-
1
-
-
0034254196
-
Comparing neural network and autoregressive moving average techniques for the provision of continuous river flow forecasts in two contrasting catchments
-
Abrahart R.J., and See L. Comparing neural network and autoregressive moving average techniques for the provision of continuous river flow forecasts in two contrasting catchments. Hydrol. Process. 14 (2000) 2157-2172
-
(2000)
Hydrol. Process.
, vol.14
, pp. 2157-2172
-
-
Abrahart, R.J.1
See, L.2
-
2
-
-
0031236925
-
Asymptotic statistical theory of overtraining and cross-validation
-
Amari S.-I., Murata N., Muller K.-R., Finke M., and Yang H.H. Asymptotic statistical theory of overtraining and cross-validation. IEEE Trans. Neural Netw. 8 5 (1997) 985-996
-
(1997)
IEEE Trans. Neural Netw.
, vol.8
, Issue.5
, pp. 985-996
-
-
Amari, S.-I.1
Murata, N.2
Muller, K.-R.3
Finke, M.4
Yang, H.H.5
-
4
-
-
0023524394
-
Nonlinear floodrouting with multilinear models
-
Becker A., and Kundzewicz Z.W. Nonlinear floodrouting with multilinear models. Water Resour. Res. 23 (1987) 1043-1048
-
(1987)
Water Resour. Res.
, vol.23
, pp. 1043-1048
-
-
Becker, A.1
Kundzewicz, Z.W.2
-
6
-
-
0033868096
-
Nonlinear analysis and prediction of river flow time series
-
Bordignon S., and Lisi F. Nonlinear analysis and prediction of river flow time series. Environmetrics 11 (2000) 463-477
-
(2000)
Environmetrics
, vol.11
, pp. 463-477
-
-
Bordignon, S.1
Lisi, F.2
-
7
-
-
0031851620
-
Feed-forward artificial neural network model for forecasting rainfall run-off
-
Braddock R.D., Kremmer M.L., and Sanzogni L. Feed-forward artificial neural network model for forecasting rainfall run-off. Environmetrics (1998) 419-432
-
(1998)
Environmetrics
, pp. 419-432
-
-
Braddock, R.D.1
Kremmer, M.L.2
Sanzogni, L.3
-
8
-
-
0034749335
-
Hydrological modelling using artificial neural networks
-
Dawson C.W., and Wilby R.L. Hydrological modelling using artificial neural networks. Prog. Phys. Geography 25 1 (2001) 80-108
-
(2001)
Prog. Phys. Geography
, vol.25
, Issue.1
, pp. 80-108
-
-
Dawson, C.W.1
Wilby, R.L.2
-
9
-
-
0027242791
-
Backpropagation neural nets with one and two hidden layers
-
De Villars J., and Barnard E. Backpropagation neural nets with one and two hidden layers. IEEE Trans. Neural Netw. 4 1 (1993) 136-141
-
(1993)
IEEE Trans. Neural Netw.
, vol.4
, Issue.1
, pp. 136-141
-
-
De Villars, J.1
Barnard, E.2
-
10
-
-
0001083304
-
A criterion of efficiency for rainfall-runoff models
-
Garrick M., Cunnane C., and Nash J.E. A criterion of efficiency for rainfall-runoff models. J. Hydrol. 36 (1978) 375-381
-
(1978)
J. Hydrol.
, vol.36
, pp. 375-381
-
-
Garrick, M.1
Cunnane, C.2
Nash, J.E.3
-
12
-
-
0024880831
-
Multilayer feedforward networks are universal approximators
-
Hornik K., Stinchcombe M., and White H. Multilayer feedforward networks are universal approximators. Neural Netw. 2 5 (1989) 359-366
-
(1989)
Neural Netw.
, vol.2
, Issue.5
, pp. 359-366
-
-
Hornik, K.1
Stinchcombe, M.2
White, H.3
-
13
-
-
0029413797
-
Artificial neural network modeling of the rainfall-runoff process
-
Hsu K., Gupta H.V., and Sorooshian S. Artificial neural network modeling of the rainfall-runoff process. Water Resour. Res. 31 (1995) 2517-2530
-
(1995)
Water Resour. Res.
