
    • Larschan E., et al. MSL complex is attracted to genes marked by H3K36 trimethylation using a sequence-independent mechanism. Mol. Cell 2007, 28:121-133.
    • (2007) Mol. Cell , vol.28 , pp. 121-133
    • Larschan, E.1
  • 188
    • 34548577025 scopus 로고    scopus 로고
    • Two C. elegans histone methyltransferases repress lin-3 EGF transcription to inhibit vulval development
    • Andersen E.C., Horvitz H.R. Two C. elegans histone methyltransferases repress lin-3 EGF transcription to inhibit vulval development. Development 2007, 134:2991-2999.
    • (2007) Development , vol.134 , pp. 2991-2999
    • Andersen, E.C.1    Horvitz, H.R.2
  • 189
    • 71749121455 scopus 로고    scopus 로고
    • The target of the NSD family of histone lysine methyltransferases depends on the nature of the substrate
    • Li Y., et al. The target of the NSD family of histone lysine methyltransferases depends on the nature of the substrate. J. Biol. Chem. 2009, 284:34283-34295.
    • (2009) J. Biol. Chem. , vol.284 , pp. 34283-34295
    • Li, Y.1
  • 190
    • 78049275346 scopus 로고    scopus 로고
    • Role for the nuclear receptor-binding SET domain protein 1 (NSD1) methyltransferase in coordinating lysine 36 methylation at histone 3 with RNA polymerase II function
    • Lucio-Eterovic A.K., et al. Role for the nuclear receptor-binding SET domain protein 1 (NSD1) methyltransferase in coordinating lysine 36 methylation at histone 3 with RNA polymerase II function. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:16952-16957.
    • (2010) Proc. Natl. Acad. Sci. U.S.A. , vol.107 , pp. 16952-16957
    • Lucio-Eterovic, A.K.1
  • 191
    • 79953151792 scopus 로고    scopus 로고
    • The structure of NSD1 reveals an autoregulatory mechanism underlying histone H3K36 methylation
    • Qiao Q., et al. The structure of NSD1 reveals an autoregulatory mechanism underlying histone H3K36 methylation. J. Biol. Chem. 2011, 286:8361-8368.
    • (2011) J. Biol. Chem. , vol.286 , pp. 8361-8368
    • Qiao, Q.1
  • 192
    • 81355133161 scopus 로고    scopus 로고
    • NSD2 links dimethylation of histone H3 at lysine 36 to oncogenic programming
    • Kuo A.J., et al. NSD2 links dimethylation of histone H3 at lysine 36 to oncogenic programming. Mol. Cell 2011, 44:609-620.
    • (2011) Mol. Cell , vol.44 , pp. 609-620
    • Kuo, A.J.1
  • 193
    • 67650461956 scopus 로고    scopus 로고
    • A histone H3 lysine 36 trimethyltransferase links Nkx2-5 to Wolf-Hirschhorn syndrome
    • Nimura K., et al. A histone H3 lysine 36 trimethyltransferase links Nkx2-5 to Wolf-Hirschhorn syndrome. Nature 2009, 460:287-291.
    • (2009) Nature , vol.460 , pp. 287-291
    • Nimura, K.1
  • 194
    • 79953143753 scopus 로고    scopus 로고
    • H3K36 methylation antagonizes PRC2-mediated H3K27 methylation
    • Yuan W., et al. H3K36 methylation antagonizes PRC2-mediated H3K27 methylation. J. Biol. Chem. 2011, 286:7983-7989.
    • (2011) J. Biol. Chem. , vol.286 , pp. 7983-7989
    • Yuan, W.1
  • 195
    • 79952256559 scopus 로고    scopus 로고
    • Methylation of histone H3 lysine 36 enhances DNA repair by nonhomologous end-joining
    • Fnu S., et al. Methylation of histone H3 lysine 36 enhances DNA repair by nonhomologous end-joining. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:540-545.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 540-545
    • Fnu, S.1
  • 196
    • 0041468981 scopus 로고    scopus 로고
    • Set2-catalyzed methylation of histone H3 represses basal expression of GAL4 in Saccharomyces cerevisiae
    • Landry J., et al. Set2-catalyzed methylation of histone H3 represses basal expression of GAL4 in Saccharomyces cerevisiae. Mol. Cell. Biol. 2003, 23:5972-5978.
    • (2003) Mol. Cell. Biol. , vol.23 , pp. 5972-5978
    • Landry, J.1
  • 197
    • 34249099730 scopus 로고    scopus 로고
    • Combined action of PHD and chromo domains directs the Rpd3S HDAC to transcribed chromatin
    • Li B., et al. Combined action of PHD and chromo domains directs the Rpd3S HDAC to transcribed chromatin. Science 2007, 316:1050-1054.
    • (2007) Science , vol.316 , pp. 1050-1054
    • Li, B.1
  • 198
    • 65549095078 scopus 로고    scopus 로고
    • Histone H3 lysine 36 dimethylation (H3K36me2) is sufficient to recruit the Rpd3s histone deacetylase complex and to repress spurious transcription
    • Li B., et al. Histone H3 lysine 36 dimethylation (H3K36me2) is sufficient to recruit the Rpd3s histone deacetylase complex and to repress spurious transcription. J. Biol. Chem. 2009, 284:7970-7976.
    • (2009) J. Biol. Chem. , vol.284 , pp. 7970-7976
    • Li, B.1
  • 199
    • 84866497062 scopus 로고    scopus 로고
    • Set2 methylation of histone H3 lysine 36 suppresses histone exchange on transcribed genes
    • Venkatesh S., et al. Set2 methylation of histone H3 lysine 36 suppresses histone exchange on transcribed genes. Nature 2012, 489:452-455.
    • (2012) Nature , vol.489 , pp. 452-455
    • Venkatesh, S.1
  • 200
    • 77956337676 scopus 로고    scopus 로고
    • Trans-generational epigenetic regulation of C. elegans primordial germ cells
    • Furuhashi H., et al. Trans-generational epigenetic regulation of C. elegans primordial germ cells. Epigenetics Chromatin 2010, 3:15.
    • (2010) Epigenetics Chromatin , vol.3 , pp. 15
    • Furuhashi, H.1
  • 201
    • 77956308057 scopus 로고    scopus 로고
    • The histone H3K36 methyltransferase MES-4 acts epigenetically to transmit the memory of germline gene expression to progeny
    • Rechtsteiner A., et al. The histone H3K36 methyltransferase MES-4 acts epigenetically to transmit the memory of germline gene expression to progeny. PLoS Genet. 2010, 6:e1001091.
    • (2010) PLoS Genet. , vol.6
    • Rechtsteiner, A.1
  • 202
    • 76049084596 scopus 로고    scopus 로고
    • Epigenetic inactivation of the Sotos overgrowth syndrome gene histone methyltransferase NSD1 in human neuroblastoma and glioma
    • Berdasco M., et al. Epigenetic inactivation of the Sotos overgrowth syndrome gene histone methyltransferase NSD1 in human neuroblastoma and glioma. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:21830-21835.
    • (2009) Proc. Natl. Acad. Sci. U.S.A. , vol.106 , pp. 21830-21835
    • Berdasco, M.1
  • 203
    • 79959483607 scopus 로고    scopus 로고
    • The Brd4 extraterminal domain confers transcription activation independent of pTEFb by recruiting multiple proteins, including NSD3
    • Rahman S., et al. The Brd4 extraterminal domain confers transcription activation independent of pTEFb by recruiting multiple proteins, including NSD3. Mol. Cell. Biol. 2011, 31:2641-2652.
    • (2011) Mol. Cell. Biol. , vol.31 , pp. 2641-2652
    • Rahman, S.1
  • 204
    • 84864627631 scopus 로고    scopus 로고
    • Histone methyltransferase NSD2/MMSET mediates constitutive NF-κB signaling for cancer cell proliferation, survival, and tumor growth via a feed-forward loop
    • Yang P., et al. Histone methyltransferase NSD2/MMSET mediates constitutive NF-κB signaling for cancer cell proliferation, survival, and tumor growth via a feed-forward loop. Mol. Cell. Biol. 2012, 32:3121-3131.
