메뉴 건너뛰기




Volumn 334, Issue 1-2, 2007, Pages 125-140

Real-time flow forecasting in the absence of quantitative precipitation forecasts: A multi-model approach

Author keywords

Autoregressive; Consensus forecast; Direct multi step; Neural network; Output combination; Recursive multi step

Indexed keywords

FLOW PATTERNS; MATHEMATICAL MODELS; NEURAL NETWORKS; RAIN; TRANSFER FUNCTIONS;

EID: 33846452513     PISSN: 00221694     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jhydrol.2006.10.002     Document Type: Article
Times cited : (34)

References (39)
  • 1
    • 3342911547 scopus 로고    scopus 로고
    • Modelling land use change with generalized linear models-a multi-model analysis of change between 1860 and 2000 in Gallatin Valley, Montana
    • Aspinall R. Modelling land use change with generalized linear models-a multi-model analysis of change between 1860 and 2000 in Gallatin Valley, Montana. Journal of Environmental Management 72 (2004) 91-103
    • (2004) Journal of Environmental Management , vol.72 , pp. 91-103
    • Aspinall, R.1
  • 4
    • 0032688155 scopus 로고    scopus 로고
    • River flood forecasting with a neural network model
    • Campolo M., Andreussi P., and Soldati A. River flood forecasting with a neural network model. Water Resources Research 35 4 (1999) 1191-1197
    • (1999) Water Resources Research , vol.35 , Issue.4 , pp. 1191-1197
    • Campolo, M.1    Andreussi, P.2    Soldati, A.3
  • 5
    • 0032005702 scopus 로고    scopus 로고
    • An artificial neural network approach to rainfall-runoff modeling
    • Dawson C.W., and Wilby R. An artificial neural network approach to rainfall-runoff modeling. Hydrological Sciences Journal 43 1 (1998) 47-66
    • (1998) Hydrological Sciences Journal , vol.43 , Issue.1 , pp. 47-66
    • Dawson, C.W.1    Wilby, R.2
  • 6
    • 0034306554 scopus 로고    scopus 로고
    • Performance evaluation of artificial neural networks for runoff prediction
    • Elshorbagy A., Simonovic S.P., and Panu U.S. Performance evaluation of artificial neural networks for runoff prediction. Journal of Hydrologic Engineering 5 4 (2000) 424-427
    • (2000) Journal of Hydrologic Engineering , vol.5 , Issue.4 , pp. 424-427
    • Elshorbagy, A.1    Simonovic, S.P.2    Panu, U.S.3
  • 8
    • 27644470780 scopus 로고    scopus 로고
    • Real-time river flow forecasting for the Brosna catchment in Ireland using eight updating models
    • Goswami M., O'Connor K.M., Bhattarai K.P., and Shamseldin A.Y. Real-time river flow forecasting for the Brosna catchment in Ireland using eight updating models. Hydrology and Earth System Sciences 9 4 (2005) 394-411
    • (2005) Hydrology and Earth System Sciences , vol.9 , Issue.4 , pp. 394-411
    • Goswami, M.1    O'Connor, K.M.2    Bhattarai, K.P.3    Shamseldin, A.Y.4
  • 10
    • 0027149406 scopus 로고
    • Predicting runoff from rainfall using neural networks
    • ASCE, NY
    • Halff A.H., Halff H.M., and Azmoodeh M. Predicting runoff from rainfall using neural networks. Proc. Eng. Hydrol. (1993), ASCE, NY 760-765
    • (1993) Proc. Eng. Hydrol. , pp. 760-765
    • Halff, A.H.1    Halff, H.M.2    Azmoodeh, M.3
  • 11
    • 0035472003 scopus 로고    scopus 로고
    • River flow time series prediction with a range-dependent neural network
    • Hu T.S., Lam K.C., and Ng S.T. River flow time series prediction with a range-dependent neural network. Hydrological Sciences Journal 46 5 (2001) 729-745
