메뉴 건너뛰기




Volumn 332, Issue 1-2, 2007, Pages 1-15

Application of neural approaches to one-step daily flow forecasting in Portuguese watersheds

Author keywords

Convolution process; Daily flow forecasting; Hybrid model; Intervention series; Neural networks; Portuguese watersheds

Indexed keywords

FORECASTING; MATHEMATICAL MODELS; NEURAL NETWORKS; WATERSHEDS;

EID: 33845620661     PISSN: 00221694     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jhydrol.2006.06.015     Document Type: Article
Times cited : (92)

References (65)
  • 1
    • 0742267129 scopus 로고    scopus 로고
    • Using pruning algorithms and genetic algorithms to optimize network architectures and forecasting inputs in a neural network rainfall-runoff model
    • Abrahart R.J., See L., and Kneale P.E. Using pruning algorithms and genetic algorithms to optimize network architectures and forecasting inputs in a neural network rainfall-runoff model. J. Hydroinformatics 1 2 (1999) 103-114
    • (1999) J. Hydroinformatics , vol.1 , Issue.2 , pp. 103-114
    • Abrahart, R.J.1    See, L.2    Kneale, P.E.3
  • 2
    • 0034254196 scopus 로고    scopus 로고
    • Comparing neural network and autoregressive moving average techniques for the provision of continuous river flow forecasts in two contrasting catchments
    • Abrahart R.J., and See L. Comparing neural network and autoregressive moving average techniques for the provision of continuous river flow forecasts in two contrasting catchments. Hydrol. Process. 14 (2000) 2157-2172
    • (2000) Hydrol. Process. , vol.14 , pp. 2157-2172
    • Abrahart, R.J.1    See, L.2
  • 3
    • 0036698601 scopus 로고    scopus 로고
    • Multi-model data fusion for river flow forecasting: an evaluation of six alternative methods based on two contrasting catchments
    • Abrahart R.J., and See L. Multi-model data fusion for river flow forecasting: an evaluation of six alternative methods based on two contrasting catchments. Hydrol. Earth Syst. Sci. 6 4 (2002) 655-670
    • (2002) Hydrol. Earth Syst. Sci. , vol.6 , Issue.4 , pp. 655-670
    • Abrahart, R.J.1    See, L.2
  • 4
    • 0033116849 scopus 로고    scopus 로고
    • Artificial neural networks as applied to long-term demand forecasting
    • Al-Saba T., and El-Amin I. Artificial neural networks as applied to long-term demand forecasting. Artif. Intell. Eng. 13 2 (1999) 189-197
    • (1999) Artif. Intell. Eng. , vol.13 , Issue.2 , pp. 189-197
    • Al-Saba, T.1    El-Amin, I.2
  • 5
    • 11944267778 scopus 로고    scopus 로고
    • Evaluation of neural network streamflow forecasting on 47 watersheds
    • Anctil F., and Rat A. Evaluation of neural network streamflow forecasting on 47 watersheds. J. Hydrol. Eng. 10 1 (2005) 85-88
    • (2005) J. Hydrol. Eng. , vol.10 , Issue.1 , pp. 85-88
    • Anctil, F.1    Rat, A.2
  • 9
    • 0037087735 scopus 로고    scopus 로고
    • An evaluation of a traditional and a neural net modelling approach to flood forecasting for an upland catchment
    • Cameron D., Kneale P., and See L. An evaluation of a traditional and a neural net modelling approach to flood forecasting for an upland catchment. Hydrol. Process. 16 (2002) 1033-1046
    • (2002) Hydrol. Process. , vol.16 , pp. 1033-1046
    • Cameron, D.1    Kneale, P.2    See, L.3
  • 10
    • 0035340711 scopus 로고    scopus 로고