    • (2012) Mol. Cell. Biol. , vol.32 , pp. 3121-3131
    • Yang, P.1
  • 205
    • 82155170391 scopus 로고    scopus 로고
    • Dual function of histone H3 lysine 36 methyltransferase ASH1 in regulation of Hox gene expression
    • Tanaka Y., et al. Dual function of histone H3 lysine 36 methyltransferase ASH1 in regulation of Hox gene expression. PLoS ONE 2011, 6:e28171.
    • (2011) PLoS ONE , vol.6
    • Tanaka, Y.1
  • 206
    • 84860885909 scopus 로고    scopus 로고
    • A long ncRNA links copy number variation to a polycomb/trithorax epigenetic switch in FSHD muscular dystrophy
    • Cabianca D.S., et al. A long ncRNA links copy number variation to a polycomb/trithorax epigenetic switch in FSHD muscular dystrophy. Cell 2012, 149:819-831.
    • (2012) Cell , vol.149 , pp. 819-831
    • Cabianca, D.S.1
  • 207
    • 61349098460 scopus 로고    scopus 로고
    • Differential chromatin marking of introns and expressed exons by H3K36me3
    • Kolasinska-Zwierz P., et al. Differential chromatin marking of introns and expressed exons by H3K36me3. Nat. Genet. 2009, 41:376-381.
    • (2009) Nat. Genet. , vol.41 , pp. 376-381
    • Kolasinska-Zwierz, P.1
  • 208
    • 70350013550 scopus 로고    scopus 로고
    • Biased chromatin signatures around polyadenylation sites and exons
    • Spies N., et al. Biased chromatin signatures around polyadenylation sites and exons. Mol. Cell 2009, 36:245-254.
    • (2009) Mol. Cell , vol.36 , pp. 245-254
    • Spies, N.1
  • 209
    • 69949132191 scopus 로고    scopus 로고
    • Chromatin organization marks exon-intron structure
    • Schwartz S., et al. Chromatin organization marks exon-intron structure. Nat. Struct. Mol. Biol. 2009, 16:990-995.
    • (2009) Nat. Struct. Mol. Biol. , vol.16 , pp. 990-995
    • Schwartz, S.1
  • 210
    • 77149175671 scopus 로고    scopus 로고
    • Regulation of alternative splicing by histone modifications
    • Luco R.F., et al. Regulation of alternative splicing by histone modifications. Science 2010, 327:996-1000.
    • (2010) Science , vol.327 , pp. 996-1000
    • Luco, R.F.1
  • 211
    • 80052445151 scopus 로고    scopus 로고
    • Splicing enhances recruitment of methyltransferase HYPB/Setd2 and methylation of histone H3 Lys36
    • de Almeida S.F., et al. Splicing enhances recruitment of methyltransferase HYPB/Setd2 and methylation of histone H3 Lys36. Nat. Struct. Mol. Biol. 2011, 18:977-983.
    • (2011) Nat. Struct. Mol. Biol. , vol.18 , pp. 977-983
    • de Almeida, S.F.1
  • 212
    • 80052020631 scopus 로고    scopus 로고
    • Pre-mRNA splicing is a determinant of histone H3K36 methylation
    • Kim S., et al. Pre-mRNA splicing is a determinant of histone H3K36 methylation. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:13564-13569.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 13564-13569
    • Kim, S.1
  • 213
    • 22344455665 scopus 로고    scopus 로고
    • Specificity and mechanism of the histone methyltransferase Pr-Set7
    • Xiao B., et al. Specificity and mechanism of the histone methyltransferase Pr-Set7. Genes Dev. 2005, 19:1444-1454.
    • (2005) Genes Dev. , vol.19 , pp. 1444-1454
    • Xiao, B.1
  • 214
    • 22344454519 scopus 로고    scopus 로고
    • Structural and functional analysis of SET8, a histone H4 Lys-20 methyltransferase
    • Couture J.F., et al. Structural and functional analysis of SET8, a histone H4 Lys-20 methyltransferase. Genes Dev. 2005, 19:1455-1465.
    • (2005) Genes Dev. , vol.19 , pp. 1455-1465
    • Couture, J.F.1
  • 215
    • 48749102722 scopus 로고    scopus 로고
    • A chromatin-wide transition to H4K20 monomethylation impairs genome integrity and programmed DNA rearrangements in the mouse
    • Schotta G., et al. A chromatin-wide transition to H4K20 monomethylation impairs genome integrity and programmed DNA rearrangements in the mouse. Genes Dev. 2008, 22:2048-2061.
    • (2008) Genes Dev. , vol.22 , pp. 2048-2061
    • Schotta, G.1
  • 216
    • 2642542643 scopus 로고    scopus 로고
    • A silencing pathway to induce H3-K9 and H4-K20 trimethylation at constitutive heterochromatin
    • Schotta G., et al. A silencing pathway to induce H3-K9 and H4-K20 trimethylation at constitutive heterochromatin. Genes Dev. 2004, 18:1251-1262.
    • (2004) Genes Dev. , vol.18 , pp. 1251-1262
    • Schotta, G.1
  • 217
    • 64749106929 scopus 로고    scopus 로고
    • Monomethylation of histone H4-lysine 20 is involved in chromosome structure and stability and is essential for mouse development
    • Oda H., et al. Monomethylation of histone H4-lysine 20 is involved in chromosome structure and stability and is essential for mouse development. Mol. Cell. Biol. 2009, 29:2278-2295.
    • (2009) Mol. Cell. Biol. , vol.29 , pp. 2278-2295
    • Oda, H.1
  • 218
    • 13844269327 scopus 로고    scopus 로고
    • PR-Set7-dependent methylation of histone H4 Lys 20 functions in repression of gene expression and is essential for mitosis
    • Karachentsev D., et al. PR-Set7-dependent methylation of histone H4 Lys 20 functions in repression of gene expression and is essential for mitosis. Genes Dev. 2005, 19:431-435.
    • (2005) Genes Dev. , vol.19 , pp. 431-435
    • Karachentsev, D.1
  • 219
    • 45549088504 scopus 로고    scopus 로고
    • Preferential dimethylation of histone H4 lysine 20 by Suv4-20
    • Yang H., et al. Preferential dimethylation of histone H4 lysine 20 by Suv4-20. J. Biol. Chem. 2008, 283:12085-12092.
    • (2008) J. Biol. Chem. , vol.283 , pp. 12085-12092
    • Yang, H.1
  • 220
    • 52049085575 scopus 로고    scopus 로고
    • Functional characterization of the Drosophila Hmt4-20/Suv4-20 histone methyltransferase
    • Sakaguchi A., et al. Functional characterization of the Drosophila Hmt4-20/Suv4-20 histone methyltransferase. Genetics 2008, 179:317-322.
    • (2008) Genetics , vol.179 , pp. 317-322
    • Sakaguchi, A.1
  • 221
    • 33846460473 scopus 로고    scopus 로고
    • Aberrant monomethylation of histone H4 lysine 20 activates the DNA damage checkpoint in Drosophila melanogaster
    • Sakaguchi A., Steward R. Aberrant monomethylation of histone H4 lysine 20 activates the DNA damage checkpoint in Drosophila melanogaster. J. Cell Biol. 2007, 176:155-162.
    • (2007) J. Cell Biol. , vol.176 , pp. 155-162
    • Sakaguchi, A.1    Steward, R.2
  • 222
    • 50349085791 scopus 로고    scopus 로고
    • Catalytic function of the PR-Set7 histone H4 lysine 20 monomethyltransferase is essential for mitotic entry and genomic stability
    • Houston S.I., et al. Catalytic function of the PR-Set7 histone H4 lysine 20 monomethyltransferase is essential for mitotic entry and genomic stability. J. Biol. Chem. 2008, 283:19478-19488.