, vol.31
, pp. 2517-2530
-
-
Hsu, K.1
Gupta, H.V.2
Sorooshian, S.3
-
14
-
-
0035472003
-
River flow time series prediction with a range-dependent neural network
-
Hu T.S., Lam K.C., and Ng S.T. River flow time series prediction with a range-dependent neural network. Hydrol. Sci. J. 46 5 (2001) 729-745
-
(2001)
Hydrol. Sci. J.
, vol.46
, Issue.5
, pp. 729-745
-
-
Hu, T.S.1
Lam, K.C.2
Ng, S.T.3
-
15
-
-
0027554445
-
Learning piecewise control strategies in a modular neural network architecture
-
Jacobs R.A., and Jordan M.I. Learning piecewise control strategies in a modular neural network architecture. IEEE Trans. Syst. Man Cybern. 23 2 (1993) 337-345
-
(1993)
IEEE Trans. Syst. Man Cybern.
, vol.23
, Issue.2
, pp. 337-345
-
-
Jacobs, R.A.1
Jordan, M.I.2
-
17
-
-
0014171912
-
Time series with periodic structure
-
Jones R.H., and Brelsford W.M. Time series with periodic structure. Biometrika 54 (1967) 403-408
-
(1967)
Biometrika
, vol.54
, pp. 403-408
-
-
Jones, R.H.1
Brelsford, W.M.2
-
18
-
-
0000262562
-
Hierarchical mixture of experts and the EM algorithm
-
Jordan M.I., and Jacobs R.A. Hierarchical mixture of experts and the EM algorithm. Neural Comput. 6 (1994) 181-214
-
(1994)
Neural Comput.
, vol.6
, pp. 181-214
-
-
Jordan, M.I.1
Jacobs, R.A.2
-
19
-
-
0027009119
-
Non-linear modelling of the rainfall-runoff relation
-
Kachroo R.K., and Natale L. Non-linear modelling of the rainfall-runoff relation. J. Hydrol. 135 (1992) 341-369
-
(1992)
J. Hydrol.
, vol.135
, pp. 341-369
-
-
Kachroo, R.K.1
Natale, L.2
-
20
-
-
33646540945
-
-
Kalman, B.L., Kwasny, S.C., 1992. Why Tanh: choosing a sigmoidal function. In: Proceedings of the International Joint Conference on Neural Networks, Baltimore, vol. 4, pp. 578-581.
-
-
-
-
22
-
-
35949006791
-
Determining embedding dimension for phase-space reconstruction using geometrical construction
-
Kennel M.B., Brown R., and Abarbanel H.D. Determining embedding dimension for phase-space reconstruction using geometrical construction. Phys. Rev. A 45 (1992) 3403-3411
-
(1992)
Phys. Rev. A
, vol.45
, pp. 3403-3411
-
-
Kennel, M.B.1
Brown, R.2
Abarbanel, H.D.3
-
23
-
-
33646551373
-
-
Kneale, P.E., See, L., Smith, A., 2001. Towards defining evaluation measures for neural network forecasting models. Proceedings of the Sixth International Conference on GeoComputation, University of Queensland, Australia, available at http://www.geocomputation.org/2001.
-
-
-
-
24
-
-
0032920124
-
Evaluating the use of "Goodness of Fit" measures in hydrologic and hydroclimatic model validation
-
Legates D.R., Gregory J., and McCabe G.J. Evaluating the use of "Goodness of Fit" measures in hydrologic and hydroclimatic model validation. Water Resour. Res. 35 (1999) 233-241
-
(1999)
Water Resour. Res.
, vol.35
, pp. 233-241
-
-
Legates, D.R.1
Gregory, J.2
McCabe, G.J.3
-
25
-
-
0032051569
-
The effect of internal parameters and geometry on the performance of back-propagation neural networks: an empirical study
-
Maier H.R., and Dandy G.C. The effect of internal parameters and geometry on the performance of back-propagation neural networks: an empirical study. Environ. Model. Softw. 13 2 (1998) 193-209
-
(1998)
Environ. Model. Softw.