    • A counterpropagation fuzzy-neural network modeling approach to real time streamflow prediction
    • Chang F.-J., and Chen Y.-C. A counterpropagation fuzzy-neural network modeling approach to real time streamflow prediction. J. Hydrol. 245 (2001) 153-164
    • (2001) J. Hydrol. , vol.245 , pp. 153-164
    • Chang, F.-J.1    Chen, Y.-C.2
  • 11
    • 1842426595 scopus 로고    scopus 로고
    • Comparison of static-feedforward and dynamic-feedback neural networks for rainfall-runoff modeling
    • Chiang Y.-M., Chang L.-C., and Chang F.-J. Comparison of static-feedforward and dynamic-feedback neural networks for rainfall-runoff modeling. J. Hydrol. 290 (2004) 297-311
    • (2004) J. Hydrol. , vol.290 , pp. 297-311
    • Chiang, Y.-M.1    Chang, L.-C.2    Chang, F.-J.3
  • 13
    • 0026445234 scopus 로고
    • Effective and efficient global optimization for conceptual rainfall-runoff models
    • Duan Q., Sorooshian S., and Gupta V.K. Effective and efficient global optimization for conceptual rainfall-runoff models. Water Resour. Res. 28 4 (1992) 1015-1031
    • (1992) Water Resour. Res. , vol.28 , Issue.4 , pp. 1015-1031
    • Duan, Q.1    Sorooshian, S.2    Gupta, V.K.3
  • 14
    • 0027558431 scopus 로고
    • A shuffled complex evolution approach for effective and efficient global minimization
    • Duan Q., Gupta V.K., and Sorooshian S. A shuffled complex evolution approach for effective and efficient global minimization. J. Optim. Theory Appl. 73 3 (1993) 501-521
    • (1993) J. Optim. Theory Appl. , vol.73 , Issue.3 , pp. 501-521
    • Duan, Q.1    Gupta, V.K.2    Sorooshian, S.3
  • 15
    • 0028449781 scopus 로고
    • Optimal use of SCE-UA global optimization method for calibrating watershed models
    • Duan Q., Sorooshian S., and Gupta V.K. Optimal use of SCE-UA global optimization method for calibrating watershed models. J. Hydrol. 158 (1994) 265-284
    • (1994) J. Hydrol. , vol.158 , pp. 265-284
    • Duan, Q.1    Sorooshian, S.2    Gupta, V.K.3
  • 16
    • 0034306554 scopus 로고    scopus 로고
    • Performance evaluation of artificial neural networks for runoff prediction
    • Elshorbagy A., Simonovic S.P., and Panu U.S. Performance evaluation of artificial neural networks for runoff prediction. J. Hydrol. Eng. 5 4 (2000) 424-427
    • (2000) J. Hydrol. Eng. , vol.5 , Issue.4 , pp. 424-427
    • Elshorbagy, A.1    Simonovic, S.P.2    Panu, U.S.3
  • 17
    • 0027007868 scopus 로고
    • Rainfall forecasting in space and time using a neural network
    • French M.N., Krajewski W.F., and Cuykendall R.R. Rainfall forecasting in space and time using a neural network. J. Hydrol. 137 (1992) 1-31
    • (1992) J. Hydrol. , vol.137 , pp. 1-31
    • French, M.N.1    Krajewski, W.F.2    Cuykendall, R.R.3
  • 18
    • 0348037710 scopus 로고
    • Neural networks for univariate time series forecasting and their application to water demand prediction
    • Griñó R. Neural networks for univariate time series forecasting and their application to water demand prediction. Neural Network World 2 5 (1992) 437-450
    • (1992) Neural Network World , vol.2 , Issue.5 , pp. 437-450
    • Griñó, R.1
  • 19
    • 4143070227 scopus 로고    scopus 로고
    • Comparison between traditional methods and artificial neural networks for ammonia concentration forescasting in an eel (Anguilla anguilla L.) intensive rearing system