    • (2008) J. Biol. Chem. , vol.283 , pp. 19478-19488
    • Houston, S.I.1
  • 223
    • 77952692464 scopus 로고    scopus 로고
    • PR-Set7-mediated monomethylation of histone H4 lysine 20 at specific genomic regions induces transcriptional repression
    • Congdon L.M., et al. PR-Set7-mediated monomethylation of histone H4 lysine 20 at specific genomic regions induces transcriptional repression. J. Cell. Biochem. 2010, 110:609-619.
    • (2010) J. Cell. Biochem. , vol.110 , pp. 609-619
    • Congdon, L.M.1
  • 224
    • 47549087904 scopus 로고    scopus 로고
    • Histone H4 lysine 20 monomethylation promotes transcriptional repression by L3MBTL1
    • Kalakonda N., et al. Histone H4 lysine 20 monomethylation promotes transcriptional repression by L3MBTL1. Oncogene 2008, 27:4293-4304.
    • (2008) Oncogene , vol.27 , pp. 4293-4304
    • Kalakonda, N.1
  • 225
    • 47049119678 scopus 로고    scopus 로고
    • PR-Set7 establishes a repressive trans-tail histone code that regulates differentiation
    • Sims J.K., Rice J.C. PR-Set7 establishes a repressive trans-tail histone code that regulates differentiation. Mol. Cell. Biol. 2008, 28:4459-4468.
    • (2008) Mol. Cell. Biol. , vol.28 , pp. 4459-4468
    • Sims, J.K.1    Rice, J.C.2
  • 226
    • 84866914821 scopus 로고    scopus 로고
    • H4K20me1 contributes to downregulation of X-linked genes for C. elegans dosage compensation
    • Vielle A., et al. H4K20me1 contributes to downregulation of X-linked genes for C. elegans dosage compensation. PLoS Genet. 2012, 8:e1002933.
    • (2012) PLoS Genet. , vol.8
    • Vielle, A.1
  • 227
    • 34547809957 scopus 로고    scopus 로고
    • Modulation of p53 function by SET8-mediated methylation at lysine 382
    • Shi X., et al. Modulation of p53 function by SET8-mediated methylation at lysine 382. Mol. Cell 2007, 27:636-646.
    • (2007) Mol. Cell , vol.27 , pp. 636-646
    • Shi, X.1
  • 228
    • 78549291445 scopus 로고    scopus 로고
    • The MBT repeats of L3MBTL1 link SET8-mediated p53 methylation at lysine 382 to target gene repression
    • West L.E., et al. The MBT repeats of L3MBTL1 link SET8-mediated p53 methylation at lysine 382 to target gene repression. J. Biol. Chem. 2010, 285:37725-37732.
    • (2010) J. Biol. Chem. , vol.285 , pp. 37725-37732
    • West, L.E.1
  • 229
    • 79953131815 scopus 로고    scopus 로고
    • SUV420H2-mediated H4K20 trimethylation enforces RNA polymerase II promoter-proximal pausing by blocking hMOF-dependent H4K16 acetylation
    • Kapoor-Vazirani P., et al. SUV420H2-mediated H4K20 trimethylation enforces RNA polymerase II promoter-proximal pausing by blocking hMOF-dependent H4K16 acetylation. Mol. Cell. Biol. 2011, 31:1594-1609.
    • (2011) Mol. Cell. Biol. , vol.31 , pp. 1594-1609
    • Kapoor-Vazirani, P.1
  • 230
    • 58149511995 scopus 로고    scopus 로고
    • GRIP1-associated SET-domain methyltransferase in glucocorticoid receptor target gene expression
    • Chinenov Y., et al. GRIP1-associated SET-domain methyltransferase in glucocorticoid receptor target gene expression. Proc. Natl. Acad. Sci. U.S.A. 2008, 105:20185-20190.
    • (2008) Proc. Natl. Acad. Sci. U.S.A. , vol.105 , pp. 20185-20190
    • Chinenov, Y.1
  • 231
    • 77956601372 scopus 로고    scopus 로고
    • Identification of a PRMT5-dependent repressor complex linked to silencing of human fetal globin gene expression
    • Rank G., et al. Identification of a PRMT5-dependent repressor complex linked to silencing of human fetal globin gene expression. Blood 2010, 116:1585-1592.
    • (2010) Blood , vol.116 , pp. 1585-1592
    • Rank, G.1
  • 232
    • 78650848041 scopus 로고    scopus 로고
    • Comparative analyses of SUV420H1 isoforms and SUV420H2 reveal differences in their cellular localization and effects on myogenic differentiation
    • Tsang L.W., et al. Comparative analyses of SUV420H1 isoforms and SUV420H2 reveal differences in their cellular localization and effects on myogenic differentiation. PLoS ONE 2010, 5:e14447.
    • (2010) PLoS ONE , vol.5
    • Tsang, L.W.1
  • 233
    • 46249112085 scopus 로고    scopus 로고
    • Combinatorial patterns of histone acetylations and methylations in the human genome
    • Wang Z., et al. Combinatorial patterns of histone acetylations and methylations in the human genome. Nat. Genet. 2008, 40:897-903.
    • (2008) Nat. Genet. , vol.40 , pp. 897-903
    • Wang, Z.1
  • 234
    • 79952762476 scopus 로고    scopus 로고
    • Histone H4 Lys 20 monomethylation by histone methylase SET8 mediates Wnt target gene activation
    • Li Z., et al. Histone H4 Lys 20 monomethylation by histone methylase SET8 mediates Wnt target gene activation. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:3116-3123.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 3116-3123
    • Li, Z.1
  • 235
    • 84855340668 scopus 로고    scopus 로고
    • SET8 promotes epithelial-mesenchymal transition and confers TWIST dual transcriptional activities
    • Yang F., et al. SET8 promotes epithelial-mesenchymal transition and confers TWIST dual transcriptional activities. EMBO J. 2012, 31:110-123.
    • (2012) EMBO J. , vol.31 , pp. 110-123
    • Yang, F.1
  • 236
    • 78149423004 scopus 로고    scopus 로고
    • Regulation of the histone H4 monomethylase PR-Set7 by CRL4(Cdt2)-mediated PCNA-dependent degradation during DNA damage
    • Oda H., et al. Regulation of the histone H4 monomethylase PR-Set7 by CRL4(Cdt2)-mediated PCNA-dependent degradation during DNA damage. Mol. Cell 2010, 40:364-376.
    • (2010) Mol. Cell , vol.40 , pp. 364-376
    • Oda, H.1
  • 237
    • 77957378110 scopus 로고    scopus 로고
    • CRL4(Cdt2) regulates cell proliferation and histone gene expression by targeting PR-Set7/Set8 for degradation
    • Abbas T., et al. CRL4(Cdt2) regulates cell proliferation and histone gene expression by targeting PR-Set7/Set8 for degradation. Mol. Cell 2010, 40:9-21.
    • (2010) Mol. Cell , vol.40 , pp. 9-21
    • Abbas, T.1
  • 238
    • 45749114468 scopus 로고    scopus 로고
    • SET8 plays a role in controlling G1/S transition by blocking lysine acetylation in histone through binding to H4 N-terminal tail
    • Yin Y., et al. SET8 plays a role in controlling G1/S transition by blocking lysine acetylation in histone through binding to H4 N-terminal tail. Cell Cycle 2008, 7:1423-1432.
    • (2008) Cell Cycle , vol.7 , pp. 1423-1432
    • Yin, Y.1
  • 239
    • 77957367739 scopus 로고    scopus 로고
    • CRL4(Cdt2)-mediated destruction of the histone methyltransferase Set8 prevents premature chromatin compaction in S phase
    • Centore R.C., et al. CRL4(Cdt2)-mediated destruction of the histone methyltransferase Set8 prevents premature chromatin compaction in S phase. Mol. Cell 2010, 40:22-33.
    • (2010) Mol. Cell , vol.40 , pp. 22-33
    • Centore, R.C.1
  • 240
    • 78349272437 scopus 로고    scopus 로고
    • Dynamic regulation of the PR-Set7 histone methyltransferase is required for normal cell cycle progression
    • Wu S., et al. Dynamic regulation of the PR-Set7 histone methyltransferase is required for normal cell cycle progression. Genes Dev. 2010, 24:2531-2542.
