메뉴 건너뛰기




Volumn 52, Issue 1, 2007, Pages 114-130

Multi-step-ahead neural networks for flood forecasting

Author keywords

Flood forecasting; Multi step ahead; Neural networks; Serial propagated structure; Taiwan

Indexed keywords

FEEDFORWARD NEURAL NETWORKS; FORECASTING; GRADIENT METHODS; NEURAL NETWORKS; OPTIMIZATION; WATERSHEDS;

EID: 33846807570     PISSN: 02626667     EISSN: None     Source Type: Journal    
DOI: 10.1623/hysj.52.1.114     Document Type: Article
Times cited : (122)

References (43)
  • 1
    • 0034174280 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology I: Preliminary concepts
    • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology
    • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology (2000a) Artificial neural networks in hydrology I: Preliminary concepts. J. Hydrol. Engng ASCE 5(2), 115-123.
    • (2000) J. Hydrol. Engng ASCE , vol.5 , Issue.2 , pp. 115-123
  • 2
    • 0034174396 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology II: Hydrologic applications
    • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology
    • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology (2000b) Artificial neural networks in hydrology II: Hydrologic applications. J. Hydrol. Engng ASCE 5(2), 124-137.
    • (2000) J. Hydrol. Engng ASCE , vol.5 , Issue.2 , pp. 124-137
  • 3
    • 0033097707 scopus 로고    scopus 로고
    • A comparison between neural-network forecasting techniques - Case study: River flow forecasting
    • Atiya, A. F., El-Shoura, S. M., Shaheen, S. I. & El-Sherif, M. S. (1999) A comparison between neural-network forecasting techniques - case study: river flow forecasting. IEEE Trans. Neural Networks 10(2), 402-409.
    • (1999) IEEE Trans. Neural Networks , vol.10 , Issue.2 , pp. 402-409
    • Atiya, A.F.1    El-Shoura, S.M.2    Shaheen, S.I.3    El-Sherif, M.S.4
  • 4
    • 0344394527 scopus 로고    scopus 로고
    • River flow forecast for reservoir management through neural networks
    • Baratti, R., Cannas, B., Fanni, A., Pintus, M., Sechi, G. M. & Toreno, N. (2003) River flow forecast for reservoir management through neural networks. Neurocomputing 55(3/4), 421-437.
    • (2003) Neurocomputing , vol.55 , Issue.3-4 , pp. 421-437
    • Baratti, R.1    Cannas, B.2    Fanni, A.3    Pintus, M.4    Sechi, G.M.5    Toreno, N.6
  • 5
    • 0001024110 scopus 로고
    • First and second order methods of learning: Between the steepest descent and Newton's Method
    • Battit, R. (1991) First and second order methods of learning: between the steepest descent and Newton's Method. Neural Computation 4(2), 141-166.
    • (1991) Neural Computation , vol.4 , Issue.2 , pp. 141-166
    • Battit, R.1
  • 6
    • 0038240745 scopus 로고    scopus 로고
    • Artificial neural network approach to flood forecasting in the River Arno
    • Campolo, M., Soldati, A. & Andreussi, P. (2003) Artificial neural network approach to flood forecasting in the River Arno. Hydrol. Sci. J. 48(3), 381-398.
    • (2003) Hydrol. Sci. J. , vol.48 , Issue.3 , pp. 381-398
    • Campolo, M.1    Soldati, A.2    Andreussi, P.3
  • 7
    • 0035340711 scopus 로고    scopus 로고
    • A counterpropagation fuzzy-neural network modeling approach to real time stream flow prediction
    • Chang, F. J. & Chen, Y. C. (2001) A counterpropagation fuzzy-neural network modeling approach to real time stream flow prediction. J. Hydrol. 245, 153-164.
    • (2001) J. Hydrol. , vol.245 , pp. 153-164
    • Chang, F.J.1    Chen, Y.C.2
  • 8
    • 0037428019 scopus 로고    scopus 로고
    • Estuary water-stage forecasting by using Radial Basis Function neural network
    • Chang, F. J. & Chert, Y. C. (2003) Estuary water-stage forecasting by using Radial Basis Function neural network. J. Hydrol. 270, 158-166.
    • (2003) J. Hydrol. , vol.270 , pp. 158-166
    • Chang, F.J.1    Chert, Y.C.2
  • 9
    • 0033557210 scopus 로고    scopus 로고
    • A self-organization algorithm for real-time flood forecast