    • Gutiérrez-Estrada J.C., de Pedro-Sanz E., López-Luque R., and Pulido-Calvo I. Comparison between traditional methods and artificial neural networks for ammonia concentration forescasting in an eel (Anguilla anguilla L.) intensive rearing system. Aquacult. Eng. 31 (2004) 183-203
    • (2004) Aquacult. Eng. , vol.31 , pp. 183-203
    • Gutiérrez-Estrada, J.C.1    de Pedro-Sanz, E.2    López-Luque, R.3    Pulido-Calvo, I.4
  • 20
    • 33845633788 scopus 로고    scopus 로고
    • Estimación a corto plazo de la temperatura del agua. Aplicación en sistemas de producción en medio acuático
    • (in Spanish)
    • Gutiérrez-Estrada J.C., de Pedro-Sanz E., López-Luque R., and Pulido-Calvo I. Estimación a corto plazo de la temperatura del agua. Aplicación en sistemas de producción en medio acuático. Ing. Agua 12 1 (2005) 77-92 (in Spanish)
    • (2005) Ing. Agua , vol.12 , Issue.1 , pp. 77-92
    • Gutiérrez-Estrada, J.C.1    de Pedro-Sanz, E.2    López-Luque, R.3    Pulido-Calvo, I.4
  • 21
    • 0031191950 scopus 로고    scopus 로고
    • Neural networks and traditional time series methods: a synergistic combination in state economic forecasts
    • Hansen J.V., and Nelson R.D. Neural networks and traditional time series methods: a synergistic combination in state economic forecasts. IEEE Trans. Neural Networks 8 4 (1997) 863-873
    • (1997) IEEE Trans. Neural Networks , vol.8 , Issue.4 , pp. 863-873
    • Hansen, J.V.1    Nelson, R.D.2
  • 22
    • 0029413797 scopus 로고
    • Artificial neural network modeling of the rainfall-runoff process
    • Hsu K., Gupta H.V., and Sorooshian S. Artificial neural network modeling of the rainfall-runoff process. Water Resour. Res. 31 10 (1995) 2517-2530
    • (1995) Water Resour. Res. , vol.31 , Issue.10 , pp. 2517-2530
    • Hsu, K.1    Gupta, H.V.2    Sorooshian, S.3
  • 23
    • 0027790160 scopus 로고
    • How much complexity is warranted in a rainfall-runoff model?
    • Jakeman A.J., and Hornberger G.M. How much complexity is warranted in a rainfall-runoff model?. Water Resour. Res. 29 8 (1993) 2637-2649
    • (1993) Water Resour. Res. , vol.29 , Issue.8 , pp. 2637-2649
    • Jakeman, A.J.1    Hornberger, G.M.2
  • 24
    • 0035977694 scopus 로고    scopus 로고
    • Groups and neural networks based streamflow data infilling procedures
    • Khalil M., Panu U.S., and Lennox W.C. Groups and neural networks based streamflow data infilling procedures. J. Hydrol. 241 (2001) 153-176
    • (2001) J. Hydrol. , vol.241 , pp. 153-176
    • Khalil, M.1    Panu, U.S.2    Lennox, W.C.3
  • 25
    • 0019227948 scopus 로고
    • Real time forecasting with a conceptual hydrological model. 2. Applications and results
    • Kitanidis P.K., and Bras R.L. Real time forecasting with a conceptual hydrological model. 2. Applications and results. Water Resour. Res. 16 6 (1980) 1034-1044
    • (1980) Water Resour. Res. , vol.16 , Issue.6 , pp. 1034-1044
    • Kitanidis, P.K.1    Bras, R.L.2
  • 26
    • 0000632352 scopus 로고    scopus 로고
    • Experiments in short-term precipitation forecasting using artificial neural networks
    • Kuligowski R.J., and Barros A.P. Experiments in short-term precipitation forecasting using artificial neural networks. Mon. Weather Rev. 126 2 (1998) 470-482
    • (1998) Mon. Weather Rev. , vol.126 , Issue.2 , pp. 470-482