    • (2010) Genes Dev. , vol.24 , pp. 2531-2542
    • Wu, S.1
  • 241
    • 77049099785 scopus 로고    scopus 로고
    • Histone methyltransferases in cancer
    • Albert M., Helin K. Histone methyltransferases in cancer. Semin. Cell Dev. Biol. 2010, 21:209-220.
    • (2010) Semin. Cell Dev. Biol. , vol.21 , pp. 209-220
    • Albert, M.1    Helin, K.2
  • 242
    • 84859893371 scopus 로고    scopus 로고
    • Histone methylation: a dynamic mark in health, disease and inheritance
    • Greer E.L., Shi Y. Histone methylation: a dynamic mark in health, disease and inheritance. Nat. Rev. Genet. 2012, 13:343-357.
    • (2012) Nat. Rev. Genet. , vol.13 , pp. 343-357
    • Greer, E.L.1    Shi, Y.2
  • 243
    • 76549105779 scopus 로고    scopus 로고
    • MLL-AF9-induced leukemogenesis requires coexpression of the wild-type Mll allele
    • Thiel A.T., et al. MLL-AF9-induced leukemogenesis requires coexpression of the wild-type Mll allele. Cancer Cell 2010, 17:148-159.
    • (2010) Cancer Cell , vol.17 , pp. 148-159
    • Thiel, A.T.1
  • 244
    • 24144449573 scopus 로고    scopus 로고
    • The Set1 methyltransferase opposes Ipl1 aurora kinase functions in chromosome segregation
    • Zhang K., et al. The Set1 methyltransferase opposes Ipl1 aurora kinase functions in chromosome segregation. Cell 2005, 122:723-734.
    • (2005) Cell , vol.122 , pp. 723-734
    • Zhang, K.1
  • 245
    • 80052288217 scopus 로고    scopus 로고
    • Chromatin signaling to kinetochores: transregulation of Dam1 methylation by histone H2B ubiquitination
    • Latham J.A., et al. Chromatin signaling to kinetochores: transregulation of Dam1 methylation by histone H2B ubiquitination. Cell 2011, 146:709-719.
    • (2011) Cell , vol.146 , pp. 709-719
    • Latham, J.A.1
  • 246
    • 43749093216 scopus 로고    scopus 로고
    • Protein lysine methyltransferase G9a acts on non-histone targets
    • Rathert P., et al. Protein lysine methyltransferase G9a acts on non-histone targets. Nat. Chem. Biol. 2008, 4:344-346.
    • (2008) Nat. Chem. Biol. , vol.4 , pp. 344-346
    • Rathert, P.1
  • 247
    • 82555193236 scopus 로고    scopus 로고
    • MPP8 mediates the interactions between DNA methyltransferase Dnmt3a and H3K9 methyltransferase GLP/G9a
    • Chang Y., et al. MPP8 mediates the interactions between DNA methyltransferase Dnmt3a and H3K9 methyltransferase GLP/G9a. Nat. Commun. 2011, 2:533.
    • (2011) Nat. Commun. , vol.2 , pp. 533
    • Chang, Y.1
  • 248
    • 77951233574 scopus 로고    scopus 로고
    • G9a and Glp methylate lysine 373 in the tumor suppressor p53
    • Huang J., et al. G9a and Glp methylate lysine 373 in the tumor suppressor p53. J. Biol. Chem. 2010, 285:9636-9641.
    • (2010) J. Biol. Chem. , vol.285 , pp. 9636-9641
    • Huang, J.1
  • 249
    • 77954265666 scopus 로고    scopus 로고
    • Negative regulation of hypoxic responses via induced Reptin methylation
    • Lee J.S., et al. Negative regulation of hypoxic responses via induced Reptin methylation. Mol. Cell 2010, 39:71-85.
    • (2010) Mol. Cell , vol.39 , pp. 71-85
    • Lee, J.S.1
  • 250
    • 44949118480 scopus 로고    scopus 로고
    • Lysine methylation of HIV-1 Tat regulates transcriptional activity of the viral LTR
    • Van Duyne R., et al. Lysine methylation of HIV-1 Tat regulates transcriptional activity of the viral LTR. Retrovirology 2008, 5:40.
    • (2008) Retrovirology , vol.5 , pp. 40
    • Van Duyne, R.1
  • 251
    • 81055140863 scopus 로고    scopus 로고
    • NcRNA- and Pc2 methylation-dependent gene relocation between nuclear structures mediates gene activation programs
    • Yang L., et al. ncRNA- and Pc2 methylation-dependent gene relocation between nuclear structures mediates gene activation programs. Cell 2011, 147:773-788.
    • (2011) Cell , vol.147 , pp. 773-788
    • Yang, L.1
  • 252
    • 84855323192 scopus 로고    scopus 로고
    • PRC2 directly methylates GATA4 and represses its transcriptional activity
    • He A., et al. PRC2 directly methylates GATA4 and represses its transcriptional activity. Genes Dev. 2012, 26:37-42.
    • (2012) Genes Dev. , vol.26 , pp. 37-42
    • He, A.1
  • 253
    • 84870308969 scopus 로고    scopus 로고
    • EZH2 generates a methyl degron that is recognized by the DCAF1/DDB1/CUL4 E3 ubiquitin ligase complex
    • Lee J.M., et al. EZH2 generates a methyl degron that is recognized by the DCAF1/DDB1/CUL4 E3 ubiquitin ligase complex. Mol. Cell 2012, 48:572-586.
    • (2012) Mol. Cell , vol.48 , pp. 572-586
    • Lee, J.M.1
  • 254
    • 84879000598 scopus 로고    scopus 로고
    • Phosphorylation of EZH2 activates STAT3 signaling via STAT3 methylation and promotes tumorigenicity of glioblastoma stem-like cells
    • Kim E., et al. Phosphorylation of EZH2 activates STAT3 signaling via STAT3 methylation and promotes tumorigenicity of glioblastoma stem-like cells. Cancer Cell 2013, 23:839-852.
    • (2013) Cancer Cell , vol.23 , pp. 839-852
    • Kim, E.1
  • 255
    • 76249100563 scopus 로고    scopus 로고
    • Regulation of NF-κB by NSD1/FBXL11-dependent reversible lysine methylation of p65
    • Lu T., et al. Regulation of NF-κB by NSD1/FBXL11-dependent reversible lysine methylation of p65. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:46-51.
    • (2010) Proc. Natl. Acad. Sci. U.S.A. , vol.107 , pp. 46-51
    • Lu, T.1
  • 256
    • 54549124761 scopus 로고    scopus 로고
    • The SET and transposase domain protein Metnase enhances chromosome decatenation: regulation by automethylation
    • Williamson E.A., et al. The SET and transposase domain protein Metnase enhances chromosome decatenation: regulation by automethylation. Nucleic Acids Res. 2008, 36:5822-5831.
    • (2008) Nucleic Acids Res. , vol.36 , pp. 5822-5831
    • Williamson, E.A.1
  • 257
    • 84878188387 scopus 로고    scopus 로고
    • Dynamic methylation of Numb by Set8 regulates its binding to p53 and apoptosis
    • Dhami G.K., et al. Dynamic methylation of Numb by Set8 regulates its binding to p53 and apoptosis. Mol. Cell 2013, 50:565-576.
    • (2013) Mol. Cell , vol.50 , pp. 565-576
    • Dhami, G.K.1
  • 258
    • 84863579070 scopus 로고    scopus 로고
    • Histone lysine methyltransferase SETD8 promotes carcinogenesis by deregulating PCNA expression
    • Takawa M., et al. Histone lysine methyltransferase SETD8 promotes carcinogenesis by deregulating PCNA expression. Cancer Res. 2012, 72:3217-3227.