    • Chang, F. J. & Hwang, Y. Y. (1999) A self-organization algorithm for real-time flood forecast. Hydrol. Processes 13(2), 123-138.
    • (1999) Hydrol. Processes , vol.13 , Issue.2 , pp. 123-138
    • Chang, F.J.1    Hwang, Y.Y.2
  • 10
    • 0036827740 scopus 로고    scopus 로고
    • An efficient parallel algorithm for LISSOM neural network
    • Chang, L. C. & Chang, F. J. (2002) An efficient parallel algorithm for LISSOM neural network. Parallel Computing 28, 1611-1633.
    • (2002) Parallel Computing , vol.28 , pp. 1611-1633
    • Chang, L.C.1    Chang, F.J.2
  • 11
    • 0842349306 scopus 로고    scopus 로고
    • A two-step ahead recurrent neural network for streamflow forecasting
    • Chang, L. C., Chang, F. J. & Chiang, Y. M. (2004) A two-step ahead recurrent neural network for streamflow forecasting. Hydrol. Processes 18, 81-92.
    • (2004) Hydrol. Processes , vol.18 , pp. 81-92
    • Chang, L.C.1    Chang, F.J.2    Chiang, Y.M.3
  • 12
    • 1842426595 scopus 로고    scopus 로고
    • Comparison of static-feedforward and dynamic-feedback neural networks for rainfall-runoff modeling
    • Chiang, Y. M., Chang, L. C. & Chang, F. J. (2004) Comparison of static-feedforward and dynamic-feedback neural networks for rainfall-runoff modeling. J. Hydrol. 290, 297-311.
    • (2004) J. Hydrol. , vol.290 , pp. 297-311
    • Chiang, Y.M.1    Chang, L.C.2    Chang, F.J.3
  • 13
    • 0038240755 scopus 로고    scopus 로고
    • Estimation, forecasting and extrapolation of river flows by artificial neural networks
    • Cigizoglu, H. K. (2003) Estimation, forecasting and extrapolation of river flows by artificial neural networks. Hydrol. Sci. J. 48(3), 349-361.
    • (2003) Hydrol. Sci. J. , vol.48 , Issue.3 , pp. 349-361
    • Cigizoglu, H.K.1
  • 14
    • 0346056665 scopus 로고    scopus 로고
    • Impact of meteorological predictions on real-time spring flow forecasting
    • Coulibaly, P. (2003) Impact of meteorological predictions on real-time spring flow forecasting. Hydrol. Processes 17, 3791-3801.
    • (2003) Hydrol. Processes , vol.17 , pp. 3791-3801
    • Coulibaly, P.1
  • 16
    • 0035450182 scopus 로고    scopus 로고
    • Multivariate reservoir inflow forecasting using temporal neural networks
    • Coulibaly, P., Anctil, F. & Bobée, B. (2001) Multivariate reservoir inflow forecasting using temporal neural networks. J. Hydrol. Engng ASCE 6(5), 367-376.
    • (2001) J. Hydrol. Engng ASCE , vol.6 , Issue.5 , pp. 367-376
    • Coulibaly, P.1    Anctil, F.2    Bobée, B.3
  • 17
    • 0032005702 scopus 로고    scopus 로고
    • An artificial neural network approach to rainfall-runoff modelling
    • Dawson, C. W. & Wilby, R. L. (1998) An artificial neural network approach to rainfall-runoff modelling. Hydrol. Sci. J. 43(1), 47-67.
    • (1998) Hydrol. Sci. J. , vol.43 , Issue.1 , pp. 47-67
    • Dawson, C.W.1    Wilby, R.L.2
  • 18
    • 0026445234 scopus 로고
    • Effective and efficient global optimization for conceptual rainfall-runoff models
    • Duan, Q., Sorooshian, S. & Gupta, V. K. (1992) Effective and efficient global optimization for conceptual rainfall-runoff models. Water Resour. Res. 28(4), 1015-1031.
    • (1992) Water Resour. Res. , vol.28 , Issue.4 , pp. 1015-1031
    • Duan, Q.1    Sorooshian, S.2    Gupta, V.K.3
  • 19
    • 0036778945 scopus 로고    scopus 로고
    • Temporal difference method-based multi-step-ahead prediction of long term deep fading in mobile networks
    • Gao, X. Z., Ovaska, S. J. & Vasilakos, A. V. (2002) Temporal difference method-based multi-step-ahead prediction of long term deep fading in mobile networks. Computer Communications 25, 1477-1486.
    • (2002) Computer Communications , vol.25 , pp. 1477-1486
    • Gao, X.Z.1    Ovaska, S.J.2    Vasilakos, A.V.3
  • 21
    • 0027038056 scopus 로고
    • Physically based hydrologic modelling, 2: Is the concept realistic?
    • Grayson, R. B., Moore, I. D. & McMahon, T. A. (1992) Physically based hydrologic modelling, 2: is the concept realistic? Water Resour. Res. 28(10), 2659-2666.