    • Kuligowski, R.J.1    Barros, A.P.2
  • 27
    • 0032920124 scopus 로고    scopus 로고
    • Evaluating the use of 'goodness-of-fit' measures in hydrologic and hydroclimatic model validation
    • Legates D.R., and McCabe Jr. G.J. Evaluating the use of 'goodness-of-fit' measures in hydrologic and hydroclimatic model validation. Water Resour. Res. 35 1 (1999) 233-241
    • (1999) Water Resour. Res. , vol.35 , Issue.1 , pp. 233-241
    • Legates, D.R.1    McCabe Jr., G.J.2
  • 28
    • 0029413502 scopus 로고
    • Neural nets for modelling rainfall-runoff transformations
    • Lorrai M., and Sechi G.M. Neural nets for modelling rainfall-runoff transformations. Water Resour. Manage. 9 (1995) 299-313
    • (1995) Water Resour. Manage. , vol.9 , pp. 299-313
    • Lorrai, M.1    Sechi, G.M.2
  • 29
    • 0029748915 scopus 로고    scopus 로고
    • A neural network model of rainfall-runoff using radial basis functions
    • Mason J.C., Tem'me A., and Price R.K. A neural network model of rainfall-runoff using radial basis functions. J. Recherches Hydrauliques 34 4 (1996) 537-548
    • (1996) J. Recherches Hydrauliques , vol.34 , Issue.4 , pp. 537-548
    • Mason, J.C.1    Tem'me, A.2    Price, R.K.3
  • 30
    • 3142538909 scopus 로고    scopus 로고
    • Improved streamflow forecasting using self-organizing radial basis function artificial neural networks
    • Moradkhani H., Hsu K., Gupta H.V., and Sorooshian S. Improved streamflow forecasting using self-organizing radial basis function artificial neural networks. J. Hydrol. 295 (2004) 246-262
    • (2004) J. Hydrol. , vol.295 , pp. 246-262
    • Moradkhani, H.1    Hsu, K.2    Gupta, H.V.3    Sorooshian, S.4
  • 31
    • 0014776873 scopus 로고
    • River flow forecasting through conceptual models. I. A discussion of principles
    • Nash J.E., and Sutcliffe J.V. River flow forecasting through conceptual models. I. A discussion of principles. J. Hydrol. 10 (1970) 282-290
    • (1970) J. Hydrol. , vol.10 , pp. 282-290
    • Nash, J.E.1    Sutcliffe, J.V.2
  • 32
    • 0032168430 scopus 로고    scopus 로고
    • Analysis and prediction of walleye pollock (Theragra chalcogramma) landings in Korea by time series analysis
    • Park H.-H. Analysis and prediction of walleye pollock (Theragra chalcogramma) landings in Korea by time series analysis. Fish. Res. 38 (1998) 1-7
    • (1998) Fish. Res. , vol.38 , pp. 1-7
    • Park, H.-H.1
  • 33
    • 0012733832 scopus 로고    scopus 로고
    • Stream hydrological and ecological responses to climate change assessed with an artificial neural network
    • Poff L.N., Tokar A.S., and Johnson P.A. Stream hydrological and ecological responses to climate change assessed with an artificial neural network. Limnol. Oceanogr. 41 5 (1996) 857-863
    • (1996) Limnol. Oceanogr. , vol.41 , Issue.5 , pp. 857-863
    • Poff, L.N.1    Tokar, A.S.2    Johnson, P.A.3
  • 34
    • 33845675789 scopus 로고    scopus 로고
    • Portela, M.M., Quintela, A.C., 2000. A altura do escoamento anual médio numa bacia hidrográfica como parâmetro de regionalização de informação hidrométrica (Mean annual flow height as a regionalization parameter of hydrologic information). 1° Congresso sobre Aproveitamentos e Gestão de Recursos Hídricos em Países de Idioma Português, Rio de Janeiro, Brasil, pp. 218-227 (in Portuguese).
