메뉴 건너뛰기




Volumn 324, Issue 1-4, 2006, Pages 383-399

Forecasting daily streamflow using hybrid ANN models

Author keywords

Cluster based ANN; Fuzzy c means clustering; Hybrid artificial neural networks; Periodic ANN; Streamflow forecast; Threshold ANN

Indexed keywords

MATHEMATICAL MODELS; NEURAL NETWORKS; RUNOFF; TIME SERIES ANALYSIS;

EID: 33646547633     PISSN: 00221694     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jhydrol.2005.09.032     Document Type: Article
Times cited : (240)

References (54)
  • 1
    • 0034254196 scopus 로고    scopus 로고
    • Comparing neural network and autoregressive moving average techniques for the provision of continuous river flow forecasts in two contrasting catchments
    • Abrahart R.J., and See L. Comparing neural network and autoregressive moving average techniques for the provision of continuous river flow forecasts in two contrasting catchments. Hydrol. Process. 14 (2000) 2157-2172
    • (2000) Hydrol. Process. , vol.14 , pp. 2157-2172
    • Abrahart, R.J.1    See, L.2
  • 4
    • 0023524394 scopus 로고
    • Nonlinear floodrouting with multilinear models
    • Becker A., and Kundzewicz Z.W. Nonlinear floodrouting with multilinear models. Water Resour. Res. 23 (1987) 1043-1048
    • (1987) Water Resour. Res. , vol.23 , pp. 1043-1048
    • Becker, A.1    Kundzewicz, Z.W.2
  • 6
    • 0033868096 scopus 로고    scopus 로고
    • Nonlinear analysis and prediction of river flow time series
    • Bordignon S., and Lisi F. Nonlinear analysis and prediction of river flow time series. Environmetrics 11 (2000) 463-477
    • (2000) Environmetrics , vol.11 , pp. 463-477
    • Bordignon, S.1    Lisi, F.2
  • 7
    • 0031851620 scopus 로고    scopus 로고
    • Feed-forward artificial neural network model for forecasting rainfall run-off
    • Braddock R.D., Kremmer M.L., and Sanzogni L. Feed-forward artificial neural network model for forecasting rainfall run-off. Environmetrics (1998) 419-432
    • (1998) Environmetrics , pp. 419-432
    • Braddock, R.D.1    Kremmer, M.L.2    Sanzogni, L.3
  • 8
    • 0034749335 scopus 로고    scopus 로고
    • Hydrological modelling using artificial neural networks
    • Dawson C.W., and Wilby R.L. Hydrological modelling using artificial neural networks. Prog. Phys. Geography 25 1 (2001) 80-108
    • (2001) Prog. Phys. Geography , vol.25 , Issue.1 , pp. 80-108
    • Dawson, C.W.1    Wilby, R.L.2
  • 9
    • 0027242791 scopus 로고
    • Backpropagation neural nets with one and two hidden layers
    • De Villars J., and Barnard E. Backpropagation neural nets with one and two hidden layers. IEEE Trans. Neural Netw. 4 1 (1993) 136-141
    • (1993) IEEE Trans. Neural Netw. , vol.4 , Issue.1 , pp. 136-141
    • De Villars, J.1    Barnard, E.2
  • 10
    • 0001083304 scopus 로고
    • A criterion of efficiency for rainfall-runoff models
    • Garrick M., Cunnane C., and Nash J.E. A criterion of efficiency for rainfall-runoff models. J. Hydrol. 36 (1978) 375-381
    • (1978) J. Hydrol. , vol.36 , pp. 375-381
    • Garrick, M.1    Cunnane, C.2    Nash, J.E.3
  • 12