    • (2012) Cancer Res. , vol.72 , pp. 3217-3227
    • Takawa, M.1
  • 259
    • 79952155998 scopus 로고    scopus 로고
    • Lysine methylation and functional modulation of androgen receptor by Set9 methyltransferase
    • Ko S., et al. Lysine methylation and functional modulation of androgen receptor by Set9 methyltransferase. Mol. Endocrinol. 2011, 25:433-444.
    • (2011) Mol. Endocrinol. , vol.25 , pp. 433-444
    • Ko, S.1
  • 260
    • 79952171495 scopus 로고    scopus 로고
    • Regulation of the androgen receptor by SET9-mediated methylation
    • Gaughan L., et al. Regulation of the androgen receptor by SET9-mediated methylation. Nucleic Acids Res. 2011, 39:1266-1279.
    • (2011) Nucleic Acids Res. , vol.39 , pp. 1266-1279
    • Gaughan, L.1
  • 261
    • 58149156264 scopus 로고    scopus 로고
    • The lysine demethylase LSD1 (KDM1) is required for maintenance of global DNA methylation
    • Wang J., et al. The lysine demethylase LSD1 (KDM1) is required for maintenance of global DNA methylation. Nat. Genet. 2009, 41:125-129.
    • (2009) Nat. Genet. , vol.41 , pp. 125-129
    • Wang, J.1
  • 262
    • 65249102251 scopus 로고    scopus 로고
    • Regulation of DNMT1 stability through SET7-mediated lysine methylation in mammalian cells
    • Esteve P.O., et al. Regulation of DNMT1 stability through SET7-mediated lysine methylation in mammalian cells. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:5076-5081.
    • (2009) Proc. Natl. Acad. Sci. U.S.A. , vol.106 , pp. 5076-5081
    • Esteve, P.O.1
  • 263
    • 78650981194 scopus 로고    scopus 로고
    • A methylation and phosphorylation switch between an adjacent lysine and serine determines human DNMT1 stability
    • Esteve P.O., et al. A methylation and phosphorylation switch between an adjacent lysine and serine determines human DNMT1 stability. Nat. Struct. Mol. Biol. 2011, 18:42-48.
    • (2011) Nat. Struct. Mol. Biol. , vol.18 , pp. 42-48
    • Esteve, P.O.1
  • 264
    • 77954274181 scopus 로고    scopus 로고
    • Lysine methylation regulates E2F1-induced cell death
    • Kontaki H., Talianidis I. Lysine methylation regulates E2F1-induced cell death. Mol. Cell 2010, 39:152-160.
    • (2010) Mol. Cell , vol.39 , pp. 152-160
    • Kontaki, H.1    Talianidis, I.2
  • 265
    • 42949142112 scopus 로고    scopus 로고
    • Regulation of estrogen receptor α by the SET7 lysine methyltransferase
    • Subramanian K., et al. Regulation of estrogen receptor α by the SET7 lysine methyltransferase. Mol. Cell 2008, 30:336-347.
    • (2008) Mol. Cell , vol.30 , pp. 336-347
    • Subramanian, K.1
  • 266
    • 84868137241 scopus 로고    scopus 로고
    • Methylation by Set9 modulates FoxO3 stability and transcriptional activity
    • Calnan D.R., et al. Methylation by Set9 modulates FoxO3 stability and transcriptional activity. Aging 2012, 4:462-479.
    • (2012) Aging , vol.4 , pp. 462-479
    • Calnan, D.R.1
  • 267
    • 84860535483 scopus 로고    scopus 로고
    • Direct methylation of FXR by Set7/9, a lysine methyltransferase, regulates the expression of FXR target genes
    • Balasubramaniyan N., et al. Direct methylation of FXR by Set7/9, a lysine methyltransferase, regulates the expression of FXR target genes. Am. J. Physiol. Gastrointest. Liver Physiol. 2012, 302:G937-G947.
    • (2012) Am. J. Physiol. Gastrointest. Liver Physiol. , vol.302
    • Balasubramaniyan, N.1
  • 268
    • 9244247669 scopus 로고    scopus 로고
    • Regulation of p53 activity through lysine methylation
    • Chuikov S., et al. Regulation of p53 activity through lysine methylation. Nature 2004, 432:353-360.
    • (2004) Nature , vol.432 , pp. 353-360
    • Chuikov, S.1
  • 269
    • 34748898280 scopus 로고    scopus 로고
    • Methylation-acetylation interplay activates p53 in response to DNA damage
    • Ivanov G.S., et al. Methylation-acetylation interplay activates p53 in response to DNA damage. Mol. Cell. Biol. 2007, 27:6756-6769.
    • (2007) Mol. Cell. Biol. , vol.27 , pp. 6756-6769
    • Ivanov, G.S.1
  • 270
    • 38949178369 scopus 로고    scopus 로고
    • Methylation of p53 by Set7/9 mediates p53 acetylation and activity in vivo
    • Kurash J.K., et al. Methylation of p53 by Set7/9 mediates p53 acetylation and activity in vivo. Mol. Cell 2008, 29:392-400.
    • (2008) Mol. Cell , vol.29 , pp. 392-400
    • Kurash, J.K.1
  • 271
    • 80051733486 scopus 로고    scopus 로고
    • The methyltransferase Set7/9 (Setd7) is dispensable for the p53-mediated DNA damage response in vivo
    • Campaner S., et al. The methyltransferase Set7/9 (Setd7) is dispensable for the p53-mediated DNA damage response in vivo. Mol. Cell 2011, 43:681-688.
    • (2011) Mol. Cell , vol.43 , pp. 681-688
    • Campaner, S.1
  • 272
    • 80051733367 scopus 로고    scopus 로고
    • P53-dependent transcription and tumor suppression are not affected in Set7/9-deficient mice
    • Lehnertz B., et al. p53-dependent transcription and tumor suppression are not affected in Set7/9-deficient mice. Mol. Cell 2011, 43:673-680.
    • (2011) Mol. Cell , vol.43 , pp. 673-680
    • Lehnertz, B.1
  • 273
    • 61649127975 scopus 로고    scopus 로고
    • Multiple lysine methylation of PCAF by Set9 methyltransferase
    • Masatsugu T., Yamamoto K. Multiple lysine methylation of PCAF by Set9 methyltransferase. Biochem. Biophys. Res. Commun. 2009, 381:22-26.
    • (2009) Biochem. Biophys. Res. Commun. , vol.381 , pp. 22-26
    • Masatsugu, T.1    Yamamoto, K.2
  • 274
    • 78751629039 scopus 로고    scopus 로고
    • Interplay between lysine methylation and Cdk phosphorylation in growth control by the retinoblastoma protein
    • Carr S.M., et al. Interplay between lysine methylation and Cdk phosphorylation in growth control by the retinoblastoma protein. EMBO J. 2011, 30:317-327.
    • (2011) EMBO J. , vol.30 , pp. 317-327
    • Carr, S.M.1
  • 275
    • 77951623834 scopus 로고    scopus 로고
    • Lysine methylation regulates the pRb tumour suppressor protein
    • Munro S., et al. Lysine methylation regulates the pRb tumour suppressor protein. Oncogene 2010, 29:2357-2367.
    • (2010) Oncogene , vol.29 , pp. 2357-2367
    • Munro, S.1
  • 276
    • 73149099403 scopus 로고    scopus 로고
    • Regulation of NF-κB activity through lysine monomethylation of p65
    • Ea C.K., Baltimore D. Regulation of NF-κB activity through lysine monomethylation of p65. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:18972-18977.
    • (2009) Proc. Natl. Acad. Sci. U.S.A. , vol.106 , pp. 18972-18977
    • Ea, C.K.1    Baltimore, D.2
  • 277
    • 55549140173 scopus 로고    scopus 로고
    • Role of the histone H3 lysine 4 methyltransferase, SET7/9, in the regulation of NF-κB-dependent inflammatory genes. Relevance to diabetes and inflammation
    • Li Y., et al. Role of the histone H3 lysine 4 methyltransferase, SET7/9, in the regulation of NF-κB-dependent inflammatory genes. Relevance to diabetes and inflammation. J. Biol. Chem. 2008, 283:26771-26781.
