메뉴 건너뛰기




Volumn 48, Issue 3, 2003, Pages 363-379

Modelling and forecasting of hydrological variables using artificial neural networks: The Kafue River sub-basin

Author keywords

ARMAX; Artificial neural networks; Forecasting; Kafue River; Reservoir routing; Streamflows; Subsystem; Training

Indexed keywords

BACKPROPAGATION; COMPUTER SIMULATION; CORRELATION METHODS; FEEDFORWARD NEURAL NETWORKS; FLOW OF WATER; FORECASTING; REGRESSION ANALYSIS; RESERVOIRS (WATER); TIME SERIES ANALYSIS;

EID: 0037903280     PISSN: 02626667     EISSN: None     Source Type: Journal    
DOI: 10.1623/hysj.48.3.363.45282     Document Type: Article
Times cited : (30)

References (28)
  • 1
    • 0034254196 scopus 로고    scopus 로고
    • Comparing neural network and autoregressive moving average techniques for the provision of continuous river flow forecasts in two contrasting catchments
    • Abrahart, J. R. & See, L. (2000) Comparing neural network and autoregressive moving average techniques for the provision of continuous river flow forecasts in two contrasting catchments. Hydrol. Processes 14, 2157-2172.
    • (2000) Hydrol. Processes , vol.14 , pp. 2157-2172
    • Abrahart, J.R.1    See, L.2
  • 2
    • 0033097707 scopus 로고    scopus 로고
    • A comparison between neural network forecasting techniques - Case study: River flow forecasting
    • Atiya, F. A., El-Shoura, M. S., Shaheen, I. S. & El-Sherif, S. M. (1999) A comparison between neural network forecasting techniques-case study: river flow forecasting. IEEE Trans. Neural Networks 10(2), 402-409.
    • (1999) IEEE Trans. Neural Networks , vol.10 , Issue.2 , pp. 402-409
    • Atiya, F.A.1    El-Shoura, M.S.2    Shaheen, I.S.3    El-Sherif, S.M.4
  • 4
    • 0037779279 scopus 로고
    • Dept of Economics and Social Development (Water Resources Branch, Science, Technology, Environment, Energy and Nat. Res. Div.), United Nations, New York, USA
    • Burke, J. & Jones, M. (1993) Kafue Basin Action Plan. Dept of Economics & Social Development (Water Resources Branch, Science, Technology, Environment, Energy & Nat. Res. Div.), United Nations, New York, USA.
    • (1993) Kafue Basin Action Plan
    • Burke, J.1    Jones, M.2
  • 5
    • 0032688155 scopus 로고    scopus 로고
    • River flood forecasting with a neural network model
    • Campolo, M., Andreussi, P. & Soldati, A. (1999) River flood forecasting with a neural network model, Water Resour. Res, 35(4), 1191-1197.
    • (1999) Water Resour. Res , vol.35 , Issue.4 , pp. 1191-1197
    • Campolo, M.1    Andreussi, P.2    Soldati, A.3
  • 6
    • 0026954346 scopus 로고
    • Forecasting the behaviour of multivariate time series using neural networks
    • Chakraborty, K., Mehrotra, K., Mohan, C. K. & Ranka, S. (1992) Forecasting the behaviour of multivariate time series using neural networks. Neural Networks 5(6), 961-970.
    • (1992) Neural Networks , vol.5 , Issue.6 , pp. 961-970
    • Chakraborty, K.1    Mehrotra, K.2    Mohan, C.K.3    Ranka, S.4
  • 7
    • 0038456197 scopus 로고
    • Prentice-Hall, Englewood Cliffs, New Jersey, USA
    • Chaudhry, H. M. (1993) Open-Channel Flow. Prentice-Hall, Englewood Cliffs, New Jersey, USA. watershed models. J. Hydrol. 158, 265-284.
    • (1993) Open-Channel Flow , vol.158 , pp. 265-284
    • Chaudhry, H.M.1
  • 8
    • 0028449781 scopus 로고
    • Optimal use of SCE-UA global optimisation method for calibrating watershed models