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • Hornik K., Stinchcombe M., and White H. Multilayer feedforward networks are universal approximators. Neural Netw. 2 5 (1989) 359-366
    • (1989) Neural Netw. , vol.2 , Issue.5 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 13
    • 0029413797 scopus 로고
    • Artificial neural network modeling of the rainfall-runoff process
    • Hsu K., Gupta H.V., and Sorooshian S. Artificial neural network modeling of the rainfall-runoff process. Water Resour. Res. 31 (1995) 2517-2530
    • (1995) Water Resour. Res. , vol.31 , pp. 2517-2530
    • Hsu, K.1    Gupta, H.V.2    Sorooshian, S.3
  • 14
    • 0035472003 scopus 로고    scopus 로고
    • River flow time series prediction with a range-dependent neural network
    • Hu T.S., Lam K.C., and Ng S.T. River flow time series prediction with a range-dependent neural network. Hydrol. Sci. J. 46 5 (2001) 729-745
    • (2001) Hydrol. Sci. J. , vol.46 , Issue.5 , pp. 729-745
    • Hu, T.S.1    Lam, K.C.2    Ng, S.T.3
  • 15
    • 0027554445 scopus 로고
    • Learning piecewise control strategies in a modular neural network architecture
    • Jacobs R.A., and Jordan M.I. Learning piecewise control strategies in a modular neural network architecture. IEEE Trans. Syst. Man Cybern. 23 2 (1993) 337-345
    • (1993) IEEE Trans. Syst. Man Cybern. , vol.23 , Issue.2 , pp. 337-345
    • Jacobs, R.A.1    Jordan, M.I.2
  • 17
    • 0014171912 scopus 로고
    • Time series with periodic structure
    • Jones R.H., and Brelsford W.M. Time series with periodic structure. Biometrika 54 (1967) 403-408
    • (1967) Biometrika , vol.54 , pp. 403-408
    • Jones, R.H.1    Brelsford, W.M.2
  • 18
    • 0000262562 scopus 로고
    • Hierarchical mixture of experts and the EM algorithm
    • Jordan M.I., and Jacobs R.A. Hierarchical mixture of experts and the EM algorithm. Neural Comput. 6 (1994) 181-214
    • (1994) Neural Comput. , vol.6 , pp. 181-214
    • Jordan, M.I.1    Jacobs, R.A.2
  • 19
    • 0027009119 scopus 로고
    • Non-linear modelling of the rainfall-runoff relation
    • Kachroo R.K., and Natale L. Non-linear modelling of the rainfall-runoff relation. J. Hydrol. 135 (1992) 341-369
    • (1992) J. Hydrol. , vol.135 , pp. 341-369
    • Kachroo, R.K.1    Natale, L.2
  • 20
    • 33646540945 scopus 로고    scopus 로고
    • Kalman, B.L., Kwasny, S.C., 1992. Why Tanh: choosing a sigmoidal function. In: Proceedings of the International Joint Conference on Neural Networks, Baltimore, vol. 4, pp. 578-581.
  • 22
    • 35949006791 scopus 로고
    • Determining embedding dimension for phase-space reconstruction using geometrical construction
    • Kennel M.B., Brown R., and Abarbanel H.D. Determining embedding dimension for phase-space reconstruction using geometrical construction. Phys. Rev. A 45 (1992) 3403-3411
    • (1992) Phys. Rev. A , vol.45 , pp. 3403-3411
    • Kennel, M.B.1    Brown, R.2    Abarbanel, H.D.3
  • 23
    • 33646551373 scopus 로고    scopus 로고
    • Kneale, P.E., See, L., Smith, A., 2001. Towards defining evaluation measures for neural network forecasting models. Proceedings of the Sixth International Conference on GeoComputation, University of Queensland, Australia, available at http://www.geocomputation.org/2001.