    • (2008) J. Biol. Chem. , vol.283 , pp. 26771-26781
    • Li, Y.1
  • 278
    • 67349285384 scopus 로고    scopus 로고
    • Negative regulation of NF-κB action by Set9-mediated lysine methylation of the RelA subunit
    • Yang X.D., et al. Negative regulation of NF-κB action by Set9-mediated lysine methylation of the RelA subunit. EMBO J. 2009, 28:1055-1066.
    • (2009) EMBO J. , vol.28 , pp. 1055-1066
    • Yang, X.D.1
  • 279
    • 77950642805 scopus 로고    scopus 로고
    • Functional interplay between acetylation and methylation of the RelA subunit of NF-κB
    • Yang X.D., et al. Functional interplay between acetylation and methylation of the RelA subunit of NF-κB. Mol. Cell. Biol. 2010, 30:2170-2180.
    • (2010) Mol. Cell. Biol. , vol.30 , pp. 2170-2180
    • Yang, X.D.1
  • 280
    • 79952124926 scopus 로고    scopus 로고
    • Methyltransferase Set7/9 regulates p53 activity by interacting with Sirtuin 1 (SIRT1)
    • Liu X., et al. Methyltransferase Set7/9 regulates p53 activity by interacting with Sirtuin 1 (SIRT1). Proc. Natl. Acad. Sci. U.S.A. 2011, 108:1925-1930.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 1925-1930
    • Liu, X.1
  • 281
    • 78650717706 scopus 로고    scopus 로고
    • Reversible methylation of promoter-bound STAT3 by histone-modifying enzymes
    • Yang J., et al. Reversible methylation of promoter-bound STAT3 by histone-modifying enzymes. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:21499-21504.
    • (2010) Proc. Natl. Acad. Sci. U.S.A. , vol.107 , pp. 21499-21504
    • Yang, J.1
  • 282
    • 1942534675 scopus 로고    scopus 로고
    • Gene-specific modulation of TAF10 function by SET9-mediated methylation
    • Kouskouti A., et al. Gene-specific modulation of TAF10 function by SET9-mediated methylation. Mol. Cell 2004, 14:175-182.
    • (2004) Mol. Cell , vol.14 , pp. 175-182
    • Kouskouti, A.1
  • 283
    • 77749342901 scopus 로고    scopus 로고
    • The cellular lysine methyltransferase Set7/9-KMT7 binds HIV-1 TAR RNA, monomethylates the viral transactivator Tat, and enhances HIV transcription
    • Pagans S., et al. The cellular lysine methyltransferase Set7/9-KMT7 binds HIV-1 TAR RNA, monomethylates the viral transactivator Tat, and enhances HIV transcription. Cell Host Microbe 2010, 7:234-244.
    • (2010) Cell Host Microbe , vol.7 , pp. 234-244
    • Pagans, S.1
  • 284
    • 84880945084 scopus 로고    scopus 로고
    • Control of the hippo pathway by set7-dependent methylation of yap
    • Oudhoff M.J., et al. Control of the hippo pathway by set7-dependent methylation of yap. Dev. Cell 2013, 26:188-194.
    • (2013) Dev. Cell , vol.26 , pp. 188-194
    • Oudhoff, M.J.1
  • 285
    • 0024636180 scopus 로고
    • Post-translational modifications in the large subunit of ribulose bisphosphate carboxylase/oxygenase
    • Houtz R.L., et al. Post-translational modifications in the large subunit of ribulose bisphosphate carboxylase/oxygenase. Proc. Natl. Acad. Sci. U.S.A. 1989, 86:1855-1859.
    • (1989) Proc. Natl. Acad. Sci. U.S.A. , vol.86 , pp. 1855-1859
    • Houtz, R.L.1
  • 286
    • 0030292845 scopus 로고    scopus 로고
    • Organization and characterization of the ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit epsilon N-methyltransferase gene in tobacco
    • Ying Z., et al. Organization and characterization of the ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit epsilon N-methyltransferase gene in tobacco. Plant Mol. Biol. 1996, 32:663-671.
    • (1996) Plant Mol. Biol. , vol.32 , pp. 663-671
    • Ying, Z.1
  • 287
    • 27144441000 scopus 로고    scopus 로고
    • A novel SET domain methyltransferase modifies ribosomal protein Rpl23ab in yeast
    • Porras-Yakushi T.R., et al. A novel SET domain methyltransferase modifies ribosomal protein Rpl23ab in yeast. J. Biol. Chem. 2005, 280:34590-34598.
    • (2005) J. Biol. Chem. , vol.280 , pp. 34590-34598
    • Porras-Yakushi, T.R.1
  • 288
    • 34250344236 scopus 로고    scopus 로고
    • Yeast ribosomal/cytochrome c SET domain methyltransferase subfamily: identification of Rpl23ab methylation sites and recognition motifs
    • Porras-Yakushi T.R., et al. Yeast ribosomal/cytochrome c SET domain methyltransferase subfamily: identification of Rpl23ab methylation sites and recognition motifs. J. Biol. Chem. 2007, 282:12368-12376.
    • (2007) J. Biol. Chem. , vol.282 , pp. 12368-12376
    • Porras-Yakushi, T.R.1
  • 289
    • 33845973759 scopus 로고    scopus 로고
    • A novel SET domain methyltransferase in yeast: Rkm2-dependent trimethylation of ribosomal protein L12ab at lysine 10
    • Porras-Yakushi T.R., et al. A novel SET domain methyltransferase in yeast: Rkm2-dependent trimethylation of ribosomal protein L12ab at lysine 10. J. Biol. Chem. 2006, 281:35835-35845.
    • (2006) J. Biol. Chem. , vol.281 , pp. 35835-35845
    • Porras-Yakushi, T.R.1
  • 290
    • 58149095554 scopus 로고    scopus 로고
    • Identification of two SET domain proteins required for methylation of lysine residues in yeast ribosomal protein Rpl42ab
    • Webb K.J., et al. Identification of two SET domain proteins required for methylation of lysine residues in yeast ribosomal protein Rpl42ab. J. Biol. Chem. 2008, 283:35561-35568.
    • (2008) J. Biol. Chem. , vol.283 , pp. 35561-35568
    • Webb, K.J.1
  • 291
    • 80053582577 scopus 로고    scopus 로고
    • Structural basis of SETD6-mediated regulation of the NF-κB network via methyl-lysine signaling
    • Chang Y., et al. Structural basis of SETD6-mediated regulation of the NF-κB network via methyl-lysine signaling. Nucleic Acids Res. 2011, 39:6380-6389.
    • (2011) Nucleic Acids Res. , vol.39 , pp. 6380-6389
    • Chang, Y.1
  • 292
    • 78650308842 scopus 로고    scopus 로고
    • Lysine methylation of the NF-κB subunit RelA by SETD6 couples activity of the histone methyltransferase GLP at chromatin to tonic repression of NF-κB signaling
    • Levy D., et al. Lysine methylation of the NF-κB subunit RelA by SETD6 couples activity of the histone methyltransferase GLP at chromatin to tonic repression of NF-κB signaling. Nat. Immunol. 2011, 12:29-36.
    • (2011) Nat. Immunol. , vol.12 , pp. 29-36
    • Levy, D.1
  • 293
    • 80455176677 scopus 로고    scopus 로고
    • Structure of human lysine methyltransferase Smyd2 reveals insights into the substrate divergence in Smyd proteins
    • Xu S., et al. Structure of human lysine methyltransferase Smyd2 reveals insights into the substrate divergence in Smyd proteins. J. Mol. Cell Biol. 2011, 3:293-300.
    • (2011) J. Mol. Cell Biol. , vol.3 , pp. 293-300
    • Xu, S.1
  • 294
    • 80052473151 scopus 로고    scopus 로고
    • Structural basis of substrate methylation and inhibition of SMYD2
    • Ferguson A.D., et al. Structural basis of substrate methylation and inhibition of SMYD2. Structure 2011, 19:1262-1273.