    • Duan, Q., Sorooshian, S. & Gupta, V. K. (1994) Optimal use of SCE-UA global optimisation method for calibrating watershed models. J. Hydrol. 158, 265-284.
    • (1994) J. Hydrol. , vol.158 , pp. 265-284
    • Duan, Q.1    Sorooshian, S.2    Gupta, V.K.3
  • 9
    • 0032123339 scopus 로고    scopus 로고
    • Runoff forecasting using RBF networks with OLS algorithm
    • Fernando, D. A. K. & Jayawardena, A. W. (1998) Runoff forecasting using RBF networks with OLS algorithm. J. Hydrol., Engng 3(3). 203-209.
    • (1998) J. Hydrol., Engng , vol.3 , Issue.3 , pp. 203-209
    • Fernando, D.A.K.1    Jayawardena, A.W.2
  • 10
    • 0027007868 scopus 로고
    • Rainfall forecasting in space and time using a neural network
    • French, M. N., Krajewski, W. F. & Cuykendall, R. R. (1992) Rainfall forecasting in space and time using a neural network. J. Hydrol, 137, 1-31.
    • (1992) J. Hydrol , vol.137 , pp. 1-31
    • French, M.N.1    Krajewski, W.F.2    Cuykendall, R.R.3
  • 11
    • 0024866495 scopus 로고
    • On the approximate realization of continuous mappings by neural networks
    • Funahashi, K. (1989) On the approximate realization of continuous mappings by neural networks. Neural Networks 2, 183-187.
    • (1989) Neural Networks , vol.2 , pp. 183-187
    • Funahashi, K.1
  • 13
    • 0022264430 scopus 로고
    • The relationship between data and precision of parameter estimates of hydrologic models
    • Gupta, V. K. & Sorooshian, S. (1985) The relationship between data and precision of parameter estimates of hydrologic models, J. Hydrol. 81, 57-77.
    • (1985) J. Hydrol. , vol.81 , pp. 57-77
    • Gupta, V.K.1    Sorooshian, S.2
  • 14
    • 0029413797 scopus 로고
    • Artificial neural network modelling of rainfall-runoff process
    • Ilsu, K., Gupta, V. H. & Sorooshian, S. (1995) Artificial neural network modelling of rainfall-runoff process. Water Resour. Res. 31(10), 2517-2530.
    • (1995) Water Resour. Res. , vol.31 , Issue.10 , pp. 2517-2530
    • Ilsu, K.1    Gupta, V.H.2    Sorooshian, S.3
  • 15
    • 0027790160 scopus 로고
    • How much complexity is warranted in a rainfall-runoff model?
    • Jakeman, A. J. & Hornberger, G. M. (1993) How much complexity is warranted in a rainfall-runoff model? Water Resour. Res. 29(8), 2637-2649.
    • (1993) Water Resour. Res. , vol.29 , Issue.8 , pp. 2637-2649
    • Jakeman, A.J.1    Hornberger, G.M.2
  • 16
    • 0001938874 scopus 로고
    • Neural network and its application to rainfall-runoff forecasting
    • Kang, K. W., Park, C. Y. & Kim, J. H. (1993) Neural network and its application to rainfall-runoff forecasting. Korean J. Hydrosci. 4, 1-9.
    • (1993) Korean J. Hydrosci. , vol.4 , pp. 1-9
    • Kang, K.W.1    Park, C.Y.2    Kim, J.H.3
  • 17
    • 0001321136 scopus 로고
    • On the representation of continuous functions of many variables by superposition of continuous function of one variable and addition
    • Kolmogorov, A. N. (1957) On the representation of continuous functions of many variables by superposition of continuous function of one variable and addition. Dokl. Akad. Nauk. SSR 114, 953-956.
    • (1957) Dokl. Akad. Nauk. SSR , vol.114 , pp. 953-956
    • Kolmogorov, A.N.1
  • 18
    • 18844467644 scopus 로고    scopus 로고
    • Using neural networks for calibration of time-domain reflectometry measurements
    • Persson, M. & Berndtsson, R. (2001) Using neural networks for calibration of time-domain reflectometry measurements. Hydrol. Sci. J. 46(3), 389-398.