    • (2001) Hydrological Sciences Journal , vol.46 , Issue.5 , pp. 729-745
    • Hu, T.S.1    Lam, K.C.2    Ng, S.T.3
  • 12
    • 0037340658 scopus 로고    scopus 로고
    • Comparative analysis of event based rainfall-runoff modeling techniques-deterministic, statistical and artificial neural networks
    • Jain A., and Indurthy S.K.V.P. Comparative analysis of event based rainfall-runoff modeling techniques-deterministic, statistical and artificial neural networks. Journal of Hydrologic Engineering 8 (2003) 93-98
    • (2003) Journal of Hydrologic Engineering , vol.8 , pp. 93-98
    • Jain, A.1    Indurthy, S.K.V.P.2
  • 13
    • 2442639370 scopus 로고    scopus 로고
    • Development of effective and efficient rainfall-runoff models using integration of deterministic, real-coded genetic algorithms and artificial neural network techniques
    • 10.1029/2003WR002355
    • Jain A., and Srinivasulu S. Development of effective and efficient rainfall-runoff models using integration of deterministic, real-coded genetic algorithms and artificial neural network techniques. Water Resources Research 40 4 (2004) 10.1029/2003WR002355
    • (2004) Water Resources Research , vol.40 , Issue.4
    • Jain, A.1    Srinivasulu, S.2
  • 15
    • 0030159380 scopus 로고    scopus 로고
    • Artificial neural networks as rainfall-runoff models
    • Minns A.W., and Hall M.J. Artificial neural networks as rainfall-runoff models. Hydrological Sciences Journal 41 3 (1996) 399-418
    • (1996) Hydrological Sciences Journal , vol.41 , Issue.3 , pp. 399-418
    • Minns, A.W.1    Hall, M.J.2
  • 16
    • 33846411858 scopus 로고
    • Morel-Seytoux H.J., Salas J.D., Sanders T.G., and Smith R.E. (Eds), Water Resources Publications, P.O. Box 203, Fort Collins, CO 80522, USA
    • In: Morel-Seytoux H.J., Salas J.D., Sanders T.G., and Smith R.E. (Eds). Modelling hydrological processes (1979), Water Resources Publications, P.O. Box 203, Fort Collins, CO 80522, USA
    • (1979) Modelling hydrological processes
  • 17
    • 0014776873 scopus 로고
    • River flow forecasting through conceptual models. Part 1. A discussion of principles
    • Nash J.E., and Sutcliffe J.V. River flow forecasting through conceptual models. Part 1. A discussion of principles. Journal of Hydrology 10 (1970) 282-290
    • (1970) Journal of Hydrology , vol.10 , pp. 282-290
    • Nash, J.E.1    Sutcliffe, J.V.2
  • 18
    • 0000238336 scopus 로고
    • A simplex method for function minimization
    • Neldar J.A., and Mead R. A simplex method for function minimization. Computer Journal 7 (1965) 308-313
    • (1965) Computer Journal , vol.7 , pp. 308-313
    • Neldar, J.A.1    Mead, R.2
  • 19
    • 33846425368 scopus 로고    scopus 로고
    • The Galway real-time river flow forecasting system
    • Knight D.W., and Shamseldin A.Y. (Eds), Taylor & Francis Group plc., London, UK. 0 415 38344 7 pp. 215-248. (Chapter 12)
    • O'Connor K.M. The Galway real-time river flow forecasting system. In: Knight D.W., and Shamseldin A.Y. (Eds). River Basin Modelling for Flood Risk Mitigation (2006), Taylor & Francis Group plc., London, UK. 0 415 38344 7 pp. 215-248. (Chapter 12)
    • (2006) River Basin Modelling for Flood Risk Mitigation
    • O'Connor, K.M.1
  • 20
    • 33846454370 scopus 로고    scopus 로고