  • 24
    • 0032920124 scopus 로고    scopus 로고
    • Evaluating the use of "Goodness of Fit" measures in hydrologic and hydroclimatic model validation
    • Legates D.R., Gregory J., and McCabe G.J. Evaluating the use of "Goodness of Fit" measures in hydrologic and hydroclimatic model validation. Water Resour. Res. 35 (1999) 233-241
    • (1999) Water Resour. Res. , vol.35 , pp. 233-241
    • Legates, D.R.1    Gregory, J.2    McCabe, G.J.3
  • 25
    • 0032051569 scopus 로고    scopus 로고
    • The effect of internal parameters and geometry on the performance of back-propagation neural networks: an empirical study
    • Maier H.R., and Dandy G.C. The effect of internal parameters and geometry on the performance of back-propagation neural networks: an empirical study. Environ. Model. Softw. 13 2 (1998) 193-209
    • (1998) Environ. Model. Softw. , vol.13 , Issue.2 , pp. 193-209
    • Maier, H.R.1    Dandy, G.C.2
  • 26
    • 0033957764 scopus 로고    scopus 로고
    • Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications
    • Maier H.R., and Dandy G.C. Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications. Environ. Model. Softw. 15 (2000) 101-123
    • (2000) Environ. Model. Softw. , vol.15 , pp. 101-123
    • Maier, H.R.1    Dandy, G.C.2
  • 27
    • 0030159380 scopus 로고    scopus 로고
    • Artificial neural networks as rainfall-runoff models
    • Minns A.W., and Hall M.J. Artificial neural networks as rainfall-runoff models. Hydrol. Sci. J. 41 (1996) 399-417
    • (1996) Hydrol. Sci. J. , vol.41 , pp. 399-417
    • Minns, A.W.1    Hall, M.J.2
  • 28
    • 0014776873 scopus 로고
    • River flow forecasting through conceptual models, I. A discussion of principles
    • Nash J.E., and Sutcliffe J.V. River flow forecasting through conceptual models, I. A discussion of principles. J. Hydrol. 10 (1970) 282-290
    • (1970) J. Hydrol. , vol.10 , pp. 282-290
    • Nash, J.E.1    Sutcliffe, J.V.2
  • 30
    • 0000056141 scopus 로고
    • On periodic and multiple autoregressions
    • Pagano M. On periodic and multiple autoregressions. Ann. Stat. 6 (1978) 1310-1317
    • (1978) Ann. Stat. , vol.6 , pp. 1310-1317
    • Pagano, M.1
  • 31
    • 0442279715 scopus 로고    scopus 로고
    • SOFM-MLP: a hybrid neural network for atmospheric temperature prediction
    • Pal N.R., Pal S., Das J., and Majumdar K. SOFM-MLP: a hybrid neural network for atmospheric temperature prediction. IEEE Trans. Geosci. Remote Sensing 41 12 (2003) 2783-2791
    • (2003) IEEE Trans. Geosci. Remote Sensing , vol.41 , Issue.12 , pp. 2783-2791
    • Pal, N.R.1    Pal, S.2    Das, J.3    Majumdar, K.4
  • 32
    • 0347135926 scopus 로고    scopus 로고
    • Modeling of the daily rainfall-runoff relationship with artificial neural network
    • Rajurkar M.P., Kothyari U.C., and Chaube U.C. Modeling of the daily rainfall-runoff relationship with artificial neural network. J. Hydrol. 285 (2004) 96-113
    • (2004) J. Hydrol. , vol.285 , pp. 96-113
    • Rajurkar, M.P.1    Kothyari, U.C.2    Chaube, U.C.3
  • 33
    • 0022471098 scopus 로고
    • Learning representations by back-propagating errors
    • Rumelhart D.E., Hinton G.E., and Williams R.J. Learning representations by back-propagating errors. Nature 323 (1986) 533-536
    • (1986) Nature , vol.323 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 34
    • 0027871203 scopus 로고
    • Initialization for generating single-site and multisite low-order periodic autoregressive and moving average processes
    • Salas J.D., and Abdelmohsen M.W. Initialization for generating single-site and multisite low-order periodic autoregressive and moving average processes. Water Resour. Res. 29 6 (1993) 1771-1776
    • (1993) Water Resour. Res. , vol.29 , Issue.6 , pp. 1771-1776
    • Salas, J.D.1    Abdelmohsen, M.W.2