  • 35
    • 33845627366 scopus 로고    scopus 로고
    • Portela, M.M., Quintela, A.C., 2002a. Assessment of the streamflow characteristics under unavailability of discharge data: the mean annual flow depth over the watershed as a regionalization parameter. In: The Portuguese case, 2002 EGS Conference, European Geophysical Society, Nice, France.
  • 36
    • 33845613185 scopus 로고    scopus 로고
    • Portela, M.M., Quintela, A.C., 2002b. Evaluation of the water resources in Portuguese watersheds without streamflow data. In: International Conference of Basin Organizations, Madrid, Spain.
  • 37
    • 33845626127 scopus 로고    scopus 로고
    • Regionalization of hydrologic information: establishment of flow series at ungauged watersheds
    • Cunha M.C., and Brebbia C.A. (Eds), WIT Press, UK
    • Portela M.M., and Quintela A.C. Regionalization of hydrologic information: establishment of flow series at ungauged watersheds. In: Cunha M.C., and Brebbia C.A. (Eds). Water Resources Management III (2005), WIT Press, UK
    • (2005) Water Resources Management III
    • Portela, M.M.1    Quintela, A.C.2
  • 38
    • 33845649428 scopus 로고    scopus 로고
    • Portela, M.M., Quintela, A.C., 2005b. Estimação de séries de caudais médios diários na ausência de informação hidrométrica (Evaluation of daily stream flow series under unavailability of stream flow data). VII Simpósio de Hidráulica e Recursos Hídricos dos Países de Língua Oficial Portuguesa (7° SILUSBA), APRH, Associação dos Recursos Hídricos, Portugal (in Portuguese).
  • 39
    • 33845610584 scopus 로고    scopus 로고
    • Portela, M.M., Quintela, A.C., 2006. Preliminary design of the storage capacity of reservoirs based on a flow regionalization parameter. BALWOIS 2006, International Conference on 'Water Observation and Information System for Decision Support', IAHS, IRD (France), HMS (Republic of Macedonia), HIO (Republic of Macedonia), Republic of Macedonia.
  • 40
    • 33845614933 scopus 로고    scopus 로고
    • Técnicas de predicción a corto plazo de la demanda de agua. Aplicación al uso agrícola
    • (in Spanish)
    • Pulido-Calvo I., Roldán J., López-Luque R., and Gutiérrez-Estrada J.C. Técnicas de predicción a corto plazo de la demanda de agua. Aplicación al uso agrícola. Ing. Agua 9 3 (2002) 319-331 (in Spanish)
    • (2002) Ing. Agua , vol.9 , Issue.3 , pp. 319-331
    • Pulido-Calvo, I.1    Roldán, J.2    López-Luque, R.3    Gutiérrez-Estrada, J.C.4
  • 42
    • 0035427685 scopus 로고    scopus 로고
    • An investigation of model selection criteria for neural network time series forecasting
    • Qi M., and Zhang G.P. An investigation of model selection criteria for neural network time series forecasting. Eur. J. Oper. Res. 132 (2001) 666-680
    • (2001) Eur. J. Oper. Res. , vol.132 , pp. 666-680
    • Qi, M.1    Zhang, G.P.2
  • 43
    • 33845628130 scopus 로고    scopus 로고
    • Quintela, A.C., 1967. Recursos de águas superficiais em Portugal Continental. Ph.D. Thesis, IST, Technical University of Lisbon, Portugal (in Portuguese).