, vol.13
, Issue.2
, pp. 193-209
-
-
Maier, H.R.1
Dandy, G.C.2
-
26
-
-
0033957764
-
Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications
-
Maier H.R., and Dandy G.C. Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications. Environ. Model. Softw. 15 (2000) 101-123
-
(2000)
Environ. Model. Softw.
, vol.15
, pp. 101-123
-
-
Maier, H.R.1
Dandy, G.C.2
-
27
-
-
0030159380
-
Artificial neural networks as rainfall-runoff models
-
Minns A.W., and Hall M.J. Artificial neural networks as rainfall-runoff models. Hydrol. Sci. J. 41 (1996) 399-417
-
(1996)
Hydrol. Sci. J.
, vol.41
, pp. 399-417
-
-
Minns, A.W.1
Hall, M.J.2
-
28
-
-
0014776873
-
River flow forecasting through conceptual models, I. A discussion of principles
-
Nash J.E., and Sutcliffe J.V. River flow forecasting through conceptual models, I. A discussion of principles. J. Hydrol. 10 (1970) 282-290
-
(1970)
J. Hydrol.
, vol.10
, pp. 282-290
-
-
Nash, J.E.1
Sutcliffe, J.V.2
-
29
-
-
35949021230
-
Geometry from a time series
-
Packard N.H., Crutchfield J.P., Farmer J.D., and Shaw R.S. Geometry from a time series. Phys. Rev. Lett. 45 9 (1980) 712-716
-
(1980)
Phys. Rev. Lett.
, vol.45
, Issue.9
, pp. 712-716
-
-
Packard, N.H.1
Crutchfield, J.P.2
Farmer, J.D.3
Shaw, R.S.4
-
30
-
-
0000056141
-
On periodic and multiple autoregressions
-
Pagano M. On periodic and multiple autoregressions. Ann. Stat. 6 (1978) 1310-1317
-
(1978)
Ann. Stat.
, vol.6
, pp. 1310-1317
-
-
Pagano, M.1
-
31
-
-
0442279715
-
SOFM-MLP: a hybrid neural network for atmospheric temperature prediction
-
Pal N.R., Pal S., Das J., and Majumdar K. SOFM-MLP: a hybrid neural network for atmospheric temperature prediction. IEEE Trans. Geosci. Remote Sensing 41 12 (2003) 2783-2791
-
(2003)
IEEE Trans. Geosci. Remote Sensing
, vol.41
, Issue.12
, pp. 2783-2791
-
-
Pal, N.R.1
Pal, S.2
Das, J.3
Majumdar, K.4
-
32
-
-
0347135926
-
Modeling of the daily rainfall-runoff relationship with artificial neural network
-
Rajurkar M.P., Kothyari U.C., and Chaube U.C. Modeling of the daily rainfall-runoff relationship with artificial neural network. J. Hydrol. 285 (2004) 96-113
-
(2004)
J. Hydrol.
, vol.285
, pp. 96-113
-
-
Rajurkar, M.P.1
Kothyari, U.C.2
Chaube, U.C.3
-
33
-
-
0022471098
-
Learning representations by back-propagating errors
-
Rumelhart D.E., Hinton G.E., and Williams R.J. Learning representations by back-propagating errors. Nature 323 (1986) 533-536
-
(1986)
Nature
, vol.323
, pp. 533-536
-
-
Rumelhart, D.E.1
Hinton, G.E.2
Williams, R.J.3
-
34
-
-
0027871203
-
Initialization for generating single-site and multisite low-order periodic autoregressive and moving average processes
-
Salas J.D., and Abdelmohsen M.W. Initialization for generating single-site and multisite low-order periodic autoregressive and moving average processes. Water Resour. Res. 29 6 (1993) 1771-1776
-
(1993)
Water Resour. Res.