  • 35
    • 0020332335 scopus 로고
    • Estimation of ARMA models with seasonal parameters
    • Salas J.D., Boes D.C., and Smith R.A. Estimation of ARMA models with seasonal parameters. Water Resour. Res. 18 (1982) 1006-1010
    • (1982) Water Resour. Res. , vol.18 , pp. 1006-1010
    • Salas, J.D.1    Boes, D.C.2    Smith, R.A.3
  • 36
    • 0033381989 scopus 로고    scopus 로고
    • Applying soft computing approaches to river level forecasting
    • See L., and Openshaw S. Applying soft computing approaches to river level forecasting. Hydrol. Sci. J. 44 5 (1999) 763-778
    • (1999) Hydrol. Sci. J. , vol.44 , Issue.5 , pp. 763-778
    • See, L.1    Openshaw, S.2
  • 37
    • 0342506462 scopus 로고    scopus 로고
    • Application of a neural network technique to rainfall-runoff modelling
    • Shamseldin A.Y. Application of a neural network technique to rainfall-runoff modelling. J. Hydrol. 199 (1997) 272-294
    • (1997) J. Hydrol. , vol.199 , pp. 272-294
    • Shamseldin, A.Y.1
  • 38
    • 0030372023 scopus 로고    scopus 로고
    • On combining artificial neural nets
    • Sharkey A.J.C. On combining artificial neural nets. Connect. Sci. 8 3-4 (1996) 299-313
    • (1996) Connect. Sci. , vol.8 , Issue.3-4 , pp. 299-313
    • Sharkey, A.J.C.1
  • 40
    • 0035369390 scopus 로고    scopus 로고
    • Monthly runoff prediction using phase space reconstruction
    • Sivakumar B., Berndtsson R., and Persson M. Monthly runoff prediction using phase space reconstruction. Hydrol. Sci. J. 46 3 (2001) 377-387
    • (2001) Hydrol. Sci. J. , vol.46 , Issue.3 , pp. 377-387
    • Sivakumar, B.1    Berndtsson, R.2    Persson, M.3
  • 41
    • 0037565156 scopus 로고    scopus 로고
    • Model trees as an alternative to neural networks in rainfall-runoff modelling
    • Solomatine D.P., and Dulal K.N. Model trees as an alternative to neural networks in rainfall-runoff modelling. Hydrol. Sci. J. 48 3 (2003) 399-411
    • (2003) Hydrol. Sci. J. , vol.48 , Issue.3 , pp. 399-411
    • Solomatine, D.P.1    Dulal, K.N.2
  • 42
    • 0000779360 scopus 로고
    • Detecting strange attractors in turbulence
    • Takens F. Detecting strange attractors in turbulence. Lecture Notes in Mathematics 898 (1981) 366-381
    • (1981) Lecture Notes in Mathematics , vol.898 , pp. 366-381
    • Takens, F.1
  • 43
    • 0010750421 scopus 로고
    • Using CLS for daily or longer period rainfall-runoff modelling
    • Ciriani T.A., Maione U., and Wallis J.R. (Eds), Wiley
    • Todini E., and Wallis J.R. Using CLS for daily or longer period rainfall-runoff modelling. In: Ciriani T.A., Maione U., and Wallis J.R. (Eds). Mathematical Models for Surface Water Hydrology (Part 2: Flood Models) (1977), Wiley 149-168
    • (1977) Mathematical Models for Surface Water Hydrology (Part 2: Flood Models) , pp. 149-168
    • Todini, E.1    Wallis, J.R.2
  • 45
    • 0000003175 scopus 로고
    • Threshold autoregression, limit cycles and cyclical data
    • Tong H., and Lim K.S. Threshold autoregression, limit cycles and cyclical data. J. R. Stat. Soc. B, Methodol. 42 3 (1980) 245-292
    • (1980) J. R. Stat. Soc. B, Methodol. , vol.42 , Issue.3 , pp. 245-292
    • Tong, H.1    Lim, K.S.2
  • 46
    • 0022160782 scopus 로고
    • Maximum likelihood estimation for periodic autoregressive moving average models
    • Vecchia A.V. Maximum likelihood estimation for periodic autoregressive moving average models. Technometrics 27 (1985) 375-384
    • (1985) Technometrics , vol.27 , pp. 375-384
    • Vecchia, A.V.1
  • 47
    • 33646597633 scopus 로고    scopus 로고
    • Wang, W., Van Gelder, P.H.A.J.M., Vrijling, J.K., Ma, J., 2004a. Predictability of streamflow processes of the Yellow River. Proceedings of the Sixth International Conference on Hydroinformatics. World Scientific, Singapore, pp. 1261-1268.