  • 44
    • 0028174533 scopus 로고
    • Optimization of groundwater remediation using artificial neural networks with parallel solute transport modeling
    • Roger L.L., and Dowla F.U. Optimization of groundwater remediation using artificial neural networks with parallel solute transport modeling. Water Resour. Res. 30 2 (1994) 457-481
    • (1994) Water Resour. Res. , vol.30 , Issue.2 , pp. 457-481
    • Roger, L.L.1    Dowla, F.U.2
  • 45
    • 0022471098 scopus 로고
    • 'Learning' representations by backpropagation errors
    • Rumelhart D.E., Hinton G.E., and Williams R.J. 'Learning' representations by backpropagation errors. Nature 323 (1986) 533-536
    • (1986) Nature , vol.323 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 46
    • 0034254025 scopus 로고    scopus 로고
    • A hybrid multi-model approach to river level forecasting
    • See L., and Openshaw S. A hybrid multi-model approach to river level forecasting. Hydrol. Sci. J. 45 4 (2000) 523-536
    • (2000) Hydrol. Sci. J. , vol.45 , Issue.4 , pp. 523-536
    • See, L.1    Openshaw, S.2
  • 48
    • 0034174278 scopus 로고    scopus 로고
    • Regional drought analysis based on neural networks
    • Shin H.-S., and Salas J.D. Regional drought analysis based on neural networks. J. Hydrol. Eng. 5 2 (2000) 145-155
    • (2000) J. Hydrol. Eng. , vol.5 , Issue.2 , pp. 145-155
    • Shin, H.-S.1    Salas, J.D.2
  • 49
    • 0027503733 scopus 로고
    • Calibration of rainfall-runoff models: application of global optimization to the Sacramento soil moisture accounting model
    • Sorooshian S., Duan Q., and Gupta V.K. Calibration of rainfall-runoff models: application of global optimization to the Sacramento soil moisture accounting model. Water Resour. Res. 29 4 (1993) 1185-1194
    • (1993) Water Resour. Res. , vol.29 , Issue.4 , pp. 1185-1194
    • Sorooshian, S.1    Duan, Q.2    Gupta, V.K.3
  • 50
    • 0033078453 scopus 로고    scopus 로고
    • Neural-network-based d-step-ahead predictors for nonlinear systems with time delay
    • Tan Y., and van Cauwenberghe A. Neural-network-based d-step-ahead predictors for nonlinear systems with time delay. Eng. Appl. Artif. Intell. 12 1 (1999) 21-25
    • (1999) Eng. Appl. Artif. Intell. , vol.12 , Issue.1 , pp. 21-25
    • Tan, Y.1    van Cauwenberghe, A.2
  • 51
    • 0031898654 scopus 로고    scopus 로고
    • River stage forecasting using artificial neural networks
    • Thirumalaiah K., and Deo M.C. River stage forecasting using artificial neural networks. J. Hydrol. Eng. 3 1 (1998) 26-32
    • (1998) J. Hydrol. Eng. , vol.3 , Issue.1 , pp. 26-32
    • Thirumalaiah, K.1    Deo, M.C.2
  • 52
    • 0034174356 scopus 로고    scopus 로고
    • Hydrological forecasting using neural networks
    • Thirumalaiah K., and Deo M.C. Hydrological forecasting using neural networks. J. Hydrol. Eng. 5 2 (2000) 180-189
    • (2000) J. Hydrol. Eng. , vol.5 , Issue.2 , pp. 180-189
    • Thirumalaiah, K.1    Deo, M.C.2
  • 53
    • 0033167344 scopus 로고    scopus 로고
    • Rainfall-runoff modeling using artificial neural networks
    • Tokar A.S., and Johnson P.A. Rainfall-runoff modeling using artificial neural networks. J. Hydrol. Eng. 4 3 (1999) 232-239
    • (1999) J. Hydrol. Eng. , vol.4 , Issue.3 , pp. 232-239
    • Tokar, A.S.1    Johnson, P.A.2
  • 54
    • 0034174397 scopus 로고    scopus 로고
    • Precipitation-runoff modeling using artificial neural networks and conceptual models