, vol.29
, Issue.6
, pp. 1771-1776
-
-
Salas, J.D.1
Abdelmohsen, M.W.2
-
35
-
-
0020332335
-
Estimation of ARMA models with seasonal parameters
-
Salas J.D., Boes D.C., and Smith R.A. Estimation of ARMA models with seasonal parameters. Water Resour. Res. 18 (1982) 1006-1010
-
(1982)
Water Resour. Res.
, vol.18
, pp. 1006-1010
-
-
Salas, J.D.1
Boes, D.C.2
Smith, R.A.3
-
36
-
-
0033381989
-
Applying soft computing approaches to river level forecasting
-
See L., and Openshaw S. Applying soft computing approaches to river level forecasting. Hydrol. Sci. J. 44 5 (1999) 763-778
-
(1999)
Hydrol. Sci. J.
, vol.44
, Issue.5
, pp. 763-778
-
-
See, L.1
Openshaw, S.2
-
37
-
-
0342506462
-
Application of a neural network technique to rainfall-runoff modelling
-
Shamseldin A.Y. Application of a neural network technique to rainfall-runoff modelling. J. Hydrol. 199 (1997) 272-294
-
(1997)
J. Hydrol.
, vol.199
, pp. 272-294
-
-
Shamseldin, A.Y.1
-
38
-
-
0030372023
-
On combining artificial neural nets
-
Sharkey A.J.C. On combining artificial neural nets. Connect. Sci. 8 3-4 (1996) 299-313
-
(1996)
Connect. Sci.
, vol.8
, Issue.3-4
, pp. 299-313
-
-
Sharkey, A.J.C.1
-
40
-
-
0035369390
-
Monthly runoff prediction using phase space reconstruction
-
Sivakumar B., Berndtsson R., and Persson M. Monthly runoff prediction using phase space reconstruction. Hydrol. Sci. J. 46 3 (2001) 377-387
-
(2001)
Hydrol. Sci. J.
, vol.46
, Issue.3
, pp. 377-387
-
-
Sivakumar, B.1
Berndtsson, R.2
Persson, M.3
-
41
-
-
0037565156
-
Model trees as an alternative to neural networks in rainfall-runoff modelling
-
Solomatine D.P., and Dulal K.N. Model trees as an alternative to neural networks in rainfall-runoff modelling. Hydrol. Sci. J. 48 3 (2003) 399-411
-
(2003)
Hydrol. Sci. J.
, vol.48
, Issue.3
, pp. 399-411
-
-
Solomatine, D.P.1
Dulal, K.N.2
-
42
-
-
0000779360
-
Detecting strange attractors in turbulence
-
Takens F. Detecting strange attractors in turbulence. Lecture Notes in Mathematics 898 (1981) 366-381
-
(1981)
Lecture Notes in Mathematics
, vol.898
, pp. 366-381
-
-
Takens, F.1
-
43
-
-
0010750421
-
Using CLS for daily or longer period rainfall-runoff modelling
-
Ciriani T.A., Maione U., and Wallis J.R. (Eds), Wiley
-
Todini E., and Wallis J.R. Using CLS for daily or longer period rainfall-runoff modelling. In: Ciriani T.A., Maione U., and Wallis J.R. (Eds). Mathematical Models for Surface Water Hydrology (Part 2: Flood Models) (1977), Wiley 149-168
-
(1977)
Mathematical Models for Surface Water Hydrology (Part 2: Flood Models)
, pp. 149-168
-
-
Todini, E.1
Wallis, J.R.2
-
45
-
-
0000003175
-
Threshold autoregression, limit cycles and cyclical data
-
Tong H., and Lim K.S. Threshold autoregression, limit cycles and cyclical data. J. R. Stat. Soc. B, Methodol. 42 3 (1980) 245-292
-
(1980)
J. R. Stat. Soc. B, Methodol.
, vol.42
, Issue.3
, pp. 245-292
-
-
Tong, H.1
Lim, K.S.2
-
46
-
-
0022160782
-
Maximum likelihood estimation for periodic autoregressive moving average models
-
Vecchia A.V. Maximum likelihood estimation for periodic autoregressive moving average models. Technometrics 27 (1985) 375-384
-
(1985)
Technometrics
, vol.27
, pp. 375-384
-
-
Vecchia, A.V.1
-
47
-
-
33646597633
-
-
Wang, W., Van Gelder, P.H.A.J.M., Vrijling, J.K., Ma, J., 2004a. Predictability of streamflow processes of the Yellow River. Proceedings of the Sixth International Conference on Hydroinformatics. World Scientific, Singapore, pp. 1261-1268.