    • O'Connor, K.M., Goswami, M., Bhattarai, K.P., Shamseldin, A.Y., 2004. A comparison of the lead-time discharge forecasts of the 'Perfect' and 'Nai{dotless}̈ve-AR' Quantitative Precipitation Forecast (QPF) input scenarios, to assess the value of having good QPFs. In: Brath, A., Montanari, A., Toth, E. (Eds.), 'Hydrological Risk: Recent Advances in Peak River Flow Modelling, Prediction and Real-time Forecasting-Assessment of the Impacts of Land-use and Climate Changes. Editoriale Bios s.a.s., pp. 187-217. ISBN 88-7740-378-0.
  • 22
    • 0347135926 scopus 로고    scopus 로고
    • Modeling of the daily rainfall-runoff relationship with artificial neural network
    • Rajurkar M.P., Kothyari U.C., and Chaube U.C. Modeling of the daily rainfall-runoff relationship with artificial neural network. Journal of Hydrology 285 (2004) 96-113
    • (2004) Journal of Hydrology , vol.285 , pp. 96-113
    • Rajurkar, M.P.1    Kothyari, U.C.2    Chaube, U.C.3
  • 24
    • 0035480406 scopus 로고    scopus 로고
    • Multi-model data-fusion for hydrological forecasting
    • See L., and Abrahart R.J. Multi-model data-fusion for hydrological forecasting. Computers & Geosciences 27 (2001) 987-994
    • (2001) Computers & Geosciences , vol.27 , pp. 987-994
    • See, L.1    Abrahart, R.J.2
  • 25
    • 0342506462 scopus 로고    scopus 로고
    • Application of a neural network technique to rainfall-runoff modelling
    • Shamseldin A.Y. Application of a neural network technique to rainfall-runoff modelling. Journal of Hydrology 199 (1997) 272-294
    • (1997) Journal of Hydrology , vol.199 , pp. 272-294
    • Shamseldin, A.Y.1
  • 26
    • 0033393056 scopus 로고    scopus 로고
    • A real-time combination method for the outputs of different rainfall-runoff models
    • Shamseldin A.Y., and O'Connor K.M. A real-time combination method for the outputs of different rainfall-runoff models. Hydrological Sciences Journal 44 6 (1999) 895-912
    • (1999) Hydrological Sciences Journal , vol.44 , Issue.6 , pp. 895-912
    • Shamseldin, A.Y.1    O'Connor, K.M.2
  • 27
    • 0035701248 scopus 로고    scopus 로고
    • A non-linear neural network technique for updating of river flow forecasts
    • Shamseldin A.Y., and O'Connor K.M. A non-linear neural network technique for updating of river flow forecasts. Hydrology and Earth System Sciences 5 4 (2001) 577-597
    • (2001) Hydrology and Earth System Sciences , vol.5 , Issue.4 , pp. 577-597
    • Shamseldin, A.Y.1    O'Connor, K.M.2
  • 28
    • 0031259688 scopus 로고    scopus 로고
    • Methods for combining the outputs of different rainfall-runoff models
    • Shamseldin A.Y., O'Connor K.M., and Liang G.C. Methods for combining the outputs of different rainfall-runoff models. Journal of Hydrology 197 (1997) 203-229
    • (1997) Journal of Hydrology , vol.197 , pp. 203-229
    • Shamseldin, A.Y.1    O'Connor, K.M.2    Liang, G.C.3
  • 29
    • 33846408690 scopus 로고    scopus 로고
    • Shen, H.W. (Ed.), 1976. Stochastic Approaches to Water Resources, vol. 1. H.W. Shen, P.O. Box 606, Fort Collins, CO 80521, USA.
  • 30
    • 0037199712 scopus 로고    scopus 로고
    • River flow forecasting: use of phase-space reconstruction and artificial neural networks approaches
    • Sivakumar B., Jayawardena A.W., and Fernando T.M.K.G. River flow forecasting: use of phase-space reconstruction and artificial neural networks approaches. Journal of Hydrology 265 (2002) 225-245
    • (2002) Journal of Hydrology , vol.265 , pp. 225-245