    • (2011) Structure , vol.19 , pp. 1262-1273
    • Ferguson, A.D.1
  • 295
    • 80055096280 scopus 로고    scopus 로고
    • Structure of human SMYD2 protein reveals the basis of p53 tumor suppressor methylation
    • Wang L., et al. Structure of human SMYD2 protein reveals the basis of p53 tumor suppressor methylation. J. Biol. Chem. 2011, 286:38725-38737.
    • (2011) J. Biol. Chem. , vol.286 , pp. 38725-38737
    • Wang, L.1
  • 296
    • 33845204856 scopus 로고    scopus 로고
    • Repression of p53 activity by Smyd2-mediated methylation
    • Huang J., et al. Repression of p53 activity by Smyd2-mediated methylation. Nature 2006, 444:629-632.
    • (2006) Nature , vol.444 , pp. 629-632
    • Huang, J.1
  • 297
    • 80455141717 scopus 로고    scopus 로고
    • Proteomic analyses of the SMYD family interactomes identify HSP90 as a novel target for SMYD2
    • Abu-Farha M., et al. Proteomic analyses of the SMYD family interactomes identify HSP90 as a novel target for SMYD2. J. Mol. Cell Biol. 2011, 3:301-308.
    • (2011) J. Mol. Cell Biol. , vol.3 , pp. 301-308
    • Abu-Farha, M.1
  • 298
    • 84856290619 scopus 로고    scopus 로고
    • Smyd2 controls cytoplasmic lysine methylation of Hsp90 and myofilament organization
    • Donlin L.T., et al. Smyd2 controls cytoplasmic lysine methylation of Hsp90 and myofilament organization. Genes Dev. 2012, 26:114-119.
    • (2012) Genes Dev. , vol.26 , pp. 114-119
    • Donlin, L.T.1
  • 299
    • 84865642314 scopus 로고    scopus 로고
    • RB1 methylation by SMYD2 enhances cell cycle progression through an increase of RB1 phosphorylation
    • Cho H.S., et al. RB1 methylation by SMYD2 enhances cell cycle progression through an increase of RB1 phosphorylation. Neoplasia 2012, 14:476-486.
    • (2012) Neoplasia , vol.14 , pp. 476-486
    • Cho, H.S.1
  • 300
    • 78349236076 scopus 로고    scopus 로고
    • Methylation of the retinoblastoma tumor suppressor by SMYD2
    • Saddic L.A., et al. Methylation of the retinoblastoma tumor suppressor by SMYD2. J. Biol. Chem. 2010, 285:37733-37740.
    • (2010) J. Biol. Chem. , vol.285 , pp. 37733-37740
    • Saddic, L.A.1
  • 301
    • 55549089655 scopus 로고    scopus 로고
    • G9a-mediated lysine methylation alters the function of CCAAT/enhancer-binding protein-β
    • Pless O., et al. G9a-mediated lysine methylation alters the function of CCAAT/enhancer-binding protein-β. J. Biol. Chem. 2008, 283:26357-26363.
    • (2008) J. Biol. Chem. , vol.283 , pp. 26357-26363
    • Pless, O.1
  • 302
    • 21044451441 scopus 로고    scopus 로고
    • Polycomb group protein ezh2 controls actin polymerization and cell signaling
    • Su I.H., et al. Polycomb group protein ezh2 controls actin polymerization and cell signaling. Cell 2005, 121:425-436.
    • (2005) Cell , vol.121 , pp. 425-436
    • Su, I.H.1
  • 303
    • 70349263952 scopus 로고    scopus 로고
    • Metnase mediates chromosome decatenation in acute leukemia cells
    • Wray J., et al. Metnase mediates chromosome decatenation in acute leukemia cells. Blood 2009, 114:1852-1858.
    • (2009) Blood , vol.114 , pp. 1852-1858
    • Wray, J.1
  • 304
    • 79851484936 scopus 로고    scopus 로고
    • Epigenetic regulation of learning and memory by Drosophila EHMT/G9a
    • Kramer J.M., et al. Epigenetic regulation of learning and memory by Drosophila EHMT/G9a. PLoS Biol. 2011, 9:e1000569.
    • (2011) PLoS Biol. , vol.9
    • Kramer, J.M.1
  • 305
    • 71149121303 scopus 로고    scopus 로고
    • Control of cognition and adaptive behavior by the GLP/G9a epigenetic suppressor complex
    • Schaefer A., et al. Control of cognition and adaptive behavior by the GLP/G9a epigenetic suppressor complex. Neuron 2009, 64:678-691.
    • (2009) Neuron , vol.64 , pp. 678-691
    • Schaefer, A.1
  • 306
    • 77951885885 scopus 로고    scopus 로고
    • Reduced exploration, increased anxiety, and altered social behavior: autistic-like features of euchromatin histone methyltransferase 1 heterozygous knockout mice
    • Balemans M.C., et al. Reduced exploration, increased anxiety, and altered social behavior: autistic-like features of euchromatin histone methyltransferase 1 heterozygous knockout mice. Behav. Brain Res. 2010, 208:47-55.
    • (2010) Behav. Brain Res. , vol.208 , pp. 47-55
    • Balemans, M.C.1
  • 307
    • 80051908751 scopus 로고    scopus 로고
    • A role for repressive histone methylation in cocaine-induced vulnerability to stress
    • Covington H.E., et al. A role for repressive histone methylation in cocaine-induced vulnerability to stress. Neuron 2011, 71:656-670.
    • (2011) Neuron , vol.71 , pp. 656-670
    • Covington, H.E.1
  • 308
    • 74249105659 scopus 로고    scopus 로고
    • Essential role of the histone methyltransferase G9a in cocaine-induced plasticity
    • Maze I., et al. Essential role of the histone methyltransferase G9a in cocaine-induced plasticity. Science 2010, 327:213-216.
    • (2010) Science , vol.327 , pp. 213-216
    • Maze, I.1
  • 309
    • 48349122949 scopus 로고    scopus 로고
    • Mediator links epigenetic silencing of neuronal gene expression with X-linked mental retardation
    • Ding N., et al. Mediator links epigenetic silencing of neuronal gene expression with X-linked mental retardation. Mol. Cell 2008, 31:347-359.
    • (2008) Mol. Cell , vol.31 , pp. 347-359
    • Ding, N.1
  • 310
    • 57049167675 scopus 로고    scopus 로고
    • CDYL bridges REST and histone methyltransferases for gene repression and suppression of cellular transformation
    • Mulligan P., et al. CDYL bridges REST and histone methyltransferases for gene repression and suppression of cellular transformation. Mol. Cell 2008, 32:718-726.
    • (2008) Mol. Cell , vol.32 , pp. 718-726
    • Mulligan, P.1
  • 311
    • 84856292325 scopus 로고    scopus 로고
    • Chromatin modification of Notch targets in olfactory receptor neuron diversification
    • Endo K., et al. Chromatin modification of Notch targets in olfactory receptor neuron diversification. Nat. Neurosci. 2012, 15:224-233.
    • (2012) Nat. Neurosci. , vol.15 , pp. 224-233
    • Endo, K.1
  • 312
    • 57349156699 scopus 로고    scopus 로고
    • Prdm proto-oncogene transcription factor family expression and interaction with the Notch-Hes pathway in mouse neurogenesis
    • Kinameri E., et al. Prdm proto-oncogene transcription factor family expression and interaction with the Notch-Hes pathway in mouse neurogenesis. PLoS ONE 2008, 3:e3859.
    • (2008) PLoS ONE , vol.3
    • Kinameri, E.1
  • 313
    • 58249123443 scopus 로고    scopus 로고
    • Hypoxic silencing of tumor suppressor RUNX3 by histone modification in gastric cancer cells
    • Lee S.H., et al. Hypoxic silencing of tumor suppressor RUNX3 by histone modification in gastric cancer cells. Oncogene 2009, 28:184-194.