    • (1992) Water Resour. Res. , vol.28 , Issue.10 , pp. 2659-2666
    • Grayson, R.B.1    Moore, I.D.2    McMahon, T.A.3
  • 23
    • 0032917913 scopus 로고    scopus 로고
    • Estimation of physical variables from multichannel remotely sensed imagery using a neural network: Application to rainfall estimation
    • Hsu, K. L., Gupta, H. V., Gao, X. G. & Sorooshian, S. (1999) Estimation of physical variables from multichannel remotely sensed imagery using a neural network: application to rainfall estimation. Water Resour. Res. 35(5), 1605-1618.
    • (1999) Water Resour. Res. , vol.35 , Issue.5 , pp. 1605-1618
    • Hsu, K.L.1    Gupta, H.V.2    Gao, X.G.3    Sorooshian, S.4
  • 24
    • 17444385970 scopus 로고    scopus 로고
    • A modified neural network for improving river flow prediction
    • Hu, T. S., Lam, K. C. & Ng, S. T. (2005) A modified neural network for improving river flow prediction. Hydrol. Sci. J. 50(2), 299-318.
    • (2005) Hydrol. Sci. J. , vol.50 , Issue.2 , pp. 299-318
    • Hu, T.S.1    Lam, K.C.2    Ng, S.T.3
  • 25
    • 0034161037 scopus 로고    scopus 로고
    • A combination of fuzzy logic and neural network controller for multiple-input multiple-output systems
    • Huang, S. J. & Lian, R. J. (2000) A combination of fuzzy logic and neural network controller for multiple-input multiple-output systems. Int. J. Systems Sci. 31, 343-357.
    • (2000) Int. J. Systems Sci. , vol.31 , pp. 343-357
    • Huang, S.J.1    Lian, R.J.2
  • 26
    • 0003502740 scopus 로고
    • HEC (Hydrological Engineering Center). US Army Corps of Engineers, Davis, California, USA
    • HEC (Hydrological Engineering Center) (1990) HEC-1 Flood Hydrograph Package. Program Users Manual. US Army Corps of Engineers, Davis, California, USA.
    • (1990) HEC-1 Flood Hydrograph Package. Program Users Manual
  • 27
    • 0037868266 scopus 로고    scopus 로고
    • Evaluation and forecasting of daily groundwater outflow in a small chalky watershed
    • Lallahem, S. & Mania, J. (2003) Evaluation and forecasting of daily groundwater outflow in a small chalky watershed. Hydrol. Processes 17, 1561-1577.
    • (2003) Hydrol. Processes , vol.17 , pp. 1561-1577
    • Lallahem, S.1    Mania, J.2
  • 28
    • 0034737033 scopus 로고    scopus 로고
    • A study of optimal model lag and spatial inputs to artificial neural network for rainfall forecasting
    • Luk, K. C., Ball, J. E. & Sharma, A. (2000) A study of optimal model lag and spatial inputs to artificial neural network for rainfall forecasting. J. Hydrol. 227, 56-65.
    • (2000) J. Hydrol. , vol.227 , pp. 56-65
    • Luk, K.C.1    Ball, J.E.2    Sharma, A.3
  • 29
    • 0030159380 scopus 로고    scopus 로고
    • Artificial neural networks as rainfall-runoff models
    • Minns, A. W. & Hall, M. J. (1996) Artificial neural networks as rainfall-runoff models. Hydrol. Sci. J. 41(3), 399-417.
    • (1996) Hydrol. Sci. J. , vol.41 , Issue.3 , pp. 399-417
    • Minns, A.W.1    Hall, M.J.2
  • 30
    • 7244257493 scopus 로고    scopus 로고
    • Models for recession flows in the upper Blue Nile River
    • Mishra, A., Hata, T. & Abdelhadi, A. W. (2004) Models for recession flows in the upper Blue Nile River. Hydrol. Processes 18, 2773-2786.
    • (2004) Hydrol. Processes , vol.18 , pp. 2773-2786
    • Mishra, A.1    Hata, T.2    Abdelhadi, A.W.3
  • 31
    • 0014776873 scopus 로고
    • River flow forecasting through conceptual maodels, Part I: A discussion of principles
    • Nash, J. E. & Sutcliffe, J. V. (1970) River flow forecasting through conceptual maodels, Part I: a discussion of principles. J. Hydrol. 10, 282-290.
    • (1970) J. Hydrol. , vol.10 , pp. 282-290
    • Nash, J.E.1    Sutcliffe, J.V.2
  • 32
    • 0034269158 scopus 로고    scopus 로고
    • Multi-step-ahead prediction using dynamic recurrent neural networks
    • Parlos, A. G., Rais, O. T. & Atiya, A. F. (2000) Multi-step-ahead prediction using dynamic recurrent neural networks. Neural Networks 13, 765-786.