    • (2001) Hydrol. Sci. J. , vol.46 , Issue.3 , pp. 389-398
    • Persson, M.1    Berndtsson, R.2
  • 19
    • 0016961628 scopus 로고
    • Travel times and nonlinearity of flood runoff from tracer measurements on a small watershed
    • Pilgrim, D. H. (1976) Travel times and nonlinearity of flood runoff from tracer measurements on a small watershed. Water Resour. Res. 12(3), 487-496.
    • (1976) Water Resour. Res. , vol.12 , Issue.3 , pp. 487-496
    • Pilgrim, D.H.1
  • 20
    • 0036899543 scopus 로고    scopus 로고
    • Artificial neural networks for daily rainfall-runoff modelling
    • Rajurkar, M. P., Kothyari, U. C. & Chaube, U. C. (2002) Artificial neural networks for daily rainfall-runoff modelling. Hydrol. Sci. J. 47(6), 865-877.
    • (2002) Hydrol. Sci. J. , vol.47 , Issue.6 , pp. 865-877
    • Rajurkar, M.P.1    Kothyari, U.C.2    Chaube, U.C.3
  • 21
    • 0029413038 scopus 로고
    • Multivariate modelling of water resources time series using artificial neural networks
    • Raman, H. & Sunilkumar, N. (1995) Multivariate modelling of water resources time series using artificial neural networks. Hydrol. Sci. J. 40(2), 145-163.
    • (1995) Hydrol. Sci. J. , vol.40 , Issue.2 , pp. 145-163
    • Raman, H.1    Sunilkumar, N.2
  • 22
    • 0027464578 scopus 로고
    • Neural network-based screening for groundwater reclamation under uncertainty
    • Ranjithan, S. & Eheart, J. W. (1993) Neural network-based screening for groundwater reclamation under uncertainty. Water Resour. Res. 29(3), 563-574.
    • (1993) Water Resour. Res. , vol.29 , Issue.3 , pp. 563-574
    • Ranjithan, S.1    Eheart, J.W.2
  • 24
    • 0020969339 scopus 로고
    • Surface water hydrology: Online estimation
    • Sorooshian, S. (1983) Surface water hydrology: online estimation. Rev. Geophys. 21(3), 706-721.
    • (1983) Rev. Geophys. , vol.21 , Issue.3 , pp. 706-721
    • Sorooshian, S.1
  • 25
    • 0026258339 scopus 로고
    • Time series forecasting using neural networks
    • Tang, Z., de Almeda, C. & Fishwick, P. A. (1991) Time series forecasting using neural networks. Simulation 57(5). 303-310.
    • (1991) Simulation , vol.57 , Issue.5 , pp. 303-310
    • Tang, Z.1    de Almeda, C.2    Fishwick, P.A.3
  • 26
    • 0036898378 scopus 로고    scopus 로고
    • Artificial neural networks for sheet sediment transport
    • Tayfur, G. (2002) Artificial neural networks for sheet sediment transport, Hydrol. Sci. J. 47(6), 879-892.
    • (2002) Hydrol. Sci. J. , vol.47 , Issue.6 , pp. 879-892
    • Tayfur, G.1
  • 27
    • 0033167344 scopus 로고    scopus 로고
    • Rainfall-runoff modelling using artificial neural networks
    • Tokar, S. A. & Johnson, P. A. (1999) Rainfall-runoff modelling using artificial neural networks, J. Hydrol. Engng 4(3), 232-239.
    • (1999) J. Hydrol. Engng , vol.4 , Issue.3 , pp. 232-239
    • Tokar, S.A.1    Johnson, P.A.2
  • 28
    • 0001055877 scopus 로고
    • Recursive estimation: A unified approach to the identification, estimation, and forecasting of hydrological systems
    • Young, P. & Wallis, S. (1985) Recursive estimation: a unified approach to the identification, estimation, and forecasting of hydrological systems. Appl. Math. Comp. 17, 299-334.
    • (1985) Appl. Math. Comp. , vol.17 , pp. 299-334
    • Young, P.1    Wallis, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.