    • (2009) Oncogene , vol.28 , pp. 184-194
    • Lee, S.H.1
  • 314
    • 79956107316 scopus 로고    scopus 로고
    • Epigenetic regulation of surfactant protein A gene (SP-A) expression in fetal lung reveals a critical role for Suv39h methyltransferases during development and hypoxia
    • Benlhabib H., Mendelson C.R. Epigenetic regulation of surfactant protein A gene (SP-A) expression in fetal lung reveals a critical role for Suv39h methyltransferases during development and hypoxia. Mol. Cell. Biol. 2011, 31:1949-1958.
    • (2011) Mol. Cell. Biol. , vol.31 , pp. 1949-1958
    • Benlhabib, H.1    Mendelson, C.R.2
  • 315
    • 36248954501 scopus 로고    scopus 로고
    • SIRT1 regulates the histone methyl-transferase SUV39H1 during heterochromatin formation
    • Vaquero A., et al. SIRT1 regulates the histone methyl-transferase SUV39H1 during heterochromatin formation. Nature 2007, 450:440-444.
    • (2007) Nature , vol.450 , pp. 440-444
    • Vaquero, A.1
  • 316
    • 67449103687 scopus 로고    scopus 로고
    • Inhibition of SUV39H1 methyl-transferase activity by DBC1
    • Li Z., et al. Inhibition of SUV39H1 methyl-transferase activity by DBC1. J. Biol. Chem. 2009, 284:10361-10366.
    • (2009) J. Biol. Chem. , vol.284 , pp. 10361-10366
    • Li, Z.1
  • 317
    • 79954467406 scopus 로고    scopus 로고
    • Stabilization of Suv39H1 by SirT1 is part of oxidative stress response and ensures genome protection
    • Bosch-Presegue L., et al. Stabilization of Suv39H1 by SirT1 is part of oxidative stress response and ensures genome protection. Mol. Cell 2011, 42:210-223.
    • (2011) Mol. Cell , vol.42 , pp. 210-223
    • Bosch-Presegue, L.1
  • 318
    • 58749092121 scopus 로고    scopus 로고
    • Histone H3 lysine 4 trimethylation marks meiotic recombination initiation sites
    • Borde V., et al. Histone H3 lysine 4 trimethylation marks meiotic recombination initiation sites. EMBO J. 2009, 28:99-111.
    • (2009) EMBO J. , vol.28 , pp. 99-111
    • Borde, V.1
  • 319
    • 84872249432 scopus 로고    scopus 로고
    • Spp1, a member of the Set1 complex, promotes meiotic DSB formation in promoters by tethering histone H3K4 methylation sites to chromosome axes
    • Sommermeyer V., et al. Spp1, a member of the Set1 complex, promotes meiotic DSB formation in promoters by tethering histone H3K4 methylation sites to chromosome axes. Mol. Cell 2013, 49:43-54.
    • (2013) Mol. Cell , vol.49 , pp. 43-54
    • Sommermeyer, V.1
  • 320
    • 84872142934 scopus 로고    scopus 로고
    • The COMPASS subunit Spp1 links histone methylation to initiation of meiotic recombination
    • Acquaviva L., et al. The COMPASS subunit Spp1 links histone methylation to initiation of meiotic recombination. Science 2013, 339:215-218.
    • (2013) Science , vol.339 , pp. 215-218
    • Acquaviva, L.1
  • 321
    • 77957354585 scopus 로고    scopus 로고
    • Methylated H3K4, a transcription-associated histone modification, is involved in the DNA damage response pathway
    • Faucher D., Wellinger R.J. Methylated H3K4, a transcription-associated histone modification, is involved in the DNA damage response pathway. PLoS Genet. 2010, 6:e1001082.
    • (2010) PLoS Genet. , vol.6
    • Faucher, D.1    Wellinger, R.J.2
  • 322
    • 40849124522 scopus 로고    scopus 로고
    • A role for Chd1 and Set2 in negatively regulating DNA replication in Saccharomyces cerevisiae
    • Biswas D., et al. A role for Chd1 and Set2 in negatively regulating DNA replication in Saccharomyces cerevisiae. Genetics 2008, 178:649-659.
    • (2008) Genetics , vol.178 , pp. 649-659
    • Biswas, D.1
  • 323
    • 39549101760 scopus 로고    scopus 로고
    • Methylations of histone H3 lysine 9 and lysine 36 are functionally linked to DNA replication checkpoint control in fission yeast
    • Kim H.S., et al. Methylations of histone H3 lysine 9 and lysine 36 are functionally linked to DNA replication checkpoint control in fission yeast. Biochem. Biophys. Res. Commun. 2008, 368:419-425.
    • (2008) Biochem. Biophys. Res. Commun. , vol.368 , pp. 419-425
    • Kim, H.S.1
  • 324
    • 67651245131 scopus 로고    scopus 로고
    • H3 k36 methylation helps determine the timing of cdc45 association with replication origins
    • Pryde F., et al. H3 k36 methylation helps determine the timing of cdc45 association with replication origins. PLoS ONE 2009, 4:e5882.
    • (2009) PLoS ONE , vol.4
    • Pryde, F.1
  • 325
    • 80052018339 scopus 로고    scopus 로고
    • Wolf-Hirschhorn syndrome candidate 1 is involved in the cellular response to DNA damage
    • Hajdu I., et al. Wolf-Hirschhorn syndrome candidate 1 is involved in the cellular response to DNA damage. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:13130-13134.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 13130-13134
    • Hajdu, I.1
  • 326
    • 79551665780 scopus 로고    scopus 로고
    • MMSET regulates histone H4K20 methylation and 53BP1 accumulation at DNA damage sites
    • Pei H., et al. MMSET regulates histone H4K20 methylation and 53BP1 accumulation at DNA damage sites. Nature 2011, 470:124-128.
    • (2011) Nature , vol.470 , pp. 124-128
    • Pei, H.1
  • 327
    • 38049075810 scopus 로고    scopus 로고
    • The histone methyltransferase SET8 is required for S-phase progression
    • Jorgensen S., et al. The histone methyltransferase SET8 is required for S-phase progression. J. Cell Biol. 2007, 179:1337-1345.
    • (2007) J. Cell Biol. , vol.179 , pp. 1337-1345
    • Jorgensen, S.1
  • 328
    • 78149281634 scopus 로고    scopus 로고
    • The histone H4 Lys 20 methyltransferase PR-Set7 regulates replication origins in mammalian cells
    • Tardat M., et al. The histone H4 Lys 20 methyltransferase PR-Set7 regulates replication origins in mammalian cells. Nat. Cell Biol. 2010, 12:1086-1093.
    • (2010) Nat. Cell Biol. , vol.12 , pp. 1086-1093
    • Tardat, M.1
  • 329
    • 45549087777 scopus 로고    scopus 로고
    • Direct interaction between SET8 and proliferating cell nuclear antigen couples H4-K20 methylation with DNA replication
    • Huen M.S., et al. Direct interaction between SET8 and proliferating cell nuclear antigen couples H4-K20 methylation with DNA replication. J. Biol. Chem. 2008, 283:11073-11077.
    • (2008) J. Biol. Chem. , vol.283 , pp. 11073-11077
    • Huen, M.S.1
  • 330
    • 78651330886 scopus 로고    scopus 로고
    • SET8 is degraded via PCNA-coupled CRL4(CDT2) ubiquitylation in S phase and after UV irradiation
    • Jorgensen S., et al. SET8 is degraded via PCNA-coupled CRL4(CDT2) ubiquitylation in S phase and after UV irradiation. J. Cell Biol. 2011, 192:43-54.
    • (2011) J. Cell Biol. , vol.192 , pp. 43-54
    • Jorgensen, S.1
  • 331
    • 84870529834 scopus 로고    scopus 로고
    • The role of PR-Set7 in replication licensing depends on Suv4-20h
    • Beck D.B., et al. The role of PR-Set7 in replication licensing depends on Suv4-20h. Genes Dev. 2012, 26:2580-2589.
    • (2012) Genes Dev. , vol.26 , pp. 2580-2589
    • Beck, D.B.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.