    • Tokar A.S., and Markus M. Precipitation-runoff modeling using artificial neural networks and conceptual models. J. Hydrol. Eng. 5 2 (2000) 156-161
    • (2000) J. Hydrol. Eng. , vol.5 , Issue.2 , pp. 156-161
    • Tokar, A.S.1    Markus, M.2
  • 56
    • 0029306802 scopus 로고
    • Artificial neural networks for estimation of kinetic analytical parameters
    • Ventura S., Silva M., Pérez-Bendito D., and Hervás C. Artificial neural networks for estimation of kinetic analytical parameters. Anal. Chem. 67 9 (1995) 1521-1525
    • (1995) Anal. Chem. , vol.67 , Issue.9 , pp. 1521-1525
    • Ventura, S.1    Silva, M.2    Pérez-Bendito, D.3    Hervás, C.4
  • 57
    • 0031097787 scopus 로고    scopus 로고
    • Computational neural networks in conjunction with principal component analysis for resolving highly nonlinear kinetics
    • Ventura S., Silva M., Pérez-Bendito D., and Hervás C. Computational neural networks in conjunction with principal component analysis for resolving highly nonlinear kinetics. J. Chem. Inf. Comput. Sci. 37 2 (1997) 287-291
    • (1997) J. Chem. Inf. Comput. Sci. , vol.37 , Issue.2 , pp. 287-291
    • Ventura, S.1    Silva, M.2    Pérez-Bendito, D.3    Hervás, C.4
  • 58
    • 0030110883 scopus 로고    scopus 로고
    • Time series forecasting by combining RBF networks, certainty factors, and the Box-Jenkins model
    • Wedding II D.K., and Cios K.J. Time series forecasting by combining RBF networks, certainty factors, and the Box-Jenkins model. Neurocomputing 10 (1996) 149-168
    • (1996) Neurocomputing , vol.10 , pp. 149-168
    • Wedding II, D.K.1    Cios, K.J.2
  • 61
    • 0030162090 scopus 로고    scopus 로고
    • Automatic calibration of conceptual rainfall-runoff models: sensitivity to calibration data
    • Yapo P.O., Gupta H.V., and Sorooshian S. Automatic calibration of conceptual rainfall-runoff models: sensitivity to calibration data. J. Hydrol. 181 (1996) 23-48
    • (1996) J. Hydrol. , vol.181 , pp. 23-48
    • Yapo, P.O.1    Gupta, H.V.2    Sorooshian, S.3
  • 62
    • 0032579570 scopus 로고    scopus 로고
    • Multi-objective global optimization for hydrologic models
    • Yapo P.O., Gupta H.V., and Sorooshian S. Multi-objective global optimization for hydrologic models. J. Hydrol. 204 (1998) 83-97
    • (1998) J. Hydrol. , vol.204 , pp. 83-97
    • Yapo, P.O.1    Gupta, H.V.2    Sorooshian, S.3
  • 63
    • 0037243071 scopus 로고    scopus 로고
    • Time series forecasting using a hybrid ARIMA and neural network model
    • Zhang G.P. Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing 50 (2003) 159-175
    • (2003) Neurocomputing , vol.50 , pp. 159-175
    • Zhang, G.P.1
  • 64
    • 0343052623 scopus 로고    scopus 로고
    • Rainfall estimation using artificial neural network group
    • Zhang M., Fulcher J., and Scofield R.A. Rainfall estimation using artificial neural network group. Neurocomputing 16 (1997) 97-115
    • (1997) Neurocomputing , vol.16 , pp. 97-115
    • Zhang, M.1    Fulcher, J.2    Scofield, R.A.3
  • 65
    • 0035314205 scopus 로고    scopus 로고
    • A simulation study of artificial neural networks for nonlinear time-series forecasting
    • Zhang G.P., Patuwo B.E., and Hu M.Y. A simulation study of artificial neural networks for nonlinear time-series forecasting. Comp. Oper. Res. 28 4 (2001) 381-396
    • (2001) Comp. Oper. Res. , vol.28 , Issue.4 , pp. 381-396
    • Zhang, G.P.1    Patuwo, B.E.2    Hu, M.Y.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.