    • (2000) Neural Networks , vol.13 , pp. 765-786
    • Parlos, A.G.1    Rais, O.T.2    Atiya, A.F.3
  • 33
    • 0027464578 scopus 로고
    • Neural network-based screening for groundwater reclamation under uncerntainty
    • Ranjithan, S., Eheart, J. W. & Garrett, J. H., Jr 1993. Neural network-based screening for groundwater reclamation under uncerntainty. Water Resour. Res. 29(3), 563-574.
    • (1993) Water Resour. Res. , vol.29 , Issue.3 , pp. 563-574
    • Ranjithan, S.1    Eheart, J.W.2    Garrett Jr., J.H.3
  • 34
    • 0033535432 scopus 로고    scopus 로고
    • A non-linear rainfall-runoff model using an artificial neural network
    • Sajikumar, N. & Thandaveswara, B. S. (1999) A non-linear rainfall-runoff model using an artificial neural network. J. Hydrol. 216, 32-55.
    • (1999) J. Hydrol. , vol.216 , pp. 32-55
    • Sajikumar, N.1    Thandaveswara, B.S.2
  • 36
    • 0029342476 scopus 로고
    • Long-range prediction for poorly-known systems
    • Schenker, B. & and Agarwal, M. (1995) Long-range prediction for poorly-known systems. Int. J. Control 62, 227-238.
    • (1995) Int. J. Control , vol.62 , pp. 227-238
    • Schenker, B.1    Agarwal, M.2
  • 37
    • 0013394082 scopus 로고    scopus 로고
    • On the need for benchmarks in hydrological modeling
    • Seibert, J. (2001) On the need for benchmarks in hydrological modeling. Hydrol. Processes 15, 1063-1064.
    • (2001) Hydrol. Processes , vol.15 , pp. 1063-1064
    • Seibert, J.1
  • 38
    • 0029278477 scopus 로고
    • Neural networks for the identification of MSF desalination plants
    • Selvaraj, R., Deshpande, P. B., Tambe, S. S. & Kulkarni, B. D. (1995) Neural networks for the identification of MSF desalination plants. Desalination 101, 185-193.
    • (1995) Desalination , vol.101 , pp. 185-193
    • Selvaraj, R.1    Deshpande, P.B.2    Tambe, S.S.3    Kulkarni, B.D.4
  • 39
    • 9944235074 scopus 로고    scopus 로고
    • Hydrologic modeling and forecasting: Role of thresholds
    • Sivakumar, B. (2005) Hydrologic modeling and forecasting: role of thresholds. Environ. Model. Software 20(5), 515-519.
    • (2005) Environ. Model. Software , vol.20 , Issue.5 , pp. 515-519
    • Sivakumar, B.1
  • 40
    • 0037199712 scopus 로고    scopus 로고
    • River flow forecasting, use of phase-space reconstruction and artificial neural networks approaches
    • Sivakumar, B., Jayawardena, A. W. & Fernando, T. M. K. G. (2002) River flow forecasting, use of phase-space reconstruction and artificial neural networks approaches. J. Hydrol. 265, 225-245.
    • (2002) J. Hydrol. , vol.265 , pp. 225-245
    • Sivakumar, B.1    Jayawardena, A.W.2    Fernando, T.M.K.G.3
  • 41
    • 0026868901 scopus 로고
    • Long-term prediction of chemical processes using recurrent neural networks: A parallel training approach
    • Su, H. T., McAvoy, T. J. & Werbos, P. (1992) Long-term prediction of chemical processes using recurrent neural networks: a parallel training approach. Indust. Appl. Chem. Engng Res. 31, 1338-1352.
    • (1992) Indust. Appl. Chem. Engng Res. , vol.31 , pp. 1338-1352
    • Su, H.T.1    McAvoy, T.J.2    Werbos, P.3
  • 42
    • 0034694775 scopus 로고    scopus 로고
    • Comparison of short-term rainfall prediction models for real-time flood forecasting
    • Toth, E., Brath, A. & Montanari, A. (2000) Comparison of short-term rainfall prediction models for real-time flood forecasting. J. Hydrol. 239, 132-147.
    • (2000) J. Hydrol. , vol.239 , pp. 132-147
    • Toth, E.1    Brath, A.2    Montanari, A.3
  • 43
    • 0033019602 scopus 로고    scopus 로고
    • Short term stream flow forecasting using artificial neural networks
    • Zealand, C. M., Burn, D. H. & Simonovic, S. P. (1999) Short term stream flow forecasting using artificial neural networks. J. Hydrol. 214, 32-48.
    • (1999) J. Hydrol. , vol.214 , pp. 32-48
    • Zealand, C.M.1    Burn, D.H.2    Simonovic, S.P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.