-
-
-
-
48
-
-
33646556015
-
-
Wang, W., Van Gelder, P.H.A.J.M., Vrijling, J.K., 2004b. Periodic autoregressive models applied to daily streamflow. Proceedings of the Sixth International Conference on Hydroinformatics. World Scientific, Singapore, pp. 1334-1341.
-
-
-
-
49
-
-
33646251389
-
Some issues about the generalization of neural networks for time series prediction
-
Artificial Neural Networks: Formal Models and Their Applications. Duch W. (Ed)
-
Wang W., Van Gelder P.H.A.J.M., and Vrijling J.K. Some issues about the generalization of neural networks for time series prediction. In: Duch W. (Ed). Artificial Neural Networks: Formal Models and Their Applications. Lecture Notes in Computer Science vol. 3697 (2005) 559-564
-
(2005)
Lecture Notes in Computer Science
, vol.3697
, pp. 559-564
-
-
Wang, W.1
Van Gelder, P.H.A.J.M.2
Vrijling, J.K.3
-
50
-
-
33646546224
-
-
Wang, W., Van Gelder, P.H.A.J.M., Vrijling, J.K., Ma, J., in press. Testing for nonlinearity of streamflow processes at different timescales. J. Hydrol.
-
-
-
-
51
-
-
0001069312
-
Statistics for the evaluation and comparison of models
-
Willmott C.J., Ackleson S.G., Davis R.E., Feddema J.J., Klink K.M., Legates D.R., O'Donnell J., and Rowe C.M. Statistics for the evaluation and comparison of models. J. Geophys. Res. 90 c5 (1985) 8995-9005
-
(1985)
J. Geophys. Res.
, vol.90
, Issue.c5
, pp. 8995-9005
-
-
Willmott, C.J.1
Ackleson, S.G.2
Davis, R.E.3
Feddema, J.J.4
Klink, K.M.5
Legates, D.R.6
O'Donnell, J.7
Rowe, C.M.8
-
52
-
-
0009735628
-
Neareast neighbour methods for time series with application to rainfall-runoff prediction
-
MacNeil J.B., and Umphrey G.J. (Eds), Reidel, Dordrecht
-
Yakowitz S., and Karlsson M. Neareast neighbour methods for time series with application to rainfall-runoff prediction. In: MacNeil J.B., and Umphrey G.J. (Eds). Stochastic Hydrology. D (1987), Reidel, Dordrecht 149-160
-
(1987)
Stochastic Hydrology. D
, pp. 149-160
-
-
Yakowitz, S.1
Karlsson, M.2
-
53
-
-
0033019602
-
Short term streamflow forecasting using artificial neural networks
-
Zealand C.M., Burn D.H., and Simonovic S.P. Short term streamflow forecasting using artificial neural networks. J. Hydrol. 214 (1999) 32-48
-
(1999)
J. Hydrol.
, vol.214
, pp. 32-48
-
-
Zealand, C.M.1
Burn, D.H.2
Simonovic, S.P.3
-
54
-
-
0034100712
-
Prediction of watershed runoff using Bayesian concepts and modular neural networks
-
Zhang B., and Govindaraju R.S. Prediction of watershed runoff using Bayesian concepts and modular neural networks. Water Resour. Res. 36 3 (2000) 753-762
-
(2000)
Water Resour. Res.
, vol.36
, Issue.3
, pp. 753-762
-
-
Zhang, B.1
Govindaraju, R.S.2
|