  • 48
    • 33646556015 scopus 로고    scopus 로고
    • Wang, W., Van Gelder, P.H.A.J.M., Vrijling, J.K., 2004b. Periodic autoregressive models applied to daily streamflow. Proceedings of the Sixth International Conference on Hydroinformatics. World Scientific, Singapore, pp. 1334-1341.
  • 49
    • 33646251389 scopus 로고    scopus 로고
    • Some issues about the generalization of neural networks for time series prediction
    • Artificial Neural Networks: Formal Models and Their Applications. Duch W. (Ed)
    • Wang W., Van Gelder P.H.A.J.M., and Vrijling J.K. Some issues about the generalization of neural networks for time series prediction. In: Duch W. (Ed). Artificial Neural Networks: Formal Models and Their Applications. Lecture Notes in Computer Science vol. 3697 (2005) 559-564
    • (2005) Lecture Notes in Computer Science , vol.3697 , pp. 559-564
    • Wang, W.1    Van Gelder, P.H.A.J.M.2    Vrijling, J.K.3
  • 50
    • 33646546224 scopus 로고    scopus 로고
    • Wang, W., Van Gelder, P.H.A.J.M., Vrijling, J.K., Ma, J., in press. Testing for nonlinearity of streamflow processes at different timescales. J. Hydrol.
  • 52
    • 0009735628 scopus 로고
    • Neareast neighbour methods for time series with application to rainfall-runoff prediction
    • MacNeil J.B., and Umphrey G.J. (Eds), Reidel, Dordrecht
    • Yakowitz S., and Karlsson M. Neareast neighbour methods for time series with application to rainfall-runoff prediction. In: MacNeil J.B., and Umphrey G.J. (Eds). Stochastic Hydrology. D (1987), Reidel, Dordrecht 149-160
    • (1987) Stochastic Hydrology. D , pp. 149-160
    • Yakowitz, S.1    Karlsson, M.2
  • 53
    • 0033019602 scopus 로고    scopus 로고
    • Short term streamflow forecasting using artificial neural networks
    • Zealand C.M., Burn D.H., and Simonovic S.P. Short term streamflow forecasting using artificial neural networks. J. Hydrol. 214 (1999) 32-48
    • (1999) J. Hydrol. , vol.214 , pp. 32-48
    • Zealand, C.M.1    Burn, D.H.2    Simonovic, S.P.3
  • 54
    • 0034100712 scopus 로고    scopus 로고
    • Prediction of watershed runoff using Bayesian concepts and modular neural networks
    • Zhang B., and Govindaraju R.S. Prediction of watershed runoff using Bayesian concepts and modular neural networks. Water Resour. Res. 36 3 (2000) 753-762
    • (2000) Water Resour. Res. , vol.36 , Issue.3 , pp. 753-762
    • Zhang, B.1    Govindaraju, R.S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.