    • Sivakumar, B.1    Jayawardena, A.W.2    Fernando, T.M.K.G.3
  • 32
    • 84946640734 scopus 로고
    • Sequential application of simplex designs in optimization and evolutionary design
    • Spendley W., Hext G.R., and Himsworth F.R. Sequential application of simplex designs in optimization and evolutionary design. Technometrics 4 (1962) 441-461
    • (1962) Technometrics , vol.4 , pp. 441-461
    • Spendley, W.1    Hext, G.R.2    Himsworth, F.R.3
  • 33
    • 0021892282 scopus 로고
    • Fuzzy identification of systems and its application to modelling and control
    • Takagi T., and Sugeno M. Fuzzy identification of systems and its application to modelling and control. IEEE Transactions on Systems Man and Cybernetics 15 (1985) 116-132
    • (1985) IEEE Transactions on Systems Man and Cybernetics , vol.15 , pp. 116-132
    • Takagi, T.1    Sugeno, M.2
  • 34
    • 0034298851 scopus 로고    scopus 로고
    • Application of tank, NAM, ARMA and neural network models to flood forecasting
    • Tingsanchali T., and Gautam M.R. Application of tank, NAM, ARMA and neural network models to flood forecasting. Hydrological Processes 14 (2000) 2437-2487
    • (2000) Hydrological Processes , vol.14 , pp. 2437-2487
    • Tingsanchali, T.1    Gautam, M.R.2
  • 35
    • 0033167344 scopus 로고    scopus 로고
    • Rainfall-runoff modeling using artificial neural networks
    • Tokar A.S., and Johnson P.A. Rainfall-runoff modeling using artificial neural networks. ASCE Journal of Hydrologic Engineering 4 3 (1999) 232-239
    • (1999) ASCE Journal of Hydrologic Engineering , vol.4 , Issue.3 , pp. 232-239
    • Tokar, A.S.1    Johnson, P.A.2
  • 36
    • 0034694775 scopus 로고    scopus 로고
    • Comparison of short-term rainfall prediction models for real-time flood forecasting
    • Toth E., Brath A., and Montanari A. Comparison of short-term rainfall prediction models for real-time flood forecasting. Journal of Hydrology 239 (2000) 132-147
    • (2000) Journal of Hydrology , vol.239 , pp. 132-147
    • Toth, E.1    Brath, A.2    Montanari, A.3
  • 37
    • 0035340544 scopus 로고    scopus 로고
    • A non-linear combination of the forecasts of rainfall-runoff models by the first-order Takagi-Sugeno fuzzy system
    • Xiong L., Shamseldin A.Y., and O'Connor K.M. A non-linear combination of the forecasts of rainfall-runoff models by the first-order Takagi-Sugeno fuzzy system. Journal of Hydrology 245 (2001) 196-217
    • (2001) Journal of Hydrology , vol.245 , pp. 196-217
    • Xiong, L.1    Shamseldin, A.Y.2    O'Connor, K.M.3
  • 38
    • 0033019602 scopus 로고    scopus 로고
    • Short term streamflow forecasting using artificial neural networks
    • Zealand C.M., Burn D.H., and Simonovic S.P. Short term streamflow forecasting using artificial neural networks. Journal of Hydrology 214 (1999) 32-48
    • (1999) Journal of Hydrology , vol.214 , pp. 32-48
    • Zealand, C.M.1    Burn, D.H.2    Simonovic, S.P.3
  • 39
    • 0034100712 scopus 로고    scopus 로고
    • Prediction of watershed runoff using Bayesian concepts of modular neural networks
    • Zhang B., and Govindaraju R.S. Prediction of watershed runoff using Bayesian concepts of modular neural networks. Water Resources Research 36 3 (2000) 753-762
    • (2000) Water Resources Research , vol.36 , Issue.3 , pp. 753-762
    • Zhang, B.1    Govindaraju